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Abstract—The present work does a multi-objective 

optimization in wire electro-discharge machining (WEDM) of 
tungsten carbide-cobalt (WC-Co) composite. Optimization was 
done with the help of a Neuro-Genetic technique which was 
developed through a combination of a radial basis function 
network (RBFN) and non-dominated sorting genetic algorithm 
(NSGAII). Experiments were carried out based on Taguchi 
design of experiments involving six control factors such as 
pulse on-time, pulse off-time, peak current, capacitance, gap 
voltage, and wire feed rate. Cutting speed, surface roughness 
and kerf width were considered as the measures of 
performance of the process. The proposed Neuro-Genetic 
technique was found to be potential in finding alternative 
optimal input conditions of the process. These optimal 
solutions may lead to efficient utilization of WEDM in 
industry.    
 

Index Terms— NSGA-II, RBFN, WC-Co, WEDM 
 

I. INTRODUCTION 

ITH the introduction of new hard materials to be 
machined, super-hard tool materials were developed. 

Among several super-hard tool materials, cemented 
carbides, especially WC-Co composites were found to be 
potential materials to making cutting tools, metal-working 
tools, mining tools and wear resistance components. This is 
because of its greater hardness, strength and wears 
resistance over a wide range of temperatures. WC-Co 
composite is synthesized by the sintering of WC granules 
that are held together by Co binders. 

Wire electro-discharge machining process was found to 
be an extremely powerful electro-thermal process for 
machining WC-Co composites with any intricate shape. 
This process erodes materials by minute electrical 
discharges between the wire-electrode (50-300 micron 
diameter) and the work-piece. Although WEDM was found 
to be potential for machining WC-Co composites, it has 
some major limitations particularly while machining this 
composite. A large difference in melting and evaporation 
temperatures of it constituents, makes the process unstable 
[1]. The melting and evaporation temperatures of tungsten 
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carbide are 28000C and 60000C, respectively while those for 
Co are 13200C and 27000C, respectively. Therefore, Co gets 
melted, evaporated and removed by the discharge energy 
even before the melting of WC. As a result, in absence of a 
binder (Co) the WC grains may be released without melting 
and may lead to unstable machining. Unstable machining 
causes short circuit, arcing etc. Hence, it is quite difficult to 
model such process by analytical approach based on the 
physics of this process. There have not been significant 
research publications till today on processing of these hard 
WC-Co composite materials by WEDM. Thus, there is non-
availability of machining databases for this type of 
materials. In absence of a database, an appropriate model, 
capable of predicting machining behavior for a wide range 
of operating conditions, finds immense utility. Few 
mathematical models developed so far [2]-[3] relies upon 
several assumptions to simplify the process and eventually 
predicts a process performance which is quite far from the 
reality. In this context, as neural networks are highly 
flexible modeling tool with the ability to learn the mapping 
between input and output without knowing a prior 
relationship between them, they could be used for modeling 
of such random and complex process. In the present work 
RBFN was implemented to develop this model.  

 The authors, in their previous work [4], have already 
done an extensive parametric study on this material by 
WEDM. This parametric study reveals that there is not 
available even a single input condition which can maximize 
cutting speed and minimize surface roughness or kerf width 
simultaneously. Therefore, it is a multi-objective 
optimization problem. In multi-objective optimization, user 
may require several solutions instead of a single one. These 
solutions are called Pareto-optimal solutions and they are 
equally important. Depending upon the requirement of the 
user, any one of them can be selected. Say for example, in 
rough cutting, a process engineer must select such an input 
condition from the Pareto-optimal solutions which can 
provide a larger cutting speed. This selected input condition 
may also produce higher kerf width (higher the kerf width, 
lower will be the dimensional accuracy). But the process 
engineer is not worried for that as his objective is to 
maximize cutting speed irrespective of any value of kerf 
width. Similarly in fine cutting, the selected input condition 
must be such that it will minimize kerf width irrespective of 
any value of cutting speed. As NSGA-II works with a 
population of points, it may capture several solutions which 
would be required for the multi-objective optimization 
problem. NSGA-II requires a fitness function which is 
nothing but a relationship between input and output 
parameters. As RBFN is making that relationship, hence, it 
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is coupled with NSGA-II, and thus making a Neuro-Genetic 
technique.      

