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Abstract-Aerostatic Bearing offers high stiffness and very 
low friction with zero stiction.  When complemented with 
spherical geometry, the aerostatic bearing provides a 
frictionless pivot and allows three degrees of rotational 
freedom. These characteristics find its use in applications such 
as precision motion simulators, zero gravity systems and 
measurement devices. High stiffness, precise axis definition, 
low friction, zero wear and clean operating conditions are the 
specific advantages of aerostatic bearing which makes it an 
appropriate candidate for application in precise test 
equipments for spacecrafts. The bearing for Mass Properties 
Machine (MPM) is optimized to have low tare mass and 
inertia. It is also configured to accommodate protruding 
elements of the payload at the hollow central cavity of the 
bearing, thus resulting in lowering the Centre of Gravity (CG) 
vertically during measurements. This paper discusses design 
approach for an Aerostatic Spherical Bearing (ASB) specially 
tailored for MPM to measure Mass moments of Inertia and 
Dynamic Unbalance of spacecraft precisely. The characteristic 
equations for the pressure distribution, thrust load capacity, 
mass flow rate and stiffness of the bearing are presented. 
Numerical solution for a typical model bearing, design 
considerations for the bearing parts, precautionary measures 
to ensure crash-proof operation and related fabrication 
aspects are also discussed. 
 

   Index terms - Aerostatic Spherical bearing, Centre of 
Gravity, Mass moments of Inertia, Spacecrafts, Stiffness 
Thrust load 

I. INTRODUCTION 

AEROSTATIC BEARINGs are externally pressurized 
using clean air or occasionally with gas like dry Nitrogen 
introduced between the bearing surfaces through precision 
holes (orifices), grooves, steps or by using porous 
compensation techniques.  The air discharges through the 
edges of the bearings to the ambient atmosphere.  High 
stiffness can be obtained in air bearings by appropriate 
design, precise manufacturing processes and tuned flow 
controls.  
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The radial stiffness directly indicates the precision of axis 
definition of the bearing and hence the measurement 
reference axis of MPM. 

Aerostatic Spherical Bearing (ASB) as discussed in this 
paper is configured to interface with all the associated 
machine elements of the Mass Properties Machine (MPM) 
such as Spin Table, DC Brushless Motor, Torsion Flexure, 
Static and Dynamic Flexures, Auxiliary Journal Air 
Bearing,  Lock Devices etc. Fig.‘1’ shows the ASB 
configured for MPM. The MPM is designed to allow 
selective measurement of any one of the mass properties 
viz., Centre of Gravity (CG) or Mass Moment of Inertia 
(MOI) or Dynamic Unbalance while locking /disabling the 
other measurement modes.  

During the measurement of MOI, the ASB is required to 
allow un-damped free torsional oscillation proportional to 
the spring rate of the torsional flexure and MOI of the 
object.  

The CG measurement requires indexing the rotor of the 
ASB about its vertical axis through definite angle and the 
measurement of Dynamic Unbalance requires precise 
spinning of the rotor of the ASB along with the object at 
constant speed using a DC Brushless motor.  

The design objectives for the ASB is defined from the 
functional requirements said above dictated by MPM 
specifications such as mass of the object to be measured, 
required positional accuracy, stiffness,  and the available 
supply air conditions at the test facilities. The ASB replaces 
the conventional design wherein a combined thrust and 
journal bearing integrated with complex flexural hinges.  

 

 
 

Fig 1: 
Configuration of Aerostatic Spherical Bearing for Mass Properties 

Machine 
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II. THEORY 

Among the many variants and classifications in Thrust air 
bearing design as discussed in [1],[2], the orifice fed 
bearing stabilized by the external working force is chosen 
here, owing to its simplicity of realization and high stiffness 
characteristics among other types. Fig. ‘2’ shows an orifice 
fed hemi-spherical bearing. The inner and the outer 
spherical bowls form the rotor and stator of the bearing 
respectively.  Under ideal conditions, both the stator and 
rotor hemisphere have the common geometrical centre ‘O’, 
thereby their radii Rb and Rr are concentric to each other. 

