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Abstract— Automobile companies have increased the use of 

high strength dual phase steels as an alternative to aluminium 
and magnesium alloys due to their light weight, low cost and 
durability. Due to their high tensile strength, however, dual 
phase steels have a tendency to springback more than other 
structural steels in a forming operation. In addition, variations 
in material properties and manufacturing process parameters 
cause springback variation over different manufactured parts. 
Therefore, it is an important task to reduce the magnitude of 
springback as well as its variation within to produce robust 
and cost-effective parts. This paper investigates minimization 
of the magnitude and variation of springback of DP600 steels 
in U-channel forming within a robust optimisation framework. 
The computational cost is reduced by utilizing metamodels for 
prediction of the springback and its variation during 
optimisation. Three different allowable sheet thinning levels 
are considered in solving robust optimisation problem and it is 
found that as the allowable thinning increases the die radius 
reduces thereby the magnitude and variation of springback 
reduces. Finally, a sensitivity analysis is performed and the 
yield stress is found to be the most important random variable. 
 

Index Terms—Dual phase steels, metamodels, Monte Carlo 
simulations, robust optimisation, springback. 
 

I. INTRODUCTION 

pringback is one of the most important problems 
observed during sheet metal forming process. The 
deviation of the manufactured geometry from the 

designed geometry is called as springback. The high 
strength of dual phase steels leads to more springback than 
traditional steels. Moreover, variation of springback is 
another challenging problem to overcome. Variations in 
material properties and manufacturing process parameters 
are the main effects that cause springback variation. Large 
variation in springback limits the application of springback 
prediction and compensation techniques. Therefore, 
problems increase in the assembly of manufactured parts. 
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High strength steels have a tendency to springback more 
than other structural steels in a forming operation. 
Moreover, due to the complex techniques used during the 
manufacturing of high strength steel (HSS), large variations 
in material properties are observed. Also variations of 
various parameters in manufacturing process such as 
friction, die geometry and blank thickness directly affect the 
results. de Souza and Rolfe [1] examined a probabilistic 
analytical model where the variation of five input 
parameters and their relationship to the springback were 
investigated.. Mullerschon et al. [2] considered the 
uncertainties in the manufacturing processes of metal 
forming to estimate the random variations with the aid of 
finite element simulations. Accurate determination of the 
uncertainties in material properties and forming process 
parameters provides reliable results and improves the final 
product quality. Hence, a robust optimisation study is a 
must. 

A design is called robust if it is insensitive to the 
uncertainties. The aim of a robust optimisation study is to 
obtain maximum average performance with minimum 
performance variation in the presence of uncertainties. 
Wang et al. [3] investigated a systematic and robust 
approach, gathering the FEM (Finite element method) and 
stochastic statistics to decrease the sensitivity of HSS 
stamping in the presence of uncertainties. Du et al. [4] 
studied the robustness and robust mechanism synthesis 
when random and interval variables are involved. When the 
robustness is properly ensured and the minimization of 
performance variations are obtained, robust design leads to 
desired results without much performance variation due to 
uncertainties.  

A robust springback optimisation study requires 
calculation of the magnitude as well as the variation of 
springback. The springback variation can be calculated by 
using analytical methods or using simulation methods [5]. 
Analytical methods are computationally less expensive but 
their accuracy can suffer from nonlinearity. Since 
springback is a nonlinear phenomenon, the springback 
variation is computed using Monte Carlo simulation (MCS) 
method in this paper. The computational cost of the robust 
optimisation is reduced by utilizing metamodels. The 
approach used in this paper is similar to the work of Gantar 
and Kuzman [6], which presented an approach that 
integrates polynomial response surface (PRS) 
approximations and Monte Carlo simulations. They used 
PRS models within a MCS framework to compute the sheet 
rejection rate that measures the stability of stamping 
processes. However, in our study two other metamodel 
types other than RSA (Response surface approximations) 
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are also utilized, namely radial basis functions (RBF) and 
Kriging (KR), and the most suitable metamodel type is used 
in optimisation.  