Several attempts have been made to model and optimize 
the process [5]-[8]. The modeling and optimization 
techniques, used by the past researchers have some 
limitations. Say for example, the limitation of regression 
method is that it may not depict the underlying nonlinear 
complex relationship between the decision variables and 
responses. In addition to that it also requires a prior 
assumption regarding functional relationship (such as linear, 
quadratic, higher order polynomial and exponential) 
between input and output decision variables. This paper 
attempts to map input and output variables of WEDM by 
RBFN. The RBFN is superior over the back-propagation 
neural network due to the following reasons: it is less 
complex, it requires fewer training samples, only one layer 
of nonlinear elements is sufficient for establishing arbitrary 
input-output mapping, it requires less training time, and 
chance of getting local minimal convergence is less [9]. 
Similarly in optimization, most of the researchers used 
either simple weighting method, converting multi-objective 
problem into a single objective or constraint optimization 
method. The drawback of the simple weighting method is 
that it is very much sensitive to the weight vectors and needs 
prior knowledge to the problem. The limitation in constraint 
optimization technique is that the optimal value of one 
response is obtained while keeping the other one at a desired 
value and hence, providing single solution at a time. As in 
the real world situation user may require different 
alternatives in decision making; therefore, the above 
methods need to be solved number of times as the 
requirement changes. As the wire electro-discharge 
machining database for WC-Co is not readily available and 
hence, any attempt to model and optimize the WEDM 
process parameters would be very much useful to the 
process engineers.  

II. EXPERIMENTATION 

In the present research work, a 4-axis CNC WEDM 
(Make: Electronica Machine Tools Ltd., India, Model: 
Electra Maxicut) was used for the study. The machine has a 
transistor controlled RC relaxation circuit and deionized 
water is used here as a dielectric fluid. This study took WC-
Co composite with some alloying elements as the work-
piece material. The composition and the physical properties 
of the work-piece are given in Table I. 

 
TABLE I 

COMPOSITION AND PHYSICAL PROPERTIES OF WC-CO COMPOSITE 

 
 

  
 

According to the Taguchi quality design concept a mixed 
orthogonal array, L32 was used for the experiments. A total 
of six machining parameters such as pulse on-time, pulse 
off-time, peak current, capacitance, average gap voltage, 
and wire feed rate were considered as the controlling 
factors. Among the six input parameters, one has two levels 
and the remaining five have four levels. The detailed 

machining condition is shown in Table II. After completion 
of the experiments the performances of the WEDM process 
were measured by the methods explained in the next 
section.  

 
TABLE II 

MACHINING CONDITION 

A. Measurement Procedure 

Cutting speed (mm/min): Cutting speed was evaluated 
under each cutting condition by dividing the cutting length 
with the required cutting time.  
Kerf width (mm): A diagram of kerf width is shown in   
Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1. Work-piece showing kerf width 

 
Once the machining was over, each machined surface was 
cleaned with acetone bath in an ultrasonic cleaner, and kerf 
width was measured by an optical microscope attached with 
a micro-hardness tester (Make LECO, Model: M-400-H1) 
equipped with a digital micrometer.  

