
 

  

Abstract—This contribution presents a numerical method 

for the analysis of fluid-hypoelastic structure interaction (FSI) 

problems with free surface flows. The fluid is fully coupled 

with the structures which can undergo large structural 

displacements, rotations and deformations. The employed 

smoothed particle hydrodynamics (SPH) algorithm consists of 

three steps. The first two steps play the role of prediction, 

while in the third step a Poisson equation is used for both fluid 

and structure. To alleviate the numerical difficulties 

encountered when a hypoelastic solid structure is highly 

stretched, an artificial stress term is incorporated into the 

momentum equation which reduces the risk of unrealistic 

fractures in the material. The implemented scheme is used to 

solve three fluid structure interaction problems including 

breaking of a column of water on a rigid wall, breaking dam 

on a hypoelastic baffle, and bar under a lateral wave. 

 
Index Terms—Smoothed particle hydrodynamics (SPH), 

Fluid-structure interaction (FSI), Hypoelasticity, Artificial 

stress 

 

I. INTRODUCTION 

OMPUTATIONAL simulation of the fluid flow has been 

well developed mostly based on the mesh-based 

methods. Conventional mesh-based numerical methods such 

as FDM and FEM have been widely applied to various 

computational fluid and solid dynamics (CFD and CSD), 

and currently are the dominant methods in numerical 

simulations of domain discretization and numerical 

discretization. Mesh based methods were first divided into 

two groups based on two fundamental frames for describing 

the physical governing equations: Eulerian (e.g., FDM) and 

Lagrangian (e.g., FEM) descriptions. Each of them has 

some advantages and disadvantages. 

For example using traditional methods such as FEM might 

cause some difficulties like: tracking the position of an 

interface or free surfaces, and information transfer between 

the fluid and the structure domains. The different but 

complementary features of the Lagrangian and Eulerian 

descriptions suggest that it would be computationally 

beneficial to combine these two descriptions. This idea has 
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led to two complicated approaches: Coupled Eulerian 

Lagrangian (CEL) and the Arbitrary Lagrange Eulerian 

(ALE) [1,2,3]. 

Many numerical methods where suggested to solve 

multiphysics problems and large number of techniques have 

been proposed to analyze engineering problems involving 

the interaction of fluids and structures (FSI). ALE methods 

are most commonly used for these problems. However this 

method does not suffice for large deformations, translations 

and rotations of solid. 

In general, there are two classes of fluid-structure coupling, 

namely staggered (or partitioned, or iterative) and direct (or 

simultaneous, or monolithic) approaches. 

If the interaction of an elastic body and fluid flows is slight, 

(e.g., blood flow in elastic arteries), a loose or weak 

coupling may be adequate. However it is still difficult to 

analyze problems like free surface flows and fluid-

hypoelastic structure interactions where the structure 

undergoes large displacements, rotations and deformations. 

Examples of this kind are common in ship hydrodynamics, 

off-shore structures, spill-ways in dams, free surface 

channel flows, liquid containers, mould filling processes, 

biomedical engineering applications like dynamics of heart 

valves, blood flow in arteries and etc. Considering these 

wide fields of applications for FSI problems, they have been 

given increased attention during recent years. 

In staggered schemes, solvers of different continua are 

separately applied and interactions are taken into account at 

the interfaces. This scheme is ideal for using existing finite 

element codes, initially developed for fluid dynamics and 

solid mechanics problems, and the computing effect is 

mainly focused on the interfacing of the relevant data 

between the common fluid and solid boundaries. In the case 

of monolithic techniques all continua are considered as a 

unique system, hence, it is usually included an implicit time-

integration in which boundaries are considered. 