 

Fig 2: Sectional View of Hemispherical Air Bearing 

 
                                                 

Referring to Figure B, for large bearings, the multiple 
rows of orifices are positioned between angle θ1 and θ2 
circumferentially equi-spaced about vertical axis of bearing.  
The supply pressure ‘ps’ is admitted into the clearance 
through a set of orifices. The exit pressure at the orifices is 
termed as bearing pressure ‘pbrg’ which ideally remains 
constant between θ1 and θ2 for identical supply pressure 
conditions. The θ0 and θ3 are inner and outer exit angles 
where the air exits through annular bearing gaps to ambient 
atmospheric pressure ‘patm’.  The film thickness ‘h’ and the 
orifices diameters are usually very small (in the order of 25 
to 75 microns) and it is shown exaggerated in Fig. ‘2’ for 
clarity. The air pressure drops as it flows out of the bearing 
due to the acceleration of the air as it expands. A smaller 
clearance will reduce the pressure drop that gives a higher 
load capacity.  It is desirable to achieve an optimum 
condition at which a maximum stiffness occurs where the 
change of load when divided by the change of clearance is a 
maximum.       

The objective of deriving the relationships of various 
parameters such as thrust load capacity, stiffness of the 
bearing, pressure profile at the bearing gap and mass flow 
rate is achieved proceeding sequentially from the first 
principles of momentum equation for a Newtonian fluid 
having constant density (ρ) and constant viscosity (µ) in 
spherical coordinates (r, θ, and Φ) (here r varies from ‘0’ to 
‘h’) which is given by  Navier Stokes Equation,                                                    

 
Rb (d

2vθ /dr2) = 1/µ (dp/dθ)                                           --- (1) 
  

with the following assumptions:  
  

 The flow is laminar 
 Fluid inertia is neglected 
 No body forces 
 No slip exists at the boundaries between the fluid 

and plates 
 Pressure always remains constant in direction 

normal to the direction of flow etc... 
      

The flow velocity ‘vθ’ is obtained by double integration 
of the above equation (1) and by applying the boundary 
conditions,  
 
dvθ /dr = 0 @ r=h/2  and  vθ =0 @ r = 0 and r = h 

   
  vθ =1/2µ{(dp/dθ) (r2-hr)}(1/Rb)                                    --- (2) 
 
and maximum velocity can be obtained at  r  = h/2. 
   
  vθ max = - (1/8µ (dp/dθ) h2 ) (1/Rb)                              --- (3) 
  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 3: Geometry of Spherical Bearing 
 

III. MASS FLOW RATE  

The differential mass flow rate is given by   
 
dm=dA vθ  ρ                                    ---(4) 
 
where, vθ is the flow velocity given by equation (2)  
           ρ is the density of the fluid 
           dA = (2π(dR))*h  and  R = Rb Sinθ       
          (Refer Fig C) 
Substituting, we get 
 
dm= (2π d(Rb Sinθ)*h) *(1/2µ{(dp/dθ) (r2-hr)}(1/Rb)) ρ    
                                                                                      --- (5) 
Integrating eq. (5) for the limits   r=0 to r=h, we get, 
 
m= ((πρh3)/6µ)*(Sinθ) dp/dθ                                        --- (6) 
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For an ideal gas (at isothermal condition) ρ = (p/RT). 
Substituting the above in eq. (6) and rearranging, we get,  
 
pdp = (m*(6µRT)/(πh3)) Cosecθ dθ                             --- (7) 
 
Integrating Equation (7) between the limits θ0 & θ1 for 
inward mass flow and between the limits θ2 & θ3 for 
outward mass flow, we get 

 
 m1 = (p2

brg - p
2 

atm )* πh3 )/ (12µRT* ln (tan (θ1/2) / tan (θ0/2) 
                    --- (8a) 
m2 = (p2

brg - p
2 

atm )* πh3 )/ (12µRT* ln (tan (θ3/2) / tan (θ2/2) 
                  --- (8b) 
Adding Eq. (8a) and (8b) for total mass flow rate, we have  
      
mtot = ((p2

brg - p
2 

atm )* πh3) *   ln  tan (θ1/2)       -1  ln tan(θ3/2)   -1

       12µRT       tan(θ0/2)       +       tan(θ2/2) 
                                                                                      