TABLE III 
EXPERIMENTAL RESULTS 

For each cut, total twelve kerf width measurements have 
been taken at different positions along the length of the cut 

Composition WC 76.5 wt%, Co 11.5 wt%, Alloying 
elements 12 wt% 

Grain size 2.4-2.8 µm 
Batch hardness 1363-1391 HV30 

Process parameter Level Unit 

1 2 3 4 
Wire feed rate (WF)  4 6   mm/min    
Pulse on-time (Ton)  10 13 15 20       μs 
Pulse off-time (Toff ) 20 25 28 35       μs 
Peak current setting  (Ip) 1 2 3 4         step 
Capacitance (C)  0.5 1 1.5 2         μF 
Average gap voltage (Vgap)  56 62 68 74       V 

Sl 
No. 

Input process parameters CS SR KW 
WF Ton Toff Ip C Vgap 

1 4 10 20 1 0.5 56 0.589 1.67 0.311 
2 4 10 25 2 1.0 62 0.632 1.54 0.322 
3 4 10 28 3 1.5 68 0.715 3.20 0.341 
4 4 10 35 4 2.0 74 0.576 11.3 0.347 
5 4 13 20 1 1.0 62 0.648 1.91 0.326 
6 4 13 25 2 0.5 56 0.588 1.65 0.318 
7 4 13 28 3 2.0 74 0.597 8.69 0.352 
8 4 13 35 4 1.5 68 0.669 12.1 0.342 
9 4 15 20 2 1.5 74 0.586 1.87 0.339 
10 4 15 25 1 2.0 68 0.564 8.51 0.341 
11 4 15 28 4 0.5 62 0.704 4.90 0.323 
12 4 15 35 3 1.0 56 0.615 7.31 0.329 
13 4 20 20 2 2.0 68 0.611 6.50 0.338 
14 4 20 25 1 1.5 74 0.569 4.88 0.344 
15 4 20 28 4 1.0 56 0.909 2.03 0.347 

CS = cutting speed, SR = Surface roughness, KW = Kerf width 
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and finally, the average of those readings were considered. 
Surface roughness (µm): Average surface roughness (Ra) 
was measured by SJ-201P Mitutoyo portable roughness 
tester. Multiple readings were taken for each cut and 
average was considered. The cut off length and sampling 
length were been kept as 0.8 and 3 mm, respectively. A total 
thirty-nine experiments were conducted. Out of that, thirty 
experimental data were used to train the network and rests 
were used for validation of the models. Due to limitation of 
space, only fifteen experimental results are shown in Table 
III.  
 

III. RBFN BASED MODELING OF THE PROCESS 

A. An Overview of RBFN 

RBF networks consist of an input layer, one hidden layer, 
and an output layer. The hidden layer contains an array of 
nonlinear radial basis functions, which are generally 
Gaussian functions. The output of the kth hidden node is 
obtained by the following expression:  

2-
exp -

22 k
=k 2n -

exp -
22k = 1 k






 
 
  
 
 
    
 

X Ck

X Ck

                             (1) 

where, , , ,.....,1 2 3x x x xl   X  is the input vector (also a 

pattern), [ , ,....., ]1 2c c ck k lkCk  is the center vector of the kth 

hidden node having same dimension as that of the input 
vector, l is the dimension of input and center vector, k is 

the Gaussian width of the k
th hidden neuron and n is the 

number of neurons or centers in the hidden layer. -X Ck  is 

the Euclidean distance between input and kth center. The 
outcome of the jth unit of the output layer is obtained 
through a linear combination of the nonlinear outputs from 
the hidden layer and is given by the following expression: 

,
n

s = wj k k j
k=1

                                (2) 

where, wk j is the synaptic weight between the kth hidden 

node and jth output neuron.  
It is indeed important to indicate that the performance of 

the RBFN depends on the centers of the Gaussian functions. 
Ideally, the centers should represent the whole input data 
space. Initially the centers are chosen at random. The initial 
random centers may not partition the whole input space 
effectively, resulting in poor approximation capability of the 
RBF network. Therefore, it is very much essential to 
optimize the initial centers. In the present work, the centers 
were optimized by two methods. The first method is k-
means clustering and the second one is gradient descent.  

