
 

  
Abstract— In this paper an active modal TMD control logic 

for the vibration suppression is presented. Starting from the 
traditional TMD theory, a closed loop formulation is proposed 
to calculate the active control force. The possibility to describe 
every mechanical systems or civil structures with a set of 
modal coordinates allows to act independently on each d.o.f. 
The technique is compared with different solutions already 
present in literature, such as the IMSC and the PPF. 
Numerical simulations, based on a FEM linear model, are 
carried out to investigate the pro and con of each logic. 
 

Index Terms— Active modal TMD, resonant control, 
vibration suppression 
 

I. INTRODUCTION 
The necessity to reduce the vibrations in the structures 

has always played a fundamental role not only in mechanics 
but also in many civil/architectonic applications. The 
stresses associated to the dynamic amplifications acting on 
these structures, in particular when they are forced in nearly 
resonance conditions, can affect their performances and 
integrity. These considerations assume even more 
importance when the same stresses lead to a component 
lifetime reduction and, as a consequence, to implications 
about the safety of persons and things in close contact with 
the structures under investigation. 

For these reasons, the designers generally operated 
adopting passive devices able to reduce the vibrations level. 
The most intuitive solution is to apply viscous dampers for 
the energy dissipation. Anyway this approach implies some 
limits mainly due to the necessity of defining a fixed point 
to set to the ground the viscous forces. Moreover, the same 
fixed point becomes a critical element in the optimization 
procedure of damper parameters, since it actually modifies 
the dynamic response of the system. A solution to these 
limits has been reached thanks to the introduction of the 
mass damper theory. Thanks to its simplicity, although well 
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known for many years, also this passive device is still 
widely adopted in many civil and mechanical systems [1-4]. 
The working principle, based on the synchronization 
between the natural frequency an of an auxiliary single 
d.o.f. coupled system and one of the original structure (from 
which the name “Tuned Mass Damper”, TMD), involves 
that it operates applying an inertial force 90 degrees out of 
phase with respect to the displacement. The main limit of 
this device is the ability to protect the system for a given 
range of frequencies, while the others are practically 
uncontrolled. During the years, to improve their 
performances multiple resonances TMD have been created, 
as e.g. the Stockbridge [5], for the vibrations suppression in 
the cables of high voltage energy transmission lines, able to 
operate in a wider frequency range. 

Anyway during the last decades, thanks to the 
improvements and the cost reduction of calculators and 
actuators systems, besides the passive devices also the 
active ones have assumed more importance. In dynamic 
applications particularly interesting are the solutions 
classified as active modal controls, able to independently act 
on each generic structure vibration mode. In this sense each 
vibration mode of the system under investigation can be 
analyzed as a single d.o.f. system. In general all the active 
control logics for vibrations suppression are based on 
several steps, summarizing as: 

- Identification of the system vibratory state by means of 
modal filters or observers [6,7]; 

- Definition of the control law that, starting from the 
vibration level, returns the damping force; 

- Actuation of the control forces through a suitable 
actuators system (piezoelectric, magneto-strictive, 
inertial electromechanical,…) [8]; 

- Evaluation of possible undesired effects associated to 
the implementation of the logic on a real system (for 
example spillover) [7,9]. 

The aim of present work is to investigate the second 
point, comparing different control logics and evaluating pro 
and con. Firstly two known-in-literature logics, the 
Independent Modal Space Control (IMSC) [10,11] and the 
Positive Position Feedback (PPF) [12,13], are briefly 
presented. Then an active TMD logic is proposed. Starting 
from the traditional TMD theory, it adopts a modal 
approach to calculate the control force, overcoming some of 
the TMD typical limits such as the imposed ratio between 
the system and the auxiliary masses, the static deflection due 
to the auxiliary mass,… Finally the different solutions have 
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been tested by means of numerical simulations on a linear 
system. 