In this paper, the robust optimisation problem is 
formulated such that the springback as well as its variation 
is reduced subject to constraint on the sheet thinning value. 
Three different allowable sheet thinning levels are 
considered and the effect of the allowable on the 
optimisation results is explored. Finally, a sensitivity 
analysis is performed to find the most important random 
variable in the problem. This information can be very useful 
for a company manager who is about to decide how to 
allocate the company resources on reducing uncertainties. 
The paper is structured as follows. The next section 
introduces the analytical model of springback in U-channel 
forming. Section 3 provides description of the robust 
optimisation problem. Section 4 presents the solution of the 
robust optimisation problem for three different sheet 
thinning levels. In Section 5, the most important random 
variable is found through a simple sensitivity analysis. The 
last section provides discussions of the results and 
concluding remarks. 
 

II. SPRINGBACK ANALYSIS 

 FEM is the most popular method for springback 
calculation. A fine mesh grid, right element type and size 
are required for a proper implementation of FEM. Since 
finite element method is time-consuming, its direct 
integration to a robust-optimisation study is computationally 
prohibitive. 

For simple problems, as in the case of this study, 
analytical methods are preferred for both their 
computational advantage and easy coupling to a robust 
optimisation study. In this paper an analytical model 
proposed by Dongjuan et al. [7] is used to predict the sheet 
springback of U-channel forming (Fig. 1). This model is 
based on Hill48 yielding criterion and plane strain 
condition, and takes the effects of sheet thinning and 
thickness, hardening coefficient, blank holding force, 
coefficient of friction and anisotropy into account. 

 

 
Fig. 1.  The scheme of sheet U-channel forming (Courtesy of [7])  

 
 

The following assumptions are applied by Dongjuan et al. 
[7] in sheet stretch-bending process (Fig. 2). 

(1)  F (the stretching force per unit width) is assumed to 
remain constant throughout the thickness. It leads to 
sheet thinning.  

(2)  Straight lines and neutral surface are orthogonal 
during the stretch-bending process. 

(3) εz is zero while the thickness/width ratio is too small. 
(4) Volume is constant during stretch bending process. 

 
Fig. 2.  The scheme of sheet stretch-bending (Courtesy of [7]), where 
the Ln is the length of neutral surface, Lm is the arc length of sheet 
middle surface 

 
The following formula gives the amount of final sheet 

thickness at the end of U-channel forming process.  
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      (1) 

 
where t is the final sheet thickness in mm, Ri is the die 
radius in mm. The following formulas can be used to 
determine bending radius of outer surface (i.e. Ro), middle 
surface (i.e. Rm), and neutral surface (i.e. Rn) 
 

         ( ) / 2o i n i o m i oR R t R R R R R R          (2) 

 
The anisotropy coefficient (f) can be formulated as: 

 

(1 ) / 1 2f R R                  (3) 

 
where R is the normal isotropy. 
 The half thickness of elastic region (c) is: 
 

2
1 1/    ;    /1s nc f R E E E              (4) 

 

where s is the yield stress, E is the modulus of elasticity 

and E1 is the modulus of elasticity under plane strain 
conditions. Elastic deformation can be observed at the 
region of ±c distance away from the middle surface.  

m
 
is equal to the stress caused by stretching force F. 

 

 0 0ln( / )           
n

m m n n mfk f R R R c R R        (5) 

 

where k is the hardening coefficient, n is the hardening 
exponent. 
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The bending moment (M) can be calculated as: 
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During reverse bending process the change of bending 

moment (ΔM) can be formulated as:  
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Stress state during unloading was described by using 

kinematic hardening model [8]. Kinematic hardening model 
is compatible with the Bauschinger’s effect, which should 
be taken into account in processes including reverse loading 
such as in the U-channel forming process.  

   is the tangential stress after unloading. 
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'm  is the stress in the sheet middle surface after 

reverse stretch bending.  
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After the bending moment is calculated, the springback 

can be calculated from;  
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where Δθ is the angular change during spring back regions 
II and IV, Δθsw is the angular change during spring back in 
region III, (I=t3/12) is inertia moment of cross-section per 
unit width and L is length of sidewall. 

So the acute angle of the final geometry and the 
springback can be calculated as: 

 
090 ( / 2) ;   90sbsw                    (11) 

 
where Δθsb is the springback value.  
 