K-means clustering technique [10] 

K-means clustering algorithm partitions the whole input 
space into some regions and finds the optimal centers of 
each region, which can represent the input dataset belonging 
to that region. In this algorithm, P number of l-dimensional 
input vectors of the training dataset, Xi , i =1, 2, ...., P, are 

partitioned into n number of clusters denoted by Gk , k = 1, 

2, ...., n. It is assumed that at optimal partition, a cost 
function of dissimilarity measure would be minimized. This 
cost function is presented by the following expression: 

2

1 ,

n
Cost function

k i Gk

 
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   

X Ci k
Xi

,              (3)                   

where, Gk is the kth cluster group. The optimal center 

Ck that minimizes the cost function is the mean of all input 

vectors in group k. 
1

,Gk i Gk

 


C Xk i
Xi

                           (4) 

where,  

1

P
G uk ji

i
 


                                (5) 

where, P  is the number of training pattern, and the 
membership matrix is given by  

2 21,

0,

if for all k ju ji
otherwise


     


X C X Ci j i k             (6) 

Gradient descent technique [11] 

K-means clustering technique may achieve a local 
optimum solution which also depends on the initial choice 
of the cluster centers. The consequence of the local 
optimality is that it would never reach to the desired value 
and causes wasting of computational time. In order to obtain 
a better result, a gradient descent learning algorithm was 
implemented. Irrespective of the value of initial centers, the 
optimal centers could be obtained by this technique. After 
(p+1)th pattern presentation, the centers are updated by the 
following expression: 

1
1

p
p pc c cik ik pcik




  


                             (7) 

where, 1pcik
 is the component of kth center vector after 

(p+1)th pattern presentation, c is the learning rate for 

centers,.   is given by the following equation:  
2

1 1 11
2 1

q p pp t sj j
j

       
 

                        (8) 

where, q  is the number of outputs, 1p
jt   is the target output 

of the (p+1)th pattern presentation, 1p
js   is the predicted 

output of the same pattern. After finding the optimal centers 
of the Gaussian functions by the two methods, the forward 
calculation was done. Based on the difference between 
predicted output and target output, the synaptic weights, 
connecting the neurons of hidden layer and output layer 
were updated. This was done by the gradient descent 
learning algorithm. The synaptic weights were modified by 
the following expression: 

1
1

pE jp pw w wkj kj pwkj


                            (9) 

where, 1pwkj
  is the synaptic weight between kth hidden 
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neuron and jth output neuron, w is the learning rate for 

weights and 
1

1 1
pE p p pk sj j kpWkj

t 
   



 
 
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. The training will be 

stopped when mean square error (MSE) for training will 
reach to a threshold value. The MSE is calculated by the 
following expression: 

2
1

2
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P p pMSE sj jP
p j

t
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 
 
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                    (10)  

B. Development and Validation of Models 

The dataset as listed in Table III was used to train the 
networks. In order to do a fare comparison between the 
models, a same value of MSE for training was used for both 
the models. Here it is 0.004. Once the optimal center 
locations were obtained, the synaptic weights were updated 
by gradient descent learning algorithm. In case of RBFN 

with k-means, the network parameters such as n , 2  and 

w  were obtained by trial and error method. This was 

carried out by varying the MSE for testing against these 
parameters. It was found that a 6-24-3 architecture yields 

better results while 2 and w  were kept as 0.3 and 0.5, 

respectively. On the other hand, in case of RBFN with 
gradient descent technique, the optimal center locations 
along with other network parameters were obtained by 
gradient descent method. Here also a 6-24-3 architecture 
yields better prediction while c , (learning rate for 

Gaussian width) and w  were kept as 0.5, 0.6 and 0.3, 

respectively.  
The models were validated against the experimental 

results. The detailed statistical analysis for the prediction 
error for cutting speed, surface roughness and kerf width 
was given in Table IV. From the table, it is clear that except 
surface roughness, the absolute prediction error for cutting 
speed and kerf width were within the acceptable limit. 
RBFN with gradient descent technique yields better result 
than with k-means technique. 

