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Abstract—A methodology is presented to create reduced
models of fluid thermal problems with varying geometry. The
methodology is applied to the nonisothermal backward-facing
step problem, depending on three parameters: the Reynolds
number, the wall temperature, and the step height. Various
snapshots are calculated using a computational fluid dynamics
(CFD) solver in disparate grids, which are transformed into
a generic grid by means of a smooth function. A proper
orthogonal decomposition basis is created for these transformed
snapshots, the flow variables are expanded into the resulting
modes, and the reconstructed flow variable distributions are
transformed back into the original grids. The associated mode
amplitudes are calculated minimizing (using a genetic algo-
rithm) a residual, which is defined using a limited number
of grid points (which lessens the computational effort). The
resulting reduced order model provides solutions that compare
well with their CFD counterparts, in a much smaller CPU time.

Index Terms—Proper orthogonal decomposition, variable
geometry, reduced order model.

I. INTRODUCTION

REDUCED order models (ROMs) are becoming more
and more efficient and thus more appealing for indus-

trial applications. Applications such as optimization and con-
ceptual design can be easily handled with a ROM, reducing
the time span from the beginning phase to the final phases
of the design process. A review of advances in such ROMs
is presented in [10].

Although ROMs are becoming widespread in many types
of applications, there are not that many that deal with varying
geometries. The varying geometry involves difficulties for
example when applying proper orthogonal decomposition
(POD). In order to surmount these difficulties, a few tech-
niques have been proposed account for varying geometries,
such as those presented in [3], [15], [17], [13], [8], [12],
and [14]. Among these, the authors employ such methods
as a multi-POD approach (using a POD basis for each
grid deformation) and mapping the grid displacement as a
parameter. There are however no cases where they create a
POD basis with varying grids.

In this paper, a POD-based ROM that takes into account a
variable geometry as one of the parameters will be developed.
The paper is a continuation of the related former work by
us [1], [2], which presented the same type of ROM but with
fixed geometries.
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Fig. 1. Sketch of the test problem configuration. Flow goes from left to
right.

II. APPLICATION DESCRIPTION

A. Flow Description

The test problem to illustrate the methodology is a 2D
laminar, incompressible flow through a backward-facing
step with a portion of the lower wall being heated. In
the equations and boundary conditions below, all distances
were rendered dimensionless using the hydraulic diameter
of the inlet channel (twice the inlet height). The velocity,
pressure, and temperature are non-dimensonalized with the
mean inlet velocity, the inlet dynamic pressure, and the inlet
temperature, respectively.

The governing equations are

∂xu+ ∂yv = 0, (1)

u∂xu+ v∂yu+ ∂xp−
µ∆u+ 2∂xµ∂xu(∂yu+ ∂xv)

Re
= 0,

(2)

u∂xv+v∂yv+∂yp−
µ∆v + 2∂xµ∂xv(∂xv + ∂yu)

Re
= 0, (3)

u∂xT + v∂yT − κ∆T + ∂xκ∂xT + ∂yκ∂yT

RePr
= 0, (4)

where ∂x and ∂y stand for partial derivatives, ∆ = ∂2
xx+∂2

yy

is the Laplacian operator, and the inlet Reynolds and Prandtl
numbers are defined as

Re = 2ρ̃inleth̃inletũinlet/µ̃(T̃inlet),

Pr = c̃pµ̃(T̃inlet)/κ̃(T̃inlet).
(5)

Here, ũinlet is the mean inlet velocity and tildes denote di-
mensional quantities. µ and κ are the dimensionless viscosity
and thermal conductivity, which (in the considered tempera-
ture range, assuming that the working fluid is water) depend
on temperature as µ = 1 − 5.646(T − 1) + 12.26(T − 1)2

and κ = 1 + 0.786(T − 1) − 1.176(T − 1)2, which result
from well known correlations [16].

The boundary conditions are as follows. At the inlet
section, x = 0, the velocity profiles and pressure gradient are
assumed to be Poiseuille-like and the temperature is set equal
to the coolant temperature. At the outlet section, x = 15, the
flow is also assumed to be fully developed and thus a stress
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free condition is imposed, namely ∂xu = ∂xv = ∂2
xxp =

∂xT = 0. At the walls, we impose noslip (u = v = 0), and
the following thermal conditions T = Twall if 5 < x < 10.5
and y = 0, and u = v = 0, ∂nT = 0. Here, n stands for the
direction normal to the wall.