As mentioned before, mesh-based methods suffer from 

some inherent difficulties in many aspects, which limit their 

applications to many problems. A very preferred numerical 

method to simulate large deformations is smoothed particle 

hydrodynamics (SPH) which is a meshfree, lagrangian, 

particle method. In the SPH method, the state of a system is 

represented by a set of particles, which possess individual 

material properties and move according to the governing 

equations. Since its invention to solve astrophysical 

problems in three-dimensional open space (Lucy [4], 

Gingold and Monaghan [5]), SPH has been extensively 

studied and extended to dynamic response with material 

strength as well as dynamic fluid flows with large 

deformations. 
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The word “particle” does not mean a physical mass instead 

it refers to a region in space. Field variables are associated 

with these particles and at any other point in space are found 

by averaging or smoothing, the values over the region of 

interest. This is fulfilled by an interpolation or weight 

function which is often called the interpolation kernel.  

SPH was successfully applied to the study of various fluid 

dynamic problems, e.g., free surface incompressible flows, 

viscous flows, and viscoelastic free surface flows (review 

articles by Monaghan are useful literature reviews for SPH 

method [6,7]). Antoci et al. (2007) used a weakly 

compressible SPH method for the simulation of FSI [8]. 

A different route for solving FSI problems is using a so-

called Particle Finite Element Method (PFEM) by Idelsohn 

et al [9]. This method allows treating the fluid and the solid 

as a single entity and treats the mesh nodes in the fluid and 

solid domain as particle which can freely move and even 

separate from the main fluid domain. 

In the current work, FSI simulation with complex free 

surface flows is studied and three benchmark problems are 

solved: breaking of a column of water on a rigid wall, 

breaking dam on hypoelastic baffle and bar under a lateral 

wave. 

 

II. GOVERNING EQUATIONS 

The governing equations of transient compressible fluid 

flow include the equations for conservation of mass and 

momentum. In a lagrangian framework these can be written 

as: 
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where t is time, g is gravitational acceleration, P is 

pressure, α and β refer to the spatial coordinates and u is the 

velocity vector. Note that the material derivative D/Dt is 

equal to �/�t+u.∇. The density ρ has been intentionally 

kept in the equations to be able to enforce the 

incompressibility of the fluid. It also facilitates coupling 

between the pressure and velocity fields. 

The acceleration equations (momentum equation) of 

elastic dynamics can be written as below: 
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In the above equation σ is the stress tensor and can be 

written as: 
αβαβαβ δσ SP +−=  (4) 

In the above equation Sαβ is deviatoric stress. Substituting 

equation (4) into equation (3) yields 
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For solids, the linear elastic relation between stress and 

deformation tensors can be derived in time in order to obtain 

an evolution equation for Sαβ. The use of corotational, or 

Jaumann time derivative guarantees that formulation is 

independent from superposed rigid rotations, resulting in the 

incremental formulation of Hook’s law corrected by 

Jaumann rate. 
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where G is the shear modulus. The strain rate tensor αβε&  

and rotation tensor ωαβ are defined as: 
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Despite having disadvantage that energy is not conserved 

in the case of large deformations, the method has the 

advantage of common descriptive of both fluid and solid 

dynamics in terms of pressure and velocity. 

 

III. SPH METHOD 

A. Integral Representation of a Function 

The SPH method is based on the interpolation theory. The 

formulation of SPH is often divided into two key steps. The 

first step is the integral representation or so-called kernel 

approximation of field functions. The second one is the 

particle approximation. 

In the first key step, the integration of multiplication of an 

arbitrary function and a smoothing kernel function gives the 

kernel approximation. The concept of integral 

representation of a function F(r) used in the SPH method 

starts from the following identity 

∫ ′′−′=
V

rdrrrFrF )()()( δ  (9) 

where δ(r-r') is the Dirac delta function, V is the 

computational domain and r is the position vector. If the 

Dirac delta function is replaced by a smoothing kernel 

function W(r-r',h), the integral representation of F(r) is 

given by 
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V
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where h is the smoothing length defining the influence 

area of the weighting or smoothing function W. Note that as 

long as W is not the Dirac function, the integral 

representation in (10) can only be an approximation. 