 
TABLE IV 

MODEL VALIDATION RESULTS 

IV. OPTIMIZATION BY NEURO-GENETIC TECHNIQUE 

Although three output parameters were considered in the 
present study, multi-objective optimization was done only 
on two parameters. They are cutting speed and kerf width. 
The objective of a process engineer is to maximize the 

cutting speed and minimize the kerf width simultaneously. 
These two objectives are conflicting in nature as already 
discussed in section I. Therefore, this problem is a multi-
objectives optimization problem. In case of multi-objective 
optimization problem, a single solution which is the best 
with respect to all the objectives may not exist. The 
solutions for such situation are known as Pareto-optimal 
solutions or non-dominated solutions. Since NSGA-II works 
with a population of points, a number of Pareto-optimal 
solutions may be obtained using this technique. In the 
present work, RBFN based NSGA-II (Neuro-Genetic 
technique) was used to obtain Pareto-optimal solutions. The 
next sections will provide a brief idea of the NSGA-II 
algorithm [26] and optimization results. 

A. Development of RBFN based NSGA-II 

The goals of the NSGA-II algorithm are to find a set of 
solutions as close as possible to the Pareto-optimal front and 
simultaneously as diverse as possible. Except for the fitness 
assignment method, the basic structure of NSGA-II is 
similar to that of GA. The steps involved in this algorithm 
are briefly explained. 
Step 1: Random binary population initialization: A binary 
population P of size N is generated randomly. A population 
consists of a set of input process parameters and is also used 
in making a solution which will produce outputs from the 
input-output relationship. The binary coded parameters are 
then converted into real value by a linear mapping, 
considering their upper and lower limits. The binary string 
of each parameter is converted into real value by the 
following expression: 

 
 2 1

U Lx xi iL Dx x xi i ilsi


  


                         (11) 

where, xi is the real value of the ith input parameter, Lxi   

and Uxi are the lower and upper limits of the ith input 

parameters, respectively; lsi  is the string length of the ith 

input parameter, and Dxi  is the decoded value of the ith 

parameter. Before feeding these real values to RBFN model, 
these raw values are required to be normalized.  After 
normalizing these real values in the range 0.1 to 0.9, the 
fitnesses of the objective functions are obtained by the best 
RBFN model. Here RBFN network makes the hidden 
relationship between input and output variables, and thus 
formulates the objective functions.  
Step 2: Fast non-dominated sorting: The population is 
sorted based on their non domination levels. The detailed 
explanation of this technique is described else-where [12]. 
In this technique two entities are calculated, first one is the 
domination count ( ni ) that represents the number of 

solutions which dominate the solution i  and the second one 
is Si that represents the number of solutions which are 

dominated by the solution i . This is accomplished by 
comparing each solution with every other solution and 
checked whether the solution under consideration satisfies 
the rules given below. 

Output Statistical 
measures 

M V Range Max Min 

Model 

Cutting 
speed 

K-means 7.8 17.5 9.0 13.0 4.0 
Gradient 
descent 

3.3 5.7 6.0 7.0 0.1 

Surface 
roughness 

K-means 41 134 27.4 51.8 24.4 
Gradient 
descent 

29 75.8 21.5 41.9 20.4 

Kerf 
width 

K-means 2.0 2.2 3.6 4 0.5 
Gradient 
descent 

1.0 1.5 3.3 3.5 0.2 

M= mean, V= variance
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Objective1 Objective1 and Objective2 Objective2 ori j i j

Objective1 Objective1 and Objective2 Objective2i j i j

 

 
(12)         

where, Objective1i  and  Objective1j are the fitness of 

objective1 for the i th and j th  solution, respectively. 

