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Abstract—The paper is aimed at investigating the turbulent 

flow and heat transfer characteristics in an annular duct partly 
filled with a porous medium. A modified k  model for 
approximating the Forchheimer term in the equations of 
turbulent kinetic energy and dissipation rate is developed by 
time-averaging the general macroscopic transport equations. 
This model accounts for the second order approximation in the 
Forchheimer term. This higher order term leads to a better 
description of the turbulent effects of the Forchheimer term in 
the flow through the porous medium. A second law approach, 
based on the entropy generation is used, in order to find the 
compromise between hydrodynamics and thermal 
performances. 
 

Index Terms—Heat transfer, second law analysis, porous 
medium, turbulent flow, numerical modeling.  
 

I. INTRODUCTION 

here has been a great interest lately regarding turbulent 
flow in porous media. This is related to their potential 
industrial applications such as packed bed reactors, 

filtering insulation, grain storage and drying, electronic 
cooling and heat exchangers. Two different approaches for 
developing macroscopic models for incompressible flow in 
saturated porous media were found in the literature. In the 
first approach, the governing equations are obtained by time 
averaging the volume-averaged equations [1,2]. In the 
second approach, a volume average operator is applied to 
the local time-averaged equations [3]. Silva and de Lemos 
[4] discussed different aspects of macroscopic modeling of 
turbulence in homogeneous porous media. All these 
approaches rely on a two-equation macroscopic turbulence 
model ( k ). Using the first approach, a modified model is 
developed to analyze turbulent flow in a duct partly filled 
with a porous matrix.  

Improving heat exchanger effectiveness by 
enhancement techniques is always achieved at the expense 
of fluid friction losses; an optimal trade-off has become the 
critical challenge for the design work. The optimal design 
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can be achieved if the second law of thermodynamics is 
accounted for. The study of second law in turbulent flow 
with a porous media is almost no existent. The majority of 
studies are presented for laminar flows [5-7]. A model 
equation for calculation of the local entropy generation in 
the turbulent shear flow is used. 
The hot fluid flows in the inner cylinder and the cold one in 
the annular gap. The porous substrate is attached to the 
inner cylinder and the outer cylinder is perfectly insulated. 
The investigation is performed taking into account the 
effects of various parameters such as the Reynolds number, 
the porous layer thickness, the permeability and the 
effective thermal conductivity. 

II. NUMERICAL MODELING 

The fluid is assumed to be incompressible and the flow 
two-dimensional and axisymmetric. The porous substrate is 
considered homogeneous, isotropic and saturated with a 
single-phase. The fluid is in local thermal equilibrium with 
the solid matrix.  

A. Governing Equations 

The final average continuity, momentum, and energy, in 
cylindrical coordinates are [8]:  

 
Continuity equation: 
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Momentum equation in axial direction 
 

 

 







































































































































z

V

r

U
V

z

U
UUk

U
UU

K

c
U

Kz

V
r

rr

z

U

zz

k

r

U
rJ

rr

z

U
J

zz

P

ρr

Ur

r

V

z

U
U

t

F
t

tt

t
f

2
3

21

1

3

21

1)(

2/1
2









      (2) 

 
Momentum equation in radial direction: 

Second Law Approach for Turbulent Flow in an 
Annular Duct Partly Filled with a Porous 

Substrate 

N. Allouache, S. Chikh 

T

Proceedings of the World Congress on Engineering 2011 Vol III 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 

 

 







































































































































r

U

z

V
V

r

V
VVk

U
VU

K

c
V

Kr

V

r

V
r

rr

r

V

zz

k

r

V
rJ

rr

z

V
J

zz

P

ρr

Vr

r

V

z

V
U

t

Ft
t

tt

t
f

2
3

21

21

3

21

1)(

2/1
2

2









            (3) 

 

VU ,  are the time-averaged fluid velocities,  
2kCt    is 

the eddy viscosity,  is the porosity, K is the porous  

medium permeability and feJ  is the viscosity ratio . 

