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Abstract— A numerical simulation for mechanical behavior of 
mitral valve was prepared by a particle approach: Smoothed 
Particle Hydrodynamics (SPH). The method was developed 
for this case as an important application of fluid-structure 
interaction problems. The simplicity and some further 
capabilities which have been shown in results highlighted the 
required assurance of using the SPH as reliable and simple 
tools for the wide range of hemodynamic problems. 

 
 

I. INTRODUCTION 
luid–structure interaction models are increasingly used 
in biomedical engineering applications and one of the 

most challenging fluid–structure problems that can be 
found in the human body involves the dynamics of heart 
valves. The most extensively studied valves are the mitral 
and the aortic valve. The former is a bileaflet valve located 
between the left atrium and left ventricle, the latter is a 
trileaflet and is located between the left ventricle and the 
aortic root. Both valves have extremely thin leaflets, which 
should hamper flow as little possible when opened, but need 
to prevent blood back-flow if closed. The arterial walls and 
heart muscle are compliant and therefore play an important 
role in the process of opening and closing. Altogether, the 
combination makes the problem extremely complex to 
model. 
   Different ways of modeling fluid–structure interaction 
(FSI) have been proposed in the past, each having its 
advantages and disadvantages. Arbitrary Lagrangian 
Eulerian (ALE) methods, as exploited by e.g. [1], are most 
commonly used for FSI problems and have the advantage to 
provide a strong coupling. As long as rotations, translations 
and deformations of the solid remain within certain limits, 
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this method works very well and is recommended. 
However, for problems in which these limits are violated, 
elements become ill-shaped and ALE alone does not 
suffice. As a solution to this problem an often-used 
combination is ALE with some form of remeshing. This 
can, however, be a difficult and time consuming task.  
   A more elegant way to solve the system allowing free 
movements of a structure through a fluid domain was 
proposed by Peskin [2]. He introduced a method that later 
became known as the immersed boundary method (IBM) 
[3] where flow-induced solid body motions could be 
computed without adjusting the fluid grid/mesh. By 
defining a set of interconnected points related to each other 
by some elastic law local body forces were enforced to the 
fluid. Extensions of this model to three dimensional heart 
(valve) problems were published in e.g. [4] and the method 
is still used in many fields.  
   A method that resembles the above mentioned methods 
was introduced [5] for slender deforming bodies. In this 
method a fluid mesh is considered with an immersed solid 
mesh, and the solid mesh and fluid mesh are coupled by a 
Lagrange multiplier (or local body forces) at the boundary 
of the solid. The elegance of this method is its simplicity 
and flexibility. Stijnen et al. [6] introduced a model for 
mechanical heart valves using this fictitious domain 
method. The model was capable of computing a full cardiac 
cycle, using the fact that the position of a closed mechanical 
heart valve is known a priori. By creating the fluid mesh 
such that a curve of fluid edges coincided with the solid 
boundary in the closed state, the occurring drop in pressure 
across the valve could be described. Recently, fictitious 
domain methods have been proposed that are not restricted 
to slender bodies by introducing Lagrange multipliers 
across the whole solid body instead of only along its 
boundaries [7]. This enables the computation of a pressure 
drop across the solid body without alignment of the meshes 
and such makes the method suitable for a wider range of 
applications. 
   Using lagrangian description for both fluid and solid 
domain is another remedy to the simulation of FSI 
problems, and Smoothed Particle Hydrodynamics (SPH) is 
one of the methods. In approaches mentioned above, mesh 
generation for the problem domain is a prerequisite for the 
numerical simulations. Therefore, the idea of eliminating 
the mesh has evolved naturally.  SPH is a fully lagrangian 
mesh-less method that originally developed for 
astrophysical problems by Lucy [8], and separately by 
Gingold and Monaghan [9] and later extended to model a 
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wide range of problems. In this approach a continuum 
domain is replaced with a set of particles which can carry 
the mass, density, velocity, and other material information. 
The interactions between these particles are determined by 
interpolation from information at SPH particles. 
Confronting with complex physics such as FSI, SPH shows 
great ability from itself [10].     