III. FORMULATION OF THE ROBUST OPTIMISATION 

Robust optimisation problem depending on a single 
design variable, die radius (Rd) can be formulated as given 
in equation (12).  
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In Eq. (12) both the mean and the standard deviation of 

springback (μΔθ and σΔθ) are minimized. The weighting 
factors w1 and w2 are chosen based on the importance of 
reducing the mean and the standard deviation of springback 
and also satisfy w1+w2=1. For example, if minimizing the 
mean value of springback is more important than 
minimizing the standard deviation, the weighting factors are 
selected as w1>w2. Since the problem of interest is 
formulated in terms of a single design variable and sheet 
thinning and springback values compute with each other in 
a U-channel stamping problem, the constraint in Eq. (12) is 
always active. In this case, the Rd value obtained from 
constraint function becomes the solution of robust 
optimisation problem regardless of the value of the 
objective function. 

In this study, the reliability level is set to 99% for the 
probabilistic constraint (see Eq. (12.3)).This means that only 
a single-profile out of 100 produced U-profiles is allowed to 
have a sheet thinning value above the prespecified allowable 
value. In this study, the allowable sheet thinning values of 
5%, 10% and 15% are used, and the effect of this allowable 
value on the optimum solution is explored. The sheet 
thinning is assumed to follow normal distribution. Hence, 
the Rd value that ensures the mentioned 99% reliability 
constraint can be obtained using Eq. (13). To calculate Rd, 
the mean and standard deviation values of sheet thinning 
(μΔt and σΔt) depending on Rd have to be known. In this 
study, metamodels are constructed to relate μΔt and σΔt 
values to Rd. After metamodels are constructed, the value of 
Rd satisfying Eq. (12.3) can easily be calculated. Note in Eq. 
(13) that the %99 reliability value corresponds to z=2.326. 
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t d spec t d
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IV. SOLUTION OF THE ROBUST OPTIMISATION PROBLEM 

FOR DIFFERENT SHEET THINNING LEVELS 

First we start with determining the Rd value which 
ensures 5% sheet thinning with 99% reliability, and then 
metamodels are constructed for mean and standard deviation 
of sheet thinning in terms of Rd. To construct a metamodel, 
first an interval of Rd is determined and then MCS is 
performed to calculate mean and standard deviation values 
of springback and sheet thinning. Finally, metamodels are 
constructed between Rd values with obtained mean and 
standard deviation values. As shown in Table I, seven Rd 
values are chosen within the range of 0.7 to 1.0 mm and 
mean and standard deviation values of springback (Table I 
(a)) and sheet thinning (Table I (b)) are calculated by MCS. 
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After the metamodels are constructed, the Rd value leading 
to 5% sheet thinning and the corresponding springback 
values can easily be assessed.  

 
TABLE I (A) 

MONTE CARLO SIMULATION (10,000 SAMPLES) RESULTS FOR RD VALUES 

WITHIN THE RANGE OF 0.7 TO 1.0 MM 

  Springback (sb) (°) 

No Rd (mm) Avg Std COV a 

1 0.7 2.326 0.105 0.045 
2 0.75 2.349 0.108 0.046 
3 0.8 2.362 0.111 0.047 
4 0.85 2.383 0.112 0.047 
5 0.9 2.404 0.115 0.048 
6 0.95 2.422 0.118 0.049 
7 1 2.448 0.120 0.049 
aCoefficient of variation 

 
TABLE I (B) 

    % Sheet thinning (st) 

No Rd (mm) Avg Std COV a 

1 0.7 6.278 0.080 0.013 
2 0.75 5.759 0.075 0.013 
3 0.8 5.304 0.070 0.013 
4 0.85 4.899 0.067 0.014 
5 0.9 4.539 0.063 0.014 
6 0.95 4.218 0.060 0.014 
7 1 3.930 0.056 0.014 
aCoefficient of variation 