Similarly, Objective2i  and Objective2 j  are the fitness of 

objective2 for the i th and j th solution, respectively. If the 

rules are satisfied, then the solution j  is dominated else 

non-dominated. Thus the whole population is divided into 
different ranks. Ranks are defined as the several fronts 
generated from the fast non-dominated sorting technique 
such that Rank1 solutions are better than the Rank2 
solutions and so on. This technique drastically reduces the 
computational time. 
Step 3: Crowding distance: Once the populations are sorted, 
crowding distance is assigned to each individual belonging 
to each rank. This is because the individuals of the next 
generation are selected based on the rank and the crowding 
distance. This crowding distance ensures a better spread 
among the solutions. A better spread means a better 
diversity among the solutions. In order to calculate 
crowding distance, fitness of the objective functions for the 
solutions belonging to a particular rank were sorted in 
descending order with respect to each objective. An infinite 
distance is assigned to the boundary solutions i.e., for the 

first and thn  solution, if n  number of solutions belong to a 
particular rank.  This ensures that the individuals in the 
boundary will always be selected and hence, result in better 
spread among the solutions. For other solutions belonging to 
that rank, the crowding distances are initially assigned to 
zero. For 2r  to 1n  solutions, this is calculated by the 
following formula:  

( 1) ( 1)
( ) ( )

max min

f r f rm mI r m I r m
f fm m

  
 


                     (13)                                  

where, ( )I r m  is the crowding distance of the of the thr  

individual for thm objective, where, m =1 to 2. ( 1)f rm   is 

the value of the thm objective for ( 1r  )th individual, 
maxfm and minfm  are the maximum and minimum values of 

the thm objective, respectively.   
Step 4: Crowded tournament selection: A crowded 
comparison operator compares two solutions and returns the 
winner of the tournament. A solution i  wins a tournament 
with another solution j  if any of the following conditions 

are true: (i) If solution i  has a better rank than j  (ii)If they 

have the same rank but solution i  has larger crowding 
distance than solution j . 

Step 5: Recombination and selection: The offspring and 
current population are combined and selection is done in 
order to obtain the population of the next generation. The 
offspring are generated by 2-point cross over and bitwise 
mutation. The elitism is ensured, as the best population from 
the offspring and parent solutions are selected for the next 
generation. The 2N solutions are then sorted based on their 
non-domination; and crowding distances are calculated for 

all the individuals belonging to a rank. In order to form the 
population of the current generation, the individuals are 
taken from the fronts subsequently unless it reaches to the 
desired population number (N). The filling starts with the 
best non-dominated front (Rank1 solutions), with the 
solutions of the second non-dominated front, followed by 
the third non-dominated front, and so on.  If by adding all 
individuals in a front the population exceeds N, then 
individuals are selected based on their crowding distance. 
The steps are repeated until maximum generation number is 
reached. 

B. Optimization Results 

The objective of the present study is to maximize the 
cutting speed and minimize the kerf width. In order to 
convert the second objective into maximization, it is 
suitably modified. The objectives then take the following 
form: 

1

Objective 1 Cutting speed

Objective 2
Kerf width




                      (14) 

As the range and the step length of the process variables 
were different, hence, different bit size was assigned to 
individual parameters. Initially bit lengths for individual 
parameters were taken arbitrarily. Finally optimal bit lengths 
were obtained by trial and error method. The optimal bit 
lengths for WF , Ton, Toff, IP , C and Vgap were found to be 5, 
10, 15, 5, 5, and 15, respectively. And hence, the string 
length of each chromosome (population) became 55. 
NSGA-II starts with 100 initial populations (N) which were 
generated randomly. Any other value of N could also be 
considered. Here a solution indicates a set of combination of 
input process parameters. Each set of parameters is 
producing a cutting speed and kerf width data through 
RBFN model.  