In current study, fully explicit two steps SPH method is 
used to simulate two dimensional model of heart mitral 
valve with the pulsatile flow.   

II. GOVERNING EQUATIONS 
   Simulation of considered problem consists of two 
domains, fluid and solid. Both fluid and solid media are 
assumed to be isothermal and incompressible. 
   Governing equations for fluid domain in absence of body 
forces may be written as: 
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where jj uPtx ,,,, ρ and ijτ  denotes the j th component 
of position vector, time, density, pressure, velocity vector, 
and shear stress tensor, respectively. 
   For solid domain, beside the continuity equation, the 
momentum equation for an elastic body is as follows: 
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where  ijσ  is the stress tensor. The stress tensor can be 
decomposed into its isotropic and deviatoric parts: 

ijijij SP +−= δσ  (4) 
where 3/kkP σ−=  is pressure, ijS  is the deviatoric stress 
tensor and ijδ  is the Kronecker tensor. 
   The linear elastic relation between stress and deformation 
tensors can be derived in time in order to obtain an 
evolution equation for ijS . The use of the corotational, or 
Jaumann, time derivative guarantees that the formulation is 
independent from superposed rigid rotations, resulting in 
the incremental formulation of Hook’s law corrected by the 
Jaumann rate [10]: 
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is the rate of deformation tensor, 
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is the spin tensor and G is the shear modulus. 

III. FUNDAMENTALS 

A. Interpolation 
   The main features of the SPH method, which is based on 
integral interpolants [11]. In SPH, the fundamental 
principle is to approximate any function F(r) by  

( ) rdhrrWrFrF ′′−′= ∫ ,)()(  (8) 

where h is called the smoothing length and ( )hrrW ,′−  is 
the weighting function or kernel. This approximation, in 
discrete notation, leads to the following approximation of 
the function at a particle (interpolation point) a, 
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where the summation is over all the particles within the 
region of compact support of the kernel function. The mass 
and density are denoted by bm  and br  respectively and 

),( hrrWW baab −=  is the weight function or kernel. 

B. Kernel 
   The performance of an SPH model is critically dependent 
on the choice of the weighting functions. They should 
satisfy several conditions such as positivity, compact 
support, and normalization. Also, abW  must be 
monotonically decreasing with increasing distance from 
particle a and behave like a delta function as the smoothing 
length, h, tends to zero [11]. Kernels depend on the 
smoothing length, h, and the non-dimensional distance 

between particles given by h
rq = , r being the distance 

between particles a and b. The parameter h, often called 
influence domain or smoothing domain, controls the size of 
the area around particle a where contribution from the rest 
of the particles cannot be neglected. 
   In the literature many possible forms for smoothing 
function have been proposed ranging from Gaussian 
functions to spline functions with the compact condition. In 
this study the cubic spline kernel in two dimensions is used: 
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C. Gradient and Divergence 
   The gradient and divergence operators need to be 
formulated in accordance with the SPH concept. In the 
current work, the following commonly used forms are 
employed for the gradient of a scalar F and the divergence 
of a vector u [12]: 
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where abaW∇  is gradient of the kernel function 

),( hrrW ba −  with respect to ar , the position of particle a. 

D. Laplacian formulation 
   A simple way to formulate the Laplacian operator is to 
envisage it as dot product of the divergence and gradient 
operators. This approach proved to be problematic since 
second derivative of the kernel is very sensitive to particle 
disorder and can easily lead to pressure instability and 
decoupling in the computation due to the co-location of the 
velocity and pressure. In this paper, the following 
alternative approach is adopted [13]: 
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IV. SOLUTION ALGORITHM 
   Solution of governing equations of two media of fluid and 
solid in order to acquisition of velocity and pressure fields 
decompose into two steps as in specified by Hosseini et al. 
[14]. First step has the role of predictor and the stress 
tensor is calculated in this step. 
   Fluid domain: In this step, the divergence of the shear 