 
Model equation for turbulent kinetic energy ( k ): 
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Model equation for dissipation rate (  ): 
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Energy equation: 


































































r

T
r

R

rr

z

TR

zr

Tr

r

V

z

T
U

t

tc

t

tc













Pr

1

Pr

)(

               (8) 

T is the average temperature, Pr is the Prandtl number and 

fecR   is the thermal conductivity ratio. 

C , 1C , 2C , 3C , sC ,  ,  and t are the constants 

used in the transport equations [8]. 
are     T ,v , u  are fluctuating quantities. The subscript j in j and 

j  stands for h in the hot side and for c in the cold side. 

While in the porous region, j indicates the effective thermal 

conductivity in jk . Eq. (8) can be written as: 

   

ppTTg SSSSS                                              (9) 

 
In  In Eq. (9), the first and second groups of terms describe the 

heat transfer entropy production due respectively to time 
mean temperature gradients and fluctuating temperature 
gradients. The third and fourth groups of terms containing 
respectively the mean and fluctuating velocity gradients 
represent the entropy production due to fluid friction. The 
model equations for the fluctuating quantities 

TS 
 and pS 

 are [9]: 

 

TjttpT SCS                                                    (10) 

TS p 
                                                                   (11) 

 
The rate of entropy generation over the cross section is 

calculated by integration: 

drr2SS
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The irreversibility distribution ratio ( ) is defined as: 

 
Tp SS                                                       (13) 

 

B. Boundary conditions  

The associated conditions are: 
- Prescribed velocities, temperatures, turbulent kinetic 
energies and dissipation rates at the inlet. 
- Velocity and turbulent kinetic energy are set equal to zero, 

and 22 rk  , at the walls. 

-  The outer cylinder is perfectly insulated.  
-  A wall function approach was used for treating the flow 
close to the wall [8]. 
- At the porous-clear fluid interface, the stress jump is 
described by an adjustable coefficient   which accounts 

for the stress jump at the interface, as in [4]: 
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A. Numerical Procedure 

The Numerical method employed for discretizing the 
governing equations is the control-volume approach. The 
well-established SIMPLE algorithm is followed for 
handling the pressure-velocity coupling. The set of the 
discretized linear algebraic equations with associated 
boundary conditions is solved using the line by line 
procedure. The convergence is monitored in terms of the 
normalized residue of the algebraic equation. The maximum 
residue allowed for convergence check is set to 10-4. 

III. RESULTS 

The results are presented for water flow in an annular 
duct of diameter ratio equal to 2. The effective viscosity in 
the porous medium equals the fluid viscosity (Brinkman 
assumption, J=1). The porosity of the porous material equals 
0.95 and the inertia coefficient in the porous medium FC  is 

taken equal to 0.1.   
On the basis that a flow is turbulent in a porous domain 

if pore Reynolds number is over 300, the limiting curve is 
located for each value of Darcy number characterizing the 

permeability of the porous material ( 2
hDKD  ). The results 

show an existence of two different zones, in the annular 
space, as function of the hydraulic Reynolds number and the 
permeability (Fig. 1), the zone where the flow is fully 
turbulent in both clear fluid and porous regions and the zone 
where the flow is relaminarized in the porous region.  

Fig. 1.  Hydraulic Reynolds number vs Darcy number. 
 

The following results are presented for the considered 

hydraulic Reynolds number (
fhcinH D Re ) 4102.5Re H .  

Fig. 2 displays the axial velocity profile in the radial 
direction when the porous layer occupies 40% of the 
annular space. The porous matrix forces the fluid to escape 
to the clear region. This is due to the additional delay of the 

flow caused by the microscopic inertial and viscous forces 
caused by the porous matrix. For small Darcy numbers, the 
porous material presents a high resistance to the flow. 

Fig. 2.  Axial velocity profiles for different Darcy number. 
 

An increase in the effective thermal conductivity (Rc) of 
the porous medium improves considerably the temperature 
of the cold fluid at the exit of the duct (Fig. 3). Furthermore, 
there exists a critical value of the porous layer thickness 
bellow which the cold fluid temperature is increased and 
thus the heat transfer is improved and even passes the one of 
the fluid case without the porous substrate (fluid case).  