NSGA-II ranks the individuals based on dominance. The 
fast non-dominated sorting procedure allows us to find out 
the non-domination frontiers (Ranks) where individuals of 
the frontier set are non-dominated by any solution. By using 
the non-dominated sorting procedure, 100 scattered initial 
solutions were making four frontiers after 13 generation. 
Therefore, the whole initial scattered solutions are now 
grouped into four ranks. This is shown in Fig. 2. It is 
obvious that Rank1 solutions are better than Rank2 
solutions and so on.  
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Fig.2. Solutions are making four frontiers after thirteen generation. 

After finding the frontiers, the crowding distance was 
calculated for each individual by applying equation 13. The 
Crowding distance selection operator helps NSGA-II in 
distributing the solution uniformly to the frontier rather than 
bunching up at several good points. This was done by 
maintaining diversity in the population. The diversity in the 
population gives a wide range of choices to the users. 
Subsequently, the solutions of four frontiers were converged 
into only single front at the end of 250 generations. This 
was achieved by applying NSGA-II (step 1 to step 5) on 
those 100 initial solutions. Hence, at the end of 250 
generations the scattered initial solutions are lying in the 
Pareto front leading to the final set of solutions. This is 
shown in Fig. 3. This graph indicates that the Pareto front 
contains 100 non-dominated solutions. So far as the NSGA-
II parameters were concerned, 2-point cross over with cross 
over probability 0.9 and bitwise mutation with mutation 
probability 0.1 were used. The tuning of these parameters 
was done by trial and error method.  

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
Fig.3. Pareto-optimal solutions after 250 generation 

 
The Pareto-optimal solutions using NSGA-II with RBFN 

technique is listed in Table V. In this table, out of hundred 
data, only first fifteen are presented.  
 

TABLE V 
PARETO-OPTIMAL SOLUTIONS 

 

As none of the solutions in the Pareto front are better than 
other, any one of them is an acceptable solution. The choice 
of one solution over other exclusively depends upon the 
requirement of the process engineers. If a higher cutting 
speed or a lower kerf width is required, a suitable 
combination of process variables could be selected from 
Table V. It could be shown that by using the non-dominated 
sorting genetic algorithm, the performance of the WEDM 
process could significantly be improved by selecting proper 
input process parameters. For an instance, it could be 
observed from the experimental results as tabulated in Table 
V, that the parametric combination for experiment number 
12 produces cutting speed values of 0.615 mm/min and kerf 
width of 0.329 mm. By optimizing using RBFN based 
NSGA-II, the cutting speed could be increased by 34.9 % 
for the same kerf width (Sl. no. 11). This has been achieved 
by selecting proper input condition of the process. 

V. CONCLUSION 

The proposed Neuro-Genetic technique will be useful in 
finding several optimum solutions in multi-objective 
optimization problem. Here only two objectives were 
considered. In future, Pareto solutions can be obtained by 
considering three objectives simultaneously.   
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Sl 
No. 

Input process parameters CS KW 
WF Ton Toff Ip C Vgap 

1 6 16 20 4 2.0 57 1.03 0.364 
2 6 15 31 3 0.5 56 0.65 0.316 
3 6 17 20 4 0.7 56 0.98 0.356 
4 6 17 20 4 0.8 56 0.99 0.358 
5 6 15 20 2 0.5 56 0.83 0.330 
6 6 15 27 2 0.5 56 0.68 0.317 
7 6 16 28 2 0.5 56 0.69 0.317 
8 6 17 20 3 0.5 56 0.91 0.341 
9 6 17 26 2 0.5 56 0.71 0.319 
10 6 16 20 2 0.5 56 0.84 0.331 
11 6 17 20 2 0.5 56 0.83 0.329 
12 6 17 20 4 0.5 56 0.94 0.348 
13 6 17 20 3 0.5 56 0.86 0.334 
14 6 16 20 4 0.5 56 0.96 0.351 
15 6 17 20 3 0.5 56 0.86 0.334 

CS = cutting speed, KW = Kerf width 
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