           --- (8c) 
The total mass flow through the bearing as given mtot 

(equations 8c) is equal to the flow through the orifices when 
steady state is attained.  The expression for flow through the 
orifices is given as:  
 
mo = CdAρ0 [(γ/γ-1)*2RT { (pbrg/ps)

(2/γ) – (pbrg/ps)
(γ+1)/γ }]1/2 

                                            --- (8d) 
Equation 8c is equated to equation 8d for sizing of the 

orifices. However, the later paragraph will express 
condition for maximum stiffness to choose a choked flow 
which defines the diameter and number of orifices. 
 

For the condition when the inward flow is equal to the 
outward mass flow rate, that is, m1 = m2, we have, 

 
 tan (θ0/2) * tan (θ3/2) = tan (θ1/2) * tan (θ2/2)             --- (9) 
 

    The above equation is useful in determining the 
position of the orifices on the sphere if the inward and 
outward exit angles are known. 

IV. PRESSURE INSIDE THE SPHERICAL BEARING AT 

ANY POSITION:  

Using equation 8a and 8b & substituting pressure ‘p’ at 
any angle ‘θ’ in place of pbrg and rearranging, we arrive at 
the below equations. 
 

p=  p2
brg  1-  1-(p2

atm /p
2 

brg ) {ln (tan(θ1/2)/tan(θ/2))}           1/2                                                            

                                            {ln ( tan(θ1/2)/tan(θ0/2)}  

                             --- (10a) 

 
 

p=  p2
brg 1- 1-(p2

atm /p
2 

brg )  {ln (tan(θ2/2)/tan(θ/2))}           1/2 

                                            {ln ( tan(θ2/2)/tan(θ3/2)}  

                                         ---- (10b) 
 

Equation 10a and 10b   are the expressions for pressure at 
any point at position θ between θ0 & θ1 and θ2 & θ3 

respectively. The pressure (pbrg) remains constant between 
θ1 & θ2. 

V. THRUST LOAD CAPACITY OF THE SPHERICAL 

BEARING 

In simple terms, the pressure profile given by above 
statements is integrated over the projected area of the 
bearing to express the thrust resistance. Referring to Fig. 
‘3’, 
 
Rb = Radius of the hemisphere 
θ= subtended angle at arbitrary position  
If ‘dF’ is the force at any point on the sphere, then 
dFh = dF Sinθ is the radial load and 
dFv = dF Cosθ is the thrust load  

 
Net Bearing Force F =A∫ p dA                             --- (11) 
Net Thrust force (Fv) = F Cosθ    = A∫ p dA Cosθ       -- (12) 
 
‘p’ is pressure at any point in the bearing and ‘dA’ is the 
elemental area. 

As discussed in Para. ‘IV’, pressure varies between θ0 
and θ1 (patm to pbrg), remains constant from θ1 & θ2 (pbrg) and 
varies between θ2 and θ3 (pbrg to patm). 
 

Solving for dA and substituting pressure at any position 
on the bearing & solving, we get  
 
(Fv1) θ0 & θ1  = θo ∫

θ1  p .(πRb
2) Sin 2θ dθ                         --- (13)  

(Fv2) θ1 & θ2  = pbrg (πRb
2)    θ1 ∫

θ2 Sin 2θ dθ                   --- (14) 
(Fv3) θ2 & θ3 = θ2 ∫

θ3 p . (πRb
2) Sin 2θ dθ                          --- (15) 

 
Thus, the total bearing thrust force is given by the 

summation of equations 13, 14 and 15.  
 
Fv    = Fv1 +Fv2 +Fv3                                                                                    --- (16) 
 

The pressure terms for Eq. (13) and (15) are obtained 
from eq. (10a) and (10b) respectively. 
 
