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Abstract— Grasping is concerned with characterizing and

achieving the conditions that will ensure that a robot gripper
holds an object securely, preventing, for example, any motion
due to external forces. A system where in a desired object is
gripped by the fingers of a robot (or human) and is generally
called a grasp. Most of past researches are restricted to tip
prehension grasp (object gripped by fingertips only). In the
present work, a grasp is used often to mean the grasped object
itself, and this is also true with the literature. I the Theory of
grasping internal forces, formulated in the form of equal and
opposite pairs of forces acting along the lines of contact, can be
used to selectively orient the net force vector. A grasp situation,
which satisfies this condition, is a stable grasp. This Paper deals
with the optimization to obtain the most stable grasp for a
nominated set of contact points and loading on an object. The
equilibrating forces have been calculated on the basis of
algorithms developed. The values of friction angles are
optimized so as to satisfy the condition of stable grasp. The unit
cube considered for these calculations was assumed to be
loaded under its own weight (no moment appears due to the
weight of the body because of symmetry; there are no external
moments either) and had its body diagonal coincident with the z
axis. The body diagonal of the cube is now shifted from the z-
axis and the cube is subjected to what is known as quasi-static
motion. The study concludes that the stable grasp for a
nominated set of contact points and loading condition is
obtained at maximum friction angles and minimum contact
points.

Index Terms—Algorithm, Equilibrating, forces friction
angles, quasi-static motion, Robotic Grasping.

I. INTRODUCTION
ver the last two decades, grasping has showed a
somewhat marginal topic to an important field of
robotics research. This increasing interest in grasping is

partly due to the evolution of industrial automation towards
flexible automation. The transition from large batch size to
medium and small sizes has led to the replacement of special
purpose devices with more general purpose and effectors
enabling the manipulation of a broader class of objects. At
the same time, more attention has been given to fine
manipulation and assembly.
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This has pointed out the needs for tools able to increase the
robot’s manipulative capacity with fine position and force
control. Therefore, as end effector become more flexible,
control becomes more complex and a better understanding
of grasping turns out to be a challenging issue [1].

Regarding the grasping and manipulation by a robot hand,
many papers have been published [2]-[6]. Authors have
reported various multi-fingered hands for manipulating
objects skills fully. They have also done analytical studies of
grasping and manipulation by robot hand. Numerous factors
are available to determine the effective grasp of an object.
Researchers [7]-[10] in robotics have tried to analyze, what
constitutes good grasps. Nine analytic measures were shown,
for describing a grasp, compliance, connectivity, force
closure, from closer, grasp isotropy, internal forces,
manipulability, resistance to slipping and stability [11].
Multitude of properties that an articulated grasp must
possess in order to able to perform everyday tasks similar to
those performed by human hands has been discussed
[12].Even after these studies, mechanics of grasping,
manipulation & grasp properties have not yet fully been
understood so far [13]. This understanding is important for
designing robot hands and for developing grasping and
manipulation algorithms.

II. METHODOLOGY
Minimums of three fingers are needed to grasp an object.

In carrying out a sequence of motion a particular finger may
reach a joint limit or start slipping. It then becomes
necessary to relieve that finger with an unused finger. Hence
dexterous manipulability requires at least four fingers [14].
Even simple operations in real life, like turning a coke can
about its axis of symmetry require phasing in and out of the
fingers. A algorithm is developed for Computation of
contact force at the contact point, when to phase out a finger.

The algorithm developed will be used to numerically
optimize the values of the various friction angles ( i ) and kij
so as to satisfy the stable grasp requirement. However, a
numerical computation of the friction angles not only offers
solidity to the theory behind the entire analysis but also
reveals a few interesting trends. The unit cube considered for
these calculations was assumed to be loaded under its own
weight (no moment appears due to the weight of the body
because of symmetry; there are no external moments either)
and had its body diagonal coincident with the z axis. The
body diagonal of the cube is now shifted from the z-axis and
the cube is subjected to what is known as quasi-static
motion. That is, the cube is now set in motion and moves
about the ji ˆ707.0ˆ707.0  axis from -15° to +15°, in
intervals of 1°. The interaction forces and angles are
recomputed for every such interval and the trend is plotted.
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III. FORMULATION OF THE MINIMAX PROBLEM

A. The point contact

The development in this section is algebraic. Whenever
possible, a parallel geometric interpretation of the result will
be shown. Vectorially the force system can be represented
for a three-point contact by

P1 = F1 + k1u1 – k2u2
P2 = F2 – k3u3 – k2u2 ----------- (1)
P3 = F3 - k1u1 – k3u3

Where the vector Pi are the net forces and the
vectors Fi are the equilibrating forces at point of contact ‘i’.
The uj are the unit direction vectors along which the
equilibrating forces are to be applied and kj is the associated
scalar factor. Correspondingly the friction angle i at a point
is obtained from the relationship

iP

iPin
Cos  --------- (2)

Where ni is the unit normal to the surface at contact
point i.