In the SPH method, the entire system is represented by a 

finite number of particles that carry individual mass and 

occupy individual space. This is achieved by the following 

particle approximation, which is another key operation in 

the SPH method. Particle approximation of a function and 

its derivative are carried out using discretized particles in 

the support domain. If F(r') is known only at discrete set of 

N points r1, r2, …, rN then F(r') can be approximated as 

follows 
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where the summation index b denotes a particle label and 

particle b carries a mass mb at the position rb. The value of F 

at b-th particle is shown by Fb. 
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B. Kernel Function 

The smoothing kernel function W is usually chosen to be 

an even function and it should also satisfy a number of 

conditions 
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The first condition is called normalization condition or 

unity condition and the second one is Delta function 

property that is observed when the smoothing length 

approaches zero. The third one is compact condition where 

κ is a constant related to the smoothing function for point at 

r, and defines the effective (non-zero) area of the smoothing 

function. This effective area is called the support domain for 

the smoothing function of point r. 

Recent studies indicate that the stability of the SPH 

algorithm depends strongly upon the second derivative of 

the kernel [10]. Various forms have been proposed for 

kernel function, ranging from Gaussian functions, to spline 

function. In fact the cubic spline is the most frequently used 

kernel and in comparison with quintic kernel (one of the 

most famous Gaussian functions) has a smaller compact 

support which lower amount of computation effort should 

be carried out. In this paper a popular kernel is used which 

was devised by Monaghan and Lattanzio [11]. They 

formulated the following smoothing function based on the 

cubic spline functions known as the B-spline function 
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where s=|r|/h , υ is number of dimensions and Ψ is 

normalization constant with the values: 2/3, 10/7π, 1/π in 

one, two and three dimensional respectively. 

Although by increasing the number of neighboring 

particles the accuracy of the SPH method can be improved, 

the computational expenses also increase sharply. 

Numerical experiences have shown that a total number of 

neighboring particles between 20 and 30 is good 

compromise for two dimensional problems. 

C. Tensorial Operators 

There are two commonly used forms for gradient of a 

scalar F in the SPH contexts. In this paper first formulation 

is used. 
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where ∇a means the gradient with respect to coordinates 

of particle a and ∇aWab is the gradient of the kernel function 

W(|ra-rb|,h) with respect to ra, the position of particle a. 
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There are also two commonly used forms for 

discretization of the Laplacian operator in the SPH contexts. 

In this paper first formulation is used. 
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where Fab=Fa-Fb , rab=ra-rb and η is a small number 

introduced to avoid a zero dominator during computations 

and is set to 0.1h. 

D. Tensile instability 

Equation (5) can be written in the following SPH form: 
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By using the above form of momentum equation, a 

numerical instability known as “tensile instability” occurs. 

In the initial application of SPH it was noticed that, under 

tension particles tended to clump in pairs. Various methods 

have been proposed to eliminate it from SPH simulations. 

One of the most successful techniques is the “artificial 

stress” method due to Monaghan and Grey et al. [12] , the 

idea behind artificial stress is to add short-length repulsive 

force between two particles to prevent them from clustering 

together when they are in a state of tensile stress. Therefore 

the modified form of the equation (19) is in the following 

form, where l0 is the initial particle spacing and R is 

artificial stress in the original coordinate system. 

( )0

2222

,

.

lhWWfandRRR

gWfR

PPSS
m

Dt

Du

abbaab

aba

n

abab

b b

b

a

a

b

b

a

a

b

a

=+=

+∇



+

















+−+= ∑

αβαβαβ

ααβ

αβ
αβαβα

δ
ρρρρ

 (20) 

If the angle of rotation for particle “a” is denoted by θa 

the stress tensor will be diagonal if 
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If c denotes cosθa and s denotes sinθa , new components 

of the stress tensor for particle a, in the rotated frame are: 
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Just for positive values of new components of stress 

tensor, artificial stress can be calculated as follows; 

otherwise artificial stress components are equal to zero. 
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where 0<e<1 is a parameter. Components of the artificial 

stress in the original coordinates for particle “a” are: 
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Gray et al. derived optimal values from the dispersion 

equations as e = 0.3 and n = 4. 
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IV. SOLUTION ALGORITHM 

As mentioned before, in this work a three step prediction 

correction scheme is used to march in time. This algorithm 

is similar to the SPH projection method which was proposed 

by Cummins et al. [13], and the prediction-correction 

procedure of Shao et al. [14], with other modifications 

[15,16,17]. 