II. STATE OF THE ART SOLUTIONS 
Consider a generic linear mechanical system 
 

[ ] [ ] [ ] c d+ + = +M x R x K x f f  (1) 
 
where 
- x  is the vector containing the n  independent 

coordinates 
- [ ]M  and [ ]K  respectively represent the inertial and 

elastic matrices; 
- [ ]R  is the damping matrix, assumed to be proportional 

to the elastic and inertial ones; 
- cf  is the vector containing control contribution, while 

df  represents the generic disturbance forces applied to the 
system. 

For a complex system (such as beam, plate, etc.), these 
matrices come from a discretization of the structure, for 
example using the Finite Element Method (FEM). For this 
reason they can be very large and un-useful for the synthesis 
of the control law. In this case modal approach is very 
attractive, because it allows to describe the system through a 
limited set of modal coordinates. In fact, higher modes are 
typically very damped and difficult to excite and can be 
neglected in the control formulation. Defining [ ]totΦ  the 

n n×  eigenvector matrix of [ ] [ ]1−M K , the following 
coordinate change can be performed 

 
[ ]tot tot

=x Φ q  (2) 

 
where 

tot
q  is an n  vector containing all the system modal 

coordinates. Considering only the first m  modes, the (2) 
becomes 

 
[ ]x Φ q  (3) 

 
where [ ]Φ  is an n m×  matrix containing only the 

considered modal shapes. Substituting the (3) in the (1), a 
series of decoupled modal equations can be obtained as 

 
, ,i i i i i i c i d im q r q k q u f+ + = +  (4) 

 
where the subscript "i" indicates the i-th modal equation. 
Therefore, through the (4), it is possible to define the 

control law ,c iu  independently for each mode. For this 
reason, in the following, a single-mode system is considered 
to describe the different control laws proposed. 

In particular in this section a brief overview of some 
important control theories developed in modal approach in 
the last decades is presented. Two strategies, Independent 
Modal Space Control (IMSC) and Positive Position 
Feedback (PPF) are investigated. 

 

A. Independent Modal Space Control 
Considering the (4), the aim of the IMSC is to modify 

independently the dynamic behaviour (natural frequency 
and damping) of each controlled mode, without changing 
the parameters of the uncontrolled ones. The modal control 
force ,c iu  is defined as 

 
, , ,c i v i i p i iu g q g q= − −  (5) 
 
and the closed loop equation of motion becomes 
 

( ) ( ), , ,i i i v i i i p i i d im q r g q k g q f+ + + + =  (6) 

 
The two parameters ,p ig  and ,v ig  allow to set 

respectively the natural frequency and the damping ratio of 
the i-th controlled mode. In mechanical field, especially 
considering a vibration control problem, the position gain 

,p ig  is often set to zero in order to avoid higher control 
forces and mechanical stress of the structure. 

 

B. Positive Position Feedback 
 
Another control strategy is the Positive Position Feedback 

(PPF), introduced by Goh and Caughey in 1985. In this 
method, the feedback control force is provided by a 2nd 
order compensator (fig. 1). 

 

Mechanical
system

2° order
compensator

quc fd
+Gain

 
Fig. 1.  Scheme of PPF controller for a single mode 

 
Dividing the (4) by im  
 

2
, ,2 c ii i i i i i d iq q q u fξ ω ω+ + = +  (7) 

 
the control law can be defined as 
 

2
,c i i f iu g ω η=  (8) 
 
where iη  is calculated through the 2nd order 

compensator defined by 
 

2 22i f f i f i f iqη ξ ω η ω η ω+ + =  (9) 
 
In this formulation iξ  and iω  represent the damping ratio 

and natural frequency of the i-th mode, while fξ  and fω  
are those of the compensator. Combining the (7), (8) and 
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(9), the equation of the closed loop system can be obtained 
as 

 