Thus, Fv = f ( pbrg)                            --- (16a) 
 

The above equation can be solved in MATHCAD or 
MATLAB software using integral functions. The plot of 
equation 16a will be near linear and its constant slope gives 
the approximate indicating factor for thrust capacity for the 
given geometry of the bearing. 

                                                                                           

VI. STIFFNESS OF THE SPHERICAL BEARING 

When the bearing attains steady state conditions, the 
bearing thrust force ‘Fv’ equals the external load ‘W’.  
Stiffness of the bearing is the change of load W divided by 
the change of film thickness (h) 

                
Mathematically, k = dFv /dh 
 

Since the expression for Fv does not contain the film 
thickness ‘h’, expression for stiffness (k) is derived as 
follows: 
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Stiffness (k) =   dFv      dpbrg       dS                               --- (17) 
             dpbrg         dS      dh 
 

From Eq.  (13), (14) & (15), it is seen that Fv is a 
function of pbrg .Hence, the differentiation of Fv w.r.t. pbrg is 
solved directly. 

To express, pbrg in terms of ‘S’, we equate the summation 
of inner and outer mass flow rates  (Eq. 8c ) and flow 
through orifices ( Eq. 8d) and then solving, we get  

 

pbrg=  [ p2
atm + S (ps) { (pbrg/ps)

(2/γ) – (pbrg/ps )
(γ+1)/γ}]1/2  -- (18) 

 
where S=         Cd A 2(γ/γ-1) (12µRT)                *      1 
                 ln   tan(θ1/2)         -1       ln  tan(θ3/2)        -1        ( πh3)                                

           tan(θ0/2)    +       tan (θ2/2) 
                  --- (19) 

Thus, differentiation of pbrg w.r.t. term ‘S’ is possible. 
Further, from Equation (19), it is seen that the term ‘S’ is 

a function of film thickness ‘h’. Thus the differentiation of 
‘S’ w.r.t film thickness ‘h’ can also be done. Thus the 
equation of stiffness is solved by differentiating the 
parameters as expressed in eq. (17).  

Applying the maxima conditions for stiffness equation 
(17), and its supplementary equations given above, the 
conditions for maximum stiffness is derived. Owing to 
uncertainties, assumptions and other variants assumed to be 
constant in the equation,  it is said that the bearing 
experimentally  tuned  to a pressure  ratio  pbrg/ps in the 
range 0.5 to o.75 exhibit higher stiffness,  though  pbrg/ps = 
0.528 yields the theoretical highest stiffness.  As the bearing 
pressure is sensitive to the external load, a manual or auto 
tuning of supply pressure is suggested for maintaining the 
optimum pressure ratio depending on the application. 

VII.  CASE STUDY 

 Radius of the Bearing  =  0. 210 m 
 Supply Pressure   =  6 bar  (6x105 N/m2) 
 Bearing Pressure =  3.168 bar ( 3.168x105 N/m2) 
 Viscosity of air (µ)  =  1.8x10-5 N-sec/m2  
 Velocity of sound  =  330 m/sec 
 Inlet angle (θ0 )  =  14° 
 Outlet angle (θ3 )  =  85° 
 Position of orifice (θ1)  =  22°                                                                                                                                                                       
 Position of orifice (θ2)  =  60° 
 
θ1 & θ2 are determined such that the velocity at which that 
air flows out does not exceed the supersonic velocity of 
sound (330 m/sec). 

VIII. THEORETICAL RESULTS 

Fig. ‘4’ gives the plot of pressure profile inside the 
bearing, i.e. (pbrg) at any angular position.   As discussed, the 
bearing pressure is constant between angular positions θ1 & 
θ2 and it varies from atmospheric to the bearing pressure 
between θ0 to θ1 and between θ2 to θ3. Fig. ‘5’ gives the 
Thrust load capacity of the bearing under various bearing 
pressure conditions. 

 
 
 
 

Fig. 4. Pressure profile inside the bearing w.r.t.  Angular position. 

 

Fig 5. Bearing Pressure Vs Thrust Load  Capacity of the spherical bearing. 