Fig. 3.  Cold fluid temperature vs porous layer thickness.  
 

The evolution of the total entropy generation rate due to 
both fluid friction and heat transfer in the annular space for 
different values of inlet temperature difference between the 
hot and cold fluids ( inT ) is presented in Fig. 4. As it is 

seen, an increase in the inlet temperature difference leads to 
an increase in the in the rate of total entropy generation. For 
high values of inlet temperature difference ( CTin  20 ), 

there exist optimal and critical porous layer thicknesses of 
which two minima and maximum entropy generation rate 
due to heat transfer are obtained, for each value of Darcy 
number. The first minimum located before the maximum is 
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lower than the one located after the maximum. A highly 
permeable porous substrate yields smaller values of first 
minimum and maximum entropy generation rate, and a 
higher value of second minimum entropy generation rate. 

Fig.  4.  Effect of porous layer thickness, Darcy number and 

inT  on total entropy generation.  

 
The evolution of the irreversibility distribution ratio, 

which is defined as the ratio of the fluid friction 
irreversibility to heat transfer irreversibility, is shown in fig. 
5. clearly, the irreversibility distribution ratio is less 
important for high values of inT  ( CTin  20 ) and 

Darcy number. This means that the lost available work is 
mainly due to heat transfer as the entropy production due 
heat transfer is the prevailing contribution. on the other 
hand, for CTin  20 , the irreversibility due to fluid 

friction dominates. Also, we can notice that the 
irreversibility distribution ratio is more important for high 
values of porous layer thickness. 

Fig. 5.  Effect of thermal conductivity and porous layer 
thickness on total entropy generation. 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
Fig. 6.  Irreversibility distribution ration for different porous 
layer thickness, Darcy number and inT .  

IV. NOMENCLATURE 
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TABLE I 

Symbol Quantity Units 

Cp 

cF 
Dh 

Da 
e 

specific heat of fluid 
Forchheimer inertia coefficient 
hydraulic diameter 
Darcy number 
porous layer thickness 

J/(kg.K) 
- 
m 
- 
m 

J 
k 

viscosity ratio 
turbulent kinetic energy 

- 
m2/s2 

K 
P 

Permeability 
pressure 

m2 
Pa 

Pr 
r 
ReH

Prandtl number 
radial direction 
hydraulic Reynolds number 

- 
- 
-  

Rc    

S  

conductivity ratio 
entropy generation rate per volume unit 

- 
W/(m3.K) 
 

S entropy generation rate W/K 

T  time averaged temperature  K 

T   fluctuation fluid temperature K 

vu  , fluctuation fluid velocities m/s 

U     
V    
z 
  
  

axial time-averaged fluid velocity 
radial time-averaged fluid velocity 
axial direction 
thermal conductivity 
density 

m/s 
m/s 
- 
W/(m2.K) 
kg/m3 

 dynamic viscosity kg/(m.s)


  

kinematic viscosity 
dissipation rate 

m2/s 
- 


Subscript 
c 
e 
f 
h 
in 
g 
p 
t 

Porosity 
 
cold 
effective 
fluid 
hot 
inlet 
total 
porous 
turbulent 

- 

T  due to heat transfert   
  

P  due to fluid friction  
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Fig. 6 displays the effect of the thermal conductivity ratio 
on the total entropy generation. As it is seen, an increase in 
the thermal conductivity ratio leads to a considerable 
reduction of the total entropy production, for lower values 
of the porous layer thickness (e≤40%).  
 

V. CONCLUSION 

A modified k  model that account for the higher 
Forchheimer term order is used to well simulate the 
turbulent flow in the porous annular duct. A second 
approach analysis is used to find the best conditions in order 
to minimize the entropy generation. The results show that 
the turbulent heat transfer and the entropy generation are 
noticeably influenced by the permeability, the layer 
thickness, the inlet difference temperature and the effective 
thermal conductivity of the porous medium.  
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