 

A. First Step (Prediction) 

In the first step of this algorithm, the momentum equation 

is solved in the presence of the body forces. The computed 

provisional velocity is then used in the second step to 

calculate the divergence of shear stress tensor. 

tguu tt ∆+= ∆−
ααα  (25) 

 

B. Second Step (Prediction) 
 

Fluid: In this step the divergence of shear stress tensor 

Tf
α, regardless of incompressibility is calculated. 
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Solid: In this step the divergence of deviatoric stress 

tensor Ts
α, is calculated, where artificial stress is also 

considered. 
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Fluid/Solid: At the end of the second step, an 

intermediate velocity and position for particles are obtained. 

tTuu ∆+= ααα  (28) 

tuxx tt ∆+= ∆−
ααα  (29) 

 

C. Third Step (Correction) 

This step is common to both fluid and structure particles. 

So far no constraint has been imposed to satisfy the 

incompressibility of the fluid particles and it is expected that 

the density of some particles deviates from initial density 

(ρ0) and is denoted as ρ̅. This deviation can be calculated 

from following formula. 
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In the correction step the pressure Poisson equation is 

solved to enforce incompressibility. This equation is 

resulted from combination of the momentum equation (2) 

with the continuity equation (1). 
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Previous equation can be discretized according to SPH 

Laplacian formulation, to obtain the pressure of each 

particle. 
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where λ=1.1, is a relaxation factor can led to suitable 

results for simulation of a slender elastic structure. The 

amount of this factor for the fluid particles is one. These 

pressures are used to calculate the velocity field which is 

needed to restore the density of particles to their original 

value and finally the velocity of each particle at the end of 

time-step will be obtained. 
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This velocity is smoothed according to the XSPH 

averaging of J.J. Manoghan [18] where 0≤ξ≤1 is XSPH 

coefficient. 
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Final positions of the particles are calculated using a 

central difference scheme in time: 
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V. TEST CASES 

A. Collapse of water column with a rigid obstacle 

Before starting with challenging elastic problems, a well 

known example of FSI benchmark problem is discussed to 

show the ability of the aforementioned algorithm. The initial 

geometry is illustrated in Fig. 1. 

Gravitational force acts downwards with g=9.81 m/s2 and 

air is neglected in simulations. Density and viscosity are 

respectively equal to 1000 kg/m3 and 0.001 kg/ms.  

 

 
 

Fig. 1 Initial geometry of the water column and rigid wall 
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Fig. 2 Comparison of water profile of experimental results with SPH 

simulations for collapsing water column with obstacle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SPH results are compared with experimental results at 

different time steps (Fig. 2) obtained by S. Koshizuka in 

reference [19]. 

 

B. Breaking dam on a hypoelastic baffle 

Fig. 1 represents the same problem but with a hypoelastic 

baffle with density 2500 kg/m3, Young modulus 106 N/m2 

and the Poisson ratio of 0.0. The geometry of the more 

slender obstacle is of width b=1.2 cm and height (20/3)b. 

The time history of the displacement of the upper left corner 

of the baffle is compared with other available numerical 

results [9,20,21] and is illustrated in Fig. 3. No experimental 

results were found for this problem. 

 

C. Bar under a lateral wave 

In this example a bar is located in the middle of a tank. 

The obstacle has density 7800 kg/m3, Young modulus 

2.1*106 and Poisson ratio 0.3.  
 

 
 

Fig. 4 Initial geometry of the bar under a lateral wave 

 

The hypoelastic solid is deflected by the impulse of the 

fluid wave (Fig. 5). The solid first moves to the left while 

the water rises and to the right when the wave goes back. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 3 Comparison between numerical results for time history of the displacement of the upper left corner of the baffle 
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SPH results at different time steps are compared with 

PFEM results reported by Marti et al. [20] in Fig.5. No 

experimental results were found for this problem. 

 

 
 

Fig. 5 Comparison of water profile of SPH results with PFEM 

simulations for bar under a lateral wave 
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