
 

 
Abstract— Geometrically nonlinear bending analysis of 

clamped circular plates under axisymmetrical transverse load 
is made in this computational study. The thickness of the plate 
is considered to be uniform and the plate material is assumed 
to be isotropic and homogeneous. Since both the plate 
geometry and the loading are axisymmetric a set of nonlinear 
ordinary differential equations are solved in the paper. The 
system of nonlinear algebraic equations which is obtained by 
the finite difference method is solved by the Newton-Raphson 
method. The boundary conditions at the support and at the 
center of the plate are satisfied exactly. The accuracy of the 
results is verified by checking the maximum deflection with the 
results available in the literature. In case of uniform pressure 
almost identical central deflection is obtained. 
 

Index Terms—Bending, large deflection, nonlinear, plate 
 

I. INTRODUCTION 

onlinear analysis is one of the most challenging topics 
in applied mechanics. Since closed form solutions are 

available only for a limited number of cases, numerical 
methods have been used extensively [1]-[3]. 

When the deflections are small in comparison with the 
plate thickness, the Kirchhoff plate theory is applicable. 
However; when the deflections are beyond a certain level, 
the relation between the external load and the deflection is 
no longer linear [4].  

In the current study, geometrically nonlinear bending 
analysis of clamped circular plates is made numerically. The 
axisymmetric transverse load (q) is considered to be 
uniform. The diagrams of deflection and stress resultants are 
plotted and the results are compared with the Kirchhoff 
plate theory.  

II. FORMULATION 

Geometrically nonlinear shallow spherical shell equations 
derived by Huang [3] are used in the study. First, due to the 
radial symmetry of the plate the partial differential shell 
equations are transformed to ordinary differential equations. 
Next, the equations are reorganized in terms of three 
displacement components ( w,u, ), and three stress 
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resultants ( r r rn ,q ,m ). Finally, the height of the shallow  

spherical shell is set to zero in the current study and a 
circular plate of radius a  is obtained. Therefore,  
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are obtained where     d

dr
  . 

Here, w,u,  are the deflection, the horizontal radial 

displacement and the rotation. The symbols denoted by  
r, ,E, t  are the radial coordinate, Poisson’s ratio, Young’s 

modulus, and the thickness of the plate, respectively. The 
stress resultants r r rn ,q ,m  are the membrane force, 

transverse shear, and the bending moment. The uniform 
external pressure is introduced by  q . 

The non-dimensional parameters are introduced by  
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where D  is the bending rigidity of the plate. Substituting 
the non-dimensional variables into “(1-6)”, we have the 
ordinary differential operators  1 2 3 4 5 6L ,L ,L ,L ,L ,L  given 

by  
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 “(9-14)” are converted to algebraic equations via the 
finite difference method. The points of the finite difference 
mesh are located along the radial coordinate and six 
unknowns ( r r rW,U, , N ,Q ,M ) are defined at each point. 

Therefore, the boundary conditions at the clamped edge 
(i.e., at 1; W U 0      ) and at the center of the plate 

(i.e., at r0; U Q 0      )  are satisfied exactly. The 

system of nonlinear algebraic equations are solved by the 
Newton-Raphson method. 

III. NUMERICAL RESULTS 

 The parameters considered in the numerical procedure are 
shown in the following:  

6 2

4

E 2 10 N / m , 0.3, a 1 m,

t 0.10 m, c 10, Qc
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 The diagrams of deflection and stress resultants are 
plotted for several values of   (Figs. 1-4). 

 
TABLE I 

NON-DIMENSIONAL CENTRAL DEFLECTION ( 0W ) FOR UNIFORM 

PRESSURE 
 1

Q 0.0001

 


 
 3

Q 0.0003

 


 
 10

Q 0.0010

 


 

Present study 0.1678  0.4583  1.0509 
Large deflection 
analysis 

0.1680 [1]  0.4588 [1]  1.0512 [1] 

Large deflection 
analysis 
(approximate 
solution) (*) 

0.1687 [5]  0.4655 [5]  1.0937 [5] 

Kirchhoff  
plate theory (**) 

0.1706 [4]  0.5119 [4]  1.7062 [4] 

 
(*) These results were computed by the author(s) via the 

formula given on page 412 and Table 82 on page 410 in [5]. 
(**) These results were computed by the author(s) via the 

formula given in [4]. 
 

 
Fig. 1. Non-dimensional deflection ( W ) 

 
Fig. 2. Non-dimensional stress resultant ( rN ) 

 
Fig. 3. Non-dimensional stress resultant ( rQ ) 

 
Fig. 4. Non-dimensional stress resultant ( rM ) 

IV. CONCLUSION 

In comparison with the solutions reported by Ye [1] 
almost identical results are obtained (Table I). The results 

reveal that Kirchhoff theory yields greater rM  than the 

large deflection theory does (Fig. 4). This statement is also 
valid for the deflection (Fig. 1). The numerical procedure 
employed in this computational paper works efficiently and 
produces results with acceptable accuracy. 
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