There exist several different types of metamodels in 
literature; polynomial response surface, radial-basis 
functions, Kriging, artificial neural-networks etc. Brief 
descriptions of these metamodels and applications to 
structural mechanics problems can be found in Refs. [9], 
[10]. For the data in Table I, second-order polynomial 
response surface (PRS2), radial-basis functions (RBF) and 
Kriging (zeroth-order trend model, KR0 and first-order 
trend model, KR1) metamodel types are constructed. 
Accuracy of constructed metamodels is evaluated by using 
leave-one-out cross-validation errors computed at the data 
points. To compute leave-one-out cross-validation error, 
metamodels are constructed N times (where N is the number 
of data points), each time leaving out one of the data points. 
The difference between the exact response at the omitted 
point and that predicted by each variant metamodel defines 
the cross-validation error. After this procedure applied to all 
data points, root mean square error (RMSE), mean absolute 
error (MAE) and maximum absolute error (MAXE) of cross 
validation errors calculated and results are listed in Table II.   

Accuracy evaluation of constructed metamodels for mean 
and standard deviation of springback is presented in Table II 
(a) and (b). PRS2 is found to be the most accurate 
metamodel type for mean value of springback, and KR1 for 
its standard deviation. For standard deviation, the second 
most accurate model is found to be PRS2. Both construction 
and interpretation (mathematical expression is easier and 
straightforward) of PRS2 models are easier than the other 
metamodel types. Hence, PRS2 is used for both mean and 
standard deviation values of springback. The constructed 
metamodels are found to be accurate when error metrics 
presented in Table II are compared to presented values in 

Table I. The constructed PRS2 models are presented in Figs. 
3 and 4. The high R2 values (shown on figures) confirm the 
accuracy of PRS2. 

Similar to the mean and standard deviation of springback, 
metamodels are constructed for the mean and standard 
deviation of the sheet thinning. RBF is found to be the most 
accurate metamodel type for mean value of sheet thinning, 
and PRS2 for its standard deviation. As noted earlier, since 
both creation and interpretation of PRS2 models are easier 
than the other metamodel types, PRS2 are used for both 
mean and standard deviation values of sheet thinning. PRS2 
models for sheet thinning are constructed similar to Figs. 3 
and 4. 

 
TABLE II (A) 

ACCURACY EVALUATION VIA CROSS VALIDATION ERROR OF METAMODELS 

CONSTRUCTED FOR MEAN AND STANDARD DEVIATION VALUE OF 

SPRINGBACK. THE SMALLEST ERROR METRIC SHOWN IN BOLD FONT. 

 Mean value of springback 

Metamodel type RMSE a MAE b MAXE c 
PRS2 0.0024 0.0017 0.0048 
RBF 0.0053 0.0035 0.0105 
KR0 0.0046 0.0027 0.0115 
KR1 0.0031 0.0024 0.0060 

aRMSE: root mean square error; bMAE: mean absolute 
error; cMAXE: maximum absolute error 

 

TABLE II (B) 

 Standard deviation of springback 

Metamodel type RMSE a MAE b MAXE c 
PRS2 0.0003 0.0003 0.0006 
RBF 0.0048 0.0032 0.0088 
KR0 0.0013 0.0010 0.0029 
KR1 0.0002 0.0002 0.0005 

aRMSE: root mean square error; bMAE: mean absolute 
error; cMAXE: maximum absolute error 

 

 
Fig. 3.  The change of mean value of springback depending on 
die radius 
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Fig. 4.  The change of standard deviation of springback 
depending on die radius 

 
 The equations of constructed PRS2 metamodels are used 

in the robust optimisation constraint equation (that is, Eq. 
(13)). The optimum Rd value is calculated as 0.96 mm 
which ensures the 5% sheet thinning value with 99% 
reliability. For this calculated radius value, mean value of 
sheet thinning is calculated approximately as 4.15%. When 
MCS (with 10,000 samples) is performed for Rd = 0.96 mm, 
the mean value of sheet thinning is calculated approximately 
as 4.16%. It is another indication that the results obtained 
from PRS2 are pretty accurate. 

The effect of the allowable thinning value on the 
optimisation results is shown in Table III. It is observed that 
as the allowable thinning level increases, the optimum die 
radii reduces, thereby the magnitude as well as the variation 
of the springback reduces. Notice that the variation is 
represented by using coefficient of variation, which is the 
standard deviation over the mean value. 