stress tensor i
fT  is calculated [15]: 
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   Solid domain: In the first step for solid domain, the 
divergence of deviatoric stress tensor i

sT is calculated in 
accordance with equation (5), 
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At the end of the first step, for each domain, intermediate 
velocity and position vectors are obtained separately: 
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  Thus far no constraint has been imposed to satisfy the 
incompressibility of the fluid and it is expected that the 
density of some particles change during this updating. In 
fact, with the help of the continuity equation one can 
calculate the density variations of each particle as 
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   The velocity field iû  which is needed to restore the 
density of particles to their original value is now calculated. 
To do this, in the second step of the algorithm, the 
momentum equation with the pressure gradient term as a 
source term is combined with the continuity equation (1) as  
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 To obtain the following pressure Poisson equation 
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   Equation (22) can be discretized according to equation 
(13) to obtain the pressure of each particle as   
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Using equation (23) for the pressure of each particle one 
can calculate according to equations (20) and (11) as  
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  Finally, the velocity of each particle at the end of time-step 
will be obtained as 

uuu tt ˆ* +=∆+
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 (25) 
   The particles are moved using XSPH variant that moves a 
particle with a smooth velocity that is closer to average 
velocity among its neighborhoods [16]: 
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where ε  is a constant in the range of )10( << ε . The 
final positions of particles are calculated using a central 
difference scheme in time: 
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V. BOUNDARY CONDITION 
   In this paper, two types of boundary conditions were 
defined, velocity inlet and no-slip boundary condition. At 
the inlet, a pulsatile flow with the form of 

)sin(max tuu ω=  has been considered in which maxu  is 
the maximum velocity,ω  is the frequency and t  is the 
time. 
   Second type of boundary condition is no-slip boundary 
condition that has been proposed by Morris et al. [17]. 
Firstly several layers of SPH particles are used outside of 
solid particles so that the fluid density in vicinity of the wall 
particles to be consistent with that of the inner fluid. 
Afterwards, velocity of each fluid particle is extrapolated to 
neighbor wall particles (as an artificial velocity) across the 
tangent plane of the boundary (Fig. 1). 
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Fig. 1. Construction of artificial velocity for boundary particles to simulate a 
no-slip boundary condition. 
  
   In order to implement the aforementioned method for FSI 
problems, it can be assumed that there are ghost particles 
which have similar positions as wall particles. The artificial 
extrapolated velocity of each wall particle is attributed to 
the relevant ghost particle. Other properties of these ghost 
particles are similar to those of fluid particles.  
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   The no-slip boundary condition satisfies when velocity of 
ghost particles as well as boundary particles are contributed 
to calculate viscous forces [18].  

VI. TEST CASE 
   The numerical test case is a two dimensional FSI 
simulation of the mitral valve opening in a fluid canal. A 
two dimensional model of leaflet is shown in Fig. 2 and 
essential boundary conditions are as follows: 
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Fig. 3.  Schematic representation of the solid and fluid including the relevant 
geometric parameters. 

 
 

TABLE I 
GEOMETRIC AND MATERIAL PARAMETERS FOR THE NUMERICAL SIMULATION 

 

Wf (cm) 15.0 

Hf (cm) 2.0 

Hs (cm) 1.9 

W1
s (cm) 1.0 

W2
s (cm) 5×10-2 

μ (Pa.s) 4×10-3 

ρ (kg/m3) 1056 

T (s) 1.0 

G (Pa) 1.2×106 
 
   with ),( 21

fff uuu = . In Fig. 3 the relevant dimensional 
parameters are given and the values of geometric and 
material parameters are shown in table I. The leaflet 
positions and the staggered plot of velocity field are shown 
in fig. 4 and fig. 5 respectively at different stages of the 
flow pulse. 
 

 
 
 
 

Fig. 4.  The leaflet positions at different stages of the flow pulse. 
 

Fig. 2.  Schematic representation of a mitral valve Ωs in a fluid canal Ωf. 
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Fig. 5. Staggered plot of velocity field at different stages of the flow pulse 
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