2 2
,

2 2

2 0
0 2

0

i ii i

f fi i

ii i f d i

if f

q q

qg f

ξ ω
ξ ωη η

ω ω
ηω ω

⎡ ⎤⎧ ⎫ ⎧ ⎫
+⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦
⎡ ⎤ ⎧ ⎫− ⎧ ⎫ ⎪ ⎪+ =⎢ ⎥ ⎨ ⎬ ⎨ ⎬− ⎪ ⎪⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦

 (10) 

 
The closed-loop system is stable if the stiffness matrix is 

positive-definite. This condition is verified if and only if 
 

2

2
i

i
f

g
ω
ω

<  (11) 

III. ACTIVE TUNED MASS DAMPER 
In this article, a control formulation combining the 

benefits in controlling independently the system modes with 
the know-how of the well known tuned mass damper theory 
is proposed. For this reason, for the sake of completeness, 
the traditional TMD for a mechanical system is presented. 
Subsequently this formulation is extended to a generic 
multi-modal case, considering an independent modal TMD 
control force. 

A. Traditional TMD 
Considering a generic single degree of freedom system, 

the classical tuned mass damper (TMD) consists of a mass-
spring-damper system connected to the system (fig. 2). 

 
 

m

mc

rk

rckc

y

q
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Fig. 2.  A single degree of freedom system with TMD 

 
Calling cm , cr  and ck  the mass, damping and stiffness of 

the TMD, the equation of motion of the complete system 
becomes 

 

,

0
0

0

c c

c c c

c c d i

c c

m r r rq q
m r ry y

k k k q f
k k y

+ −⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫
+⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥−⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

+ −⎡ ⎤ ⎧ ⎫ ⎧ ⎫
+ =⎨ ⎬ ⎨ ⎬⎢ ⎥− ⎩ ⎭ ⎩ ⎭⎣ ⎦

 (12) 

 
Usually cm  is chosen between 5% and 10% of the system 

mass m , while ck  is tuned so that c ck m k m=  and cr  is 
dimensioned in order to maximize the damping effect 
around the system resonance. 

B. Modal Active TMD 
As in the PPF technique (fig 1), it is possible to design a 

2nd order compensator providing on the system a force 
calculated with the TMD equation. Considering the equation 
of the generic i-th mode (4), the active modal TMD 
compensator (AMTMD) can be designed as 

 
( ) ( ), , ,c i c i i i c i i iu k y q r y q= − + −  (13) 

 
where 
 
, , , , ,c i i c i i c i i c i i c i im y r y k y k q r q+ + = +  (14) 
 
Under the assumption of knowing exactly the modal 

coordinate iq  of the system, the closed-loop is stable for 
any value of the parameters ,c im , ,c ir  and ,c ik . Anyway, in 
order to achieve the best performances, their values should 
be chosen using the same approach, for each considered 
mode, of the single degree of freedom TMD, optimizing the 
phase between control force and displacement. 

C. Extension to a multi-modal system 
Until now, for every proposed method, the single modal 

coordinate has been considered under the assumption that it 
can be directly measured and controlled. The so-calculated 
forces ,c iu  represent the contributions of the actuator forces 
on the considered modes. In real cases, as said in the 
introduction paragraph, when a multi-mode system is 
considered, it becomes necessary to know the single modal 
contributions on system vibration and the actuator action on 
each mode. 

Under the assumption of distributed actuators and sensors 
(for example piezoelectric patches) it's possible to measure 
directly each considered mode and to act directly on it, 
applying the previously calculated modal forces [8]. In all 
the other cases it becomes necessary to link the real forces 
and measurements with the considered modal contributions. 
In this case, knowing the generic mn  measurements vector 
μ , the modal coordinates can be calculated as 

 

[ ][ ]( ) 1
m

−
=q Λ Φ μ  (15) 

 
where [ ][ ]( )mΛ Φ  is an mm n×  matrix linking the modal 

coordinates with the measurements. This matrix must be 
invertible. It means that it must be square (the number of 
measurements must be equal to the number of considered 
modes) and nonsingular (the system must be observable). If 

mn m< , modal observers [7] can be used to estimate the 
modal coordinates of the system. 