 
TABLE III 

THE CHANGE OF DIE RADII (RD) AS WELL AS THE MAGNITUDE AND 

VARIATION OF SPRINGBACK AND SHEET THINNING WITH RESPECT TO THE 

ALLOWABLE THINNING LEVEL. 
  

Springback (sb) (°) Sheet thinning (st) (%) 

Allowable 
thinning 
level (%) 

Die radii 
(Rd) 
(mm) 

Mean COV a Mean COV a 

5 0.96 2.427 0.049 4.160 0.014 
10 0.56 2.282 0.043 8.177 0.012 
15 0.38 2.250 0.040 12.282 0.010 
aCoefficient of variation 

V. A SIMPLE SENSITIVITY ANALYSIS 

In this section, a simple sensitivity analysis is performed 
to determine the most influential random variable. The 
influence of each random variable is evaluated through the 
following procedure. (1) The value of the random variable 
of interest is set to μ-3σ and μ+3σ, respectively, while 
keeping the other random variables at their mean values. (2) 
The springback values corresponding to these two settings 
are calculated. (3) The difference between the springback 
values is a measure of the influence of that random variable.  

The second column in Table IV shows the springback 
results when the random variable of interest takes its own   

μ-3σ value and the others take their mean values. For 
example, when yield stress is σY = μ-3σ = 295.87 MPa and 
the other random variables take their mean values, 
springback is calculated as θ = 2.09°. Similarly, the third 
column in Table IV shows the springback results when 
random variable of interest takes the value of μ+3σ while 
the other random variables take their mean values. The 
fourth column in Table IV shows the difference between 
second and third columns. Fifth column shows the 
normalized values of fourth column. As seen from the fifth 
column in Table IV, yield stress is found to be the most 
influential random variable. 

 
TABLE IV 

EFFECTS OF RANDOM VARIABLES ON SPRINGBACK. 2.42    

Variable θμ-3σ (°) θμ+3σ (°) 3 3      (°) Normalized 
effects 

σY 2.09 2.75 0.66 68.1 
K 2.38 2.46 0.08 8.3 
R 2.38 2.47 0.09 9.2 
n 2.43 2.41 0.02 2.1 
t 2.48 2.36 0.12 12.3 

 

VI. CONCLUSION 

In this study, the magnitude as well as the variation the 
springback of U-profile sheets made of DP600 dual phase 
steels were minimized using a robust optimisation 
methodology. An analytical model was used to predict the 
sheet springback. The robust optimisation problem was 
formulated to minimize the mean and the standard deviation 
of springback subject to a probabilistic constraint on sheet 
thinning. The reliability level was set to 99% for the 
probabilistic constraint. The mean and the standard 
deviation values of springback as well as sheet thinning 
were computed through Monte Carlo simulations. 

If the Monte Carlo simulations were directly integrated 
into the robust optimisation framework, the computational 
cost would be very high. To reduce the computational 
burden, metamodels were constructed for prediction of 
mean and standard deviation of springback as well as sheet 
thinning. Four different types of metamodels were utilized, 
namely second-order polynomial response surface (PRS2), 
radial-basis functions (RBF) and Kriging (zeroth-order 
trend model, KR0 and first-order trend model, KR1). PRS2 
was found to be the most accurate metamodel type for mean 
value of springback and the second most accurate 
metamodel type for its standard deviation. Since both 
creation and interpretation of PRS2 models are easier than 
the other metamodel types, PRS2 metamodels are used 
during optimisation. 

Three different sheet thinning levels, namely of 5%, 10% 
and 15%, were considered and the effects of sheet thinning 
level on the optimisation results were analyzed. It is found 
that as the allowable thinning increases the die radius 
reduces thereby the magnitude and variation of springback 
reduces. 

Finally, a simple sensitivity analysis was performed to 
and yield stress was found to be the most influential random 
variable. This information can be very useful for a company 
manager who is about to decide how to allocate the 
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company resources on reducing uncertainties. For our 
problem, it is more effective to allocate the resources for 
tighter quality control measures that can reduce the 
uncertainty in yield stress. 
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