The limiting friction problem can be formulated as
that of finding a set of internal forces such that the angle I
does not exceed the maximum allowable friction angle. A
grasp situation, which satisfies this condition, is a stable
grasp. The development below produces a set of equations,
solution of which yields the most stable grasp possible using
a given set of contact points. This achieved by maximizing
the minimum of the three friction angles for a set of three
contact points. The grasp plane is the plane containing the
three points of contact.

Consider

For the following section, we shall assume that the inward
drawn contact normal and the equilibrating forces are on the
same side of the grasp plane for all the contact locations. If
this condition is violated, zero friction angles cannot be
achieved by manipulating the interaction force field.

B. A Unique Minimum value of Friction   Angle (I)

As stated above that the object we chose to work on was
a unit cube. The notations used in equation system (1) can be
modified slightly to include subscripts which clarify the
directions of the vectors involved. We let the subscript ‘ij’
denote that a vector is directed from point I to point j. When
used with the k terms (which are scalars) it denotes the
direction in which the interaction forces pertinent to that
point are present. We then have,

1313121211 uuFP kk 

2121232322 uuFP kk  ---------(4)

3232313133 uuFP kk 
The interaction forces in this form still constitute a

null solution as uij = - uji. Again, as in equation kij = kji.
In the previous section it has been shown analytically that

there is a unique value of k12 and k13 for which cos1 equals
unity. Using equation (2) and (3) a MATLAB code was
written (listed in Appendix-A) and a mesh surface was
plotted (figure 2) for a hundred values of k12 and k13. The
plot shows the existence of those values.

The unit cube considered for these calculations had its
body diagonal coincident with the z axis. The mathematical
manipulations involved in achieving such an orientation
require the use of rotation matrices. The rotation matrix
expression, which achieves the necessary coordinate
transformations, about the axis ji ˆ707.0ˆ707.0  is
given by,
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Where  is the angle that the cube has to be rotated
by to align its body diagonal with the z-axis. The term V =
vers=1-cos . C and S are the cosine and sine of 
respectively. In terms of the object frame, the cube has its z
axis coincident with one of the edges of the cube. From
considerations of geometry, the angle  can thus be found to
be cos-1(0.5773) = 54.73°. The terms rx, ry, and rz are the
direction cosines of the axis of rotation. In this case, they are
respectively 0.707, 0.707, and 0.

C. Cube Motion: The Special Case of Complete Symmetry

One of the ways to grasp a cube with 4-fingers is in a
way such that 4 fingers are on four adjacent faces of the
cube subject to the condition that no three faces are
intersection. However, this type of a grip limits the size of
the cube which can be handled. So, a cliff event grip was
chosen – one with three fingers, each touching one of the
intersecting faces at the corner. It is obvious that with such
an arrangement, we will have to hold the cube vertically else
it will fall down

The cube when oriented with the body diagonal
coincident with the z axis presents a case of special interest.
Let the angle of rotation (for the quasi static motion
mentioned above) be represented by. When the body
diagonal is coincident with the z axis,  equals zero. The
cube in this condition is symmetrical in all respects. For
simplicity of calculation, center-points of the cube faces are
chosen as the points of contact. This further lends to the
symmetry of the case. For all the calculations the cube is
assumed to be loaded under its own weight. The weight
vector for all cases is assumed to be directed along the –z
axis. The weight vector will pass through the center of
gravity. Since the reference for all the calculations takes the
centroid as the origin, for any  the weight vector will create
a moment about the centroid, the lever arm being the

 
(3)---

2u2k1u1k1F
2u2k1u1k1F.1nosθ




C
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difference of the position vectors of the center of gravity and
the centroid.