IX. DESIGN OF BEARING ELEMENTS 

The elements of the hemispherical bearing are stator, 
rotor, orifices, supporting rings/feed plates, bearing 
stoppers/linings etc.  The bearing parts may be FE modeled 
and applying the working loads and appropriate boundary 
conditions, the bearing may be verified for stiffness. The    
stiffness for the parts are required to be relatively very high 
compared to that of air film stiffness. Localized 
deformations which alter the profile of the bearing surface 
are to be minimized much below the operating film 
clearances.  

X. CRASH PROOF DESIGN  

In the event of pressure drop or failure in air supply, the 
air film ceases and results in rubbing of metallic stator and 
rotor due to the external loads. This causes a severe damage 
to the bearing surface and the metallic debris created due to 
rubbing may further damage the bearing.  The bearing has 
to be protected against the accidental crash. 

   Protective Lining Rings made of low friction soft 
material having least stiction to the bearing rotor and stator 
materials (Delrin) are used at the outer and inner 
peripheries. These linings are provided with localized pads 
protruding in such a way that the bearing clearance at these 
linings is kept nearly half of the nominal operating 
clearance given in the bearing. In the event of crash, these 
linings bear the loads before appreciable damage to the 
bearing. In addition, the stator bearing surface is coated 
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with a thin film of Teflon in order to overcome accidental 
damages.  

Further protection is taken at the pneumatic flow circuit 
by introducing a parallel supply through a high volume 
accumulator built with pressure relay valve and audio 
alarm, which will feed the circuit in the event of failure of 
primary supply. Standard dry nitrogen cylinders with 
regulated outlet pressure are used for this purpose as a 
precautionary measure.  

XI. PNEUMATIC CIRCUIT 

Restricted air flow is provided to orifices through high 
response flow control devices in order to maintain the 
pressure ratio. The air supply source need to have filters and 
a dryer. Filters in various particulate stages are incorporated 
in the supply line to minimize the entry of contaminants and 
dust which are likely to damage bearing surface. Dryers 
avoid condensation due to temperature variations, if any, in 
the bearing.  

XII. FABRICATION 

Aerostatic Spherical bearing demands maintaining the 
geometrical accuracies for principal features and absolute 
dimensions. Geometric accuracies on spherical profile and 
concentricity are important from bearing performance point 
of view. Other geometric relationship when integrated with 
associated parts of the MPM, influence the accuracy of 
measurements. The high accuracy on profile and surface 
finish are obtained within the tolerance limit using high 
speed diamond turning machines. Fine hole (dia 0.3 to 0.5 
mm) drilling for orifices also forms a fabrication limitation 
which is resolved by laser drilling process or by using ruby 
orifice inserts press fitted into the bearing stator. 

XIII. CONCLUSION 

Spherical aerostatic bearing for application in MPM is 
designed by following the basic steps discussed above. These 
steps determine the mass flow rate, position of orifices for 
equal inward and outward mass flow rates, pressure at any 
position on the spherical bearing surface, the thrust load 
capacity and stiffness of the bearing. The bearing will be fine 
tuned for its performance experimentally during its test and 
evaluation process.   
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APPENDIX 

TABLE I: SYMBOLS, QUANTITIES & UNITS 

 
Sy
mb
ol 

Quantity Units 

Cd Co-efficient of 
Discharge 

Dimensionless 

γ Ratio of specific heats Dimensionless

θ0 Inward fluid exit angle 
on the sphere 

radians 

θ3 Outward fluid exit 
angle on the sphere 

radians 
 

θ1 Position of first row of 
orifices 

radians 

θ2 Position of second row 
of orifices 

 

radians 
 
 

θ Position at any point on 
the sphere 

radians 

Rb Radius of the 
stator/bearing 

m 

Rr Radius of the rotor m 

h Film Thickness m 

d Diameter of the orifice m 

A Area of the orifices m2

Q Discharge m3

T Temperature at NTP °K 
 

m1 Inward mass flow rate Kg/sec 
 

m2 Outward mass flow rate Kg/sec 
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