The actuator forces can be calculated as 
 

[ ] [ ]( ) 1

act act
T T

c

−
=F Φ Λ u   

 
where actF  contains all the actuator forces, while cu  all 
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the modal action calculated by (13). The actn m×  matrix 

[ ] [ ]( )act
T TΦ Λ  must be invertible too. It means that the 

condition actn m=  must be satisfied and the system must be 
controllable. If the number of considered modes is greater 
than the number of actuators, Moore-Penrose pseudo-

inverse of [ ] [ ]( )act
T TΦ Λ  can be used but, in this case, the 

control force couple the system modes. 

IV. NUMERICAL RESULTS 
In this section, a numerical analysis is performed to 

compare the proposed control strategies. The FEM 
numerical model of a clamped beam is considered (Fig. 3). 

 
 

fd Fact1 Fact3Fact2

1 2 3

 
Fig. 3.  The beam model considered for the numerical simulations 

 
Table 1 resumes the main properties of the beam, while 

Table 2 shows the position of sensors and actuators. 
 

TABLE I 
CHARACTERISTICS OF THE CLAMPED BEAM 

Length 1 m 
Section 4E-4 m2 

J 3.3E-7 
E 70 GPa 

 
TABLE II 

POSITION OF SENSORS AND ACTUATORS WITH RESPECT TO THE CLAMP 
Actuator Position [m] Sensor Position [m] 

1 0.38 1 0.31 
2 0.63 2 0.50 
3 0.69 3 1.0 

 
At first a comparison between the performances of IMSC 

and PPF on this system will be presented. In order to control 
the system modes independently, a 3-modes controller is 
implemented. In this way, the matrices of the (15) and (16) 
can be inverted. The control strategies performances are 
evaluated through the transfer function between the beam 
tip displacement and a vertical disturbance force, applied at 
0.125 m from the clamp (fig. 3). 
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Fig. 4.  Comparison between the transfer function of the uncontrolled 
system with IMSC (a) and PPF (b) 

 
Figure 4 shows the comparison between IMSC and PPF. 

It can be noticed that, considering only the modeled modes, 
the damping effect introduced by the IMSC is greater than 
the damping effect of PPF (from a theoretical point of view, 
under the assumption of ideal actuators, there is no limit to 
the increase of damping introduced on the modeled modes). 
Besides PPF worsens the system response in the quasi-static 
range of frequencies (below the first system resonance). 

The great advantage of PPF is that the feedback loop is 
represented by a low-pass filter. For this reason, as shown in 
the pole diagram in fig. 5, the spillover risk on higher modes 
is lower. In particular, for this application, IMSC causes an 
important spillover effect on the sixth mode (about 300 
rad/s), while using PPF control this effect is greatly reduced. 

The AMTMD control is able to achieve the same 
performances of PPF in terms of effectiveness around the 
resonances and spillover rejection, but without causing the 
quasi-static amplification typical of the PPF. Figure 6 shows 
the transfer function between tip displacement and 
disturbance force using AMTMD control (see, for 
comparison, fig. 4 and 5). 

Moreover, AMTMD control outperforms classical TMD 
passive control since it avoids the deformations due to static 
preloads. Besides, AMTMD can be effective even if the 
considered system modes are very closed one to each other. 
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Fig. 5.  Comparison between the poles of the uncontrolled system with 
IMSC (a) and PPF (b) 
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Fig. 6.  Transfer function (a) and poles diagram (b) of the system controlled 
with AMTMD 

V. CONCLUSIONS 
The paper proposes a control strategy that merges the 

independent control of system modes (as IMSC) and the 
know-how of the tuned mass dampers. The result is an 
active control method, that has been called "Active Modal 
Tuned Mass Damper (AMTMD)", that achieves the same 
performances of Positive Position Feedback (PPF) around 
the resonances, without increasing the low frequency 
response. 

An experimental campaign will be carried out in order to 
validate the proposed control strategy on real applications. 
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