The case when the cube has one of its edges coincident
with the z axis does seem to offer the advantages of
symmetry as well as simplicity. However, when an
optimization routine is allowed to run on this case the
interaction forces tend to infinity. This seems anomalous at
first, but at the same time it is not hard to see why. The local
equilibrating forces balance the weight of the cube. Also the
surface normal is completely orthogonal to the applied
weight. It would indeed require infinite force in the direction
of the surface normal (which lie on the grasp plane) so that
the resultant force is applied at zero friction angles. This
case does not inherently possess sufficient constraints to run
an optimization routine successfully.

The case of the body diagonal coincident with the z-axis
is thus considered. At  = 0, the z axis (and thus the weight
vector) passes through the centroid as well as the center of
gravity. Moment due to the weight vector is therefore zero.
As it is assumed that no other external moment is acting on
the cube the total moment is zero. Equation (7) expression
for equilibrating force, involves calculation of quantities
such as screw pitch. These values are divided by the applied
torque. The algorithm can fail as we are attempting to divide
a quantity by zero. The escape to this is provided by
considering the case intuitively. In the absence of any torque
the local equilibrating forces have to balance only the weight
(force applied) of the cube. As the points are symmetrically
located, each contact point sees the same fractional quantity
of force as the other two points. The equilibrating force for
each point of contact in this case is quite simply the one
third of the applied force (weight).

Figure 1: 15 degree rotation along x axis

Even more interestingly, for the case of  = 0, it is possible
to predict what the interaction forces will be. Since this case
exhibits complete symmetry, each point sees the same
loading conditions. A force configuration adopted for one
contact point will mean that the same force configuration is
true for the remaining two contact points. It can thus be
concluded that for the case of  = 0, the angles of contact for
all the three points of contact will be the same. This implies
that all the kij will be equal.

The concept of symmetry can be extended further to
include the assumption that the three points of contact lie on
three mutually perpendicular faces of the cube. The triangle

that the three contact points make is then equilateral. Further
the grasp plane is perpendicular to the z axis. Consider one
contact point. Since all the kij are equal the analysis is valid
for all the three points. The resultant interaction force vector
will have magnitude 2·k cos 30° = k·3. Let the weight of the
cube be w. For reasons discussed above, the equilibrating
forces at each contact point are w/3. The minimax problem
states that it is desirable to minimize the friction angle. For
an angle of zero, the applied contact force P will be in the
direction of the surface normal. The surface normal itself is
inclined to the z axis (and thus the weight vector) by an
angle  = 57.4° approximately. Hence the cosine component
of P will balance the fraction of weight seen by it and will
thus equal the equilibrating force at that point. The sine
component of P (which is parallel to the grasp plane) will
equal the interaction force as calculated above. We thus
have the following relationships:

3sin kF  -------(6)
3/cos wF  -------(7)

where kij is replaced by k since all kij are equal.
Dividing the two equations we get,

3
tan3 wk 

or,

33
tanwk  ------(8)

For the case w = 5, we get k = 1.3608.

The algorithm for calculating the two force fields and
optimizing the friction angle was implemented on
MATLAB. The optimization routine used was called ‘fminu’
and was an unconstrained nonlinear optimization library
routine. The subroutine required an initial value of the
variable to be optimized, as one of the arguments. The value
for k from equation 8 is an apt value for usage in this
unbounded case. It further provides a neat check for the
results of the algorithm.

IV. RESULTS

Results obtained by running MATLAB Program and
further plotted in figure 2.For the quasi-static motion
described earlier,  is allowed to take values form -15° to
+15°. The equilibrating forces and interaction forces, as well
as the optimization for i are recomputed for each interval of
1°. The results thus obtained were plotted as a graph of the
minimized maximum i along with the values of all kij

against.

Axis Values
x k12

y k13

z 1

Proceedings of the World Congress on Engineering 2011 Vol III 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



Figure 2- Mesh plot of 1 against various values of k12 and k13.

V. CONCLUSIONS
The findings show that the values of i closely follow each
other without any specific tolerance/constraints. The
closeness of the values of i suggests that achieving equality
is a distinct possibility. The advantage that accrue from
having a case where 1 = 2 = 3 is twofold. Firstly, it
allows to eliminating two variables from the set of kij. As a
result, an indeterminate system of six unknowns in three
equations now becomes a deterministic system that
calculates various contact forces. Secondly, the system
presents a polynomial solution for those constraints whose
efficient evaluation methods are known. Optimum stable
grasp for a nominated set of contact points and loading
condition is obtained at maximum friction angles and
minimum contact points. A numerical computation of the
friction angles offers solidity to the theory behind the entire
analysis [15]. The study may further be extended to include
constraints.
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