The CFD computations needed to generate the snapshots
are carried out with the solver described in [16]. Three free
parameters are present, namely the Reynolds number, the
wall temperature downstream of the step, and the step height.
The maximum Reynolds number (400) is selected to preserve
the hypothesis that the flow is two dimensional [16], [4],
[7], and [5]. The step height is allowed to change in a rather
wide range (0.1 to 0.6), which involves large changes in both
the geometry and flow topologies. An idea of the severity
of this change is provided in Fig. 2, where the streamlines
patterns are shown for three representative cases. Solving the

Fig. 2. Streamlines for the cases: Re = 100, Tw = 1.0, H = 0.1 (top),
Re = 200, Tw = 1.1, H = 0.4 (middle), and Re = 400, Tw = 1.2, H =
0.6 (bottom).

problem also requires drastic changes in the computational
mesh, both in the number of points (which are 6,347, 12,485,
and 16,577 in the three cases considered in Fig.2) and in their
distribution (which involves drastic changes of mesh size, see
Fig.3). Initially, snapshots are computed for the following
210 combinations of parameters:

• Re = 100, 150, 200, 250, 300, 350, and 400,
• Tw = 1.0, 1.05, 1.10, 1.15, and 1.20,
• H = 0.1, 0.2, 0.3. 0.4, 0.5, and 0.6.

Later on (see below), one additional series of snapshots will
be computed in the case H = 0.15 to improve results,
which will increase the total number of snapshots to 245.
To assess the ROM accuracy, a series of 10 test points has
been defined inside the parametric space, see Table I. Three
figures of merit have been chosen to compare the ROM and
CFD results, namely the reattachment length, LR, of the
recirculation region located directly downstream of the step,
the pressure drop, Pdrop, between entrance and exit, and the
heat flux across the heated portion of the lower wall behind
the step (see Fig.1). The latter is accounted for using the heat
flux per unit width, defined as

Q′ =
∑

∂yT (x, 0)κ(T (x, 0)) (6)

where Q′ is the non-dimensional heat flux across the non-
adiabatic part of the lower wall. The actual CFD values of
these figures of merit at the test points are given in Table I

III. METHOD DESCRIPTION

A. Virtual grid

The mesh used in the CFD calculations is separated into
5 different zones, as plotted in Fig. 3-top. A close-up view

TABLE I
DEFINITION OF TEST POINTS AND CFD VALUES OF THE FIGURES OF

MERIT

Problem parameters Figures of merit
Test point

Re Twall H LR Pdrop Q̃′

P01 225 1.075 0.35 1.783 1.094 3.202

P02 275 1.125 0.45 2.917 0.727 5.347

P11 125 1.025 0.15 0.317 3.318 1.088

P12 125 1.175 0.15 0.383 3.026 8.702

P13 125 1.025 0.55 1.983 1.963 0.734

P14 125 1.175 0.55 2.167 1.910 5.980

P15 375 1.025 0.15 0.683 0.921 1.507

P16 375 1.175 0.15 0.817 0.836 12.21

P17 375 1.025 0.55 4.350 0.417 0.905

P18 375 1.175 0.55 4.400 0.420 7.748

of the near-corner CFD grid distribution is shown in Fig. 3-
bottom. Varying geometries and mesh topologies cannot be

Fig. 3. Top: overview of a typical CFD domain with the different zones.
Bottom: grid points distribution in the vicinity of the step for the case
H = 0.5.

used in a standard POD, which requires a fixed geometry
(with fixed mesh points). Thus, a virtual geometry is first
defined as the case with a step size H = 0.3. In this, a
virtual mesh is defined as the Cartesian equispaced mesh
with five zones that are the counterparts of the zones in the
CFD meshes. In both cases the x-y spacing between mesh
points is as follows: zone 1: 0.1 x 0.05, zone 2: 0.01667 x
0.05, zone 3: 0.01667 x 0.01667, zone 4: 0.45 x 0.05, zone
5: 0.45 x 0.01667. Now, transformation between the virtual
geometry and the actual geometries for each value of the step
height H is done mapping the vertical coordinate, using the
logarithmic function

η = Aln(By + 1) (7)

where A and B are determined requiring that η(H) = 0.3 and
η(H+0.5) = 0.8, which preserves both the step and channel
heights. The logarithmic function (7) has been selected
because it exhibits a nearly linear growth in the upper part of
the domain. Now, the state variables, u, v, p, and T must be
transformed back and forth between the original and virtual
meshes, which is done using the transformation (7) and cubic
spline interpolation in both the original and virtual meshes.
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B. POD + interpolation

N snapshots are computed with the CFD solver presented
in [11] and must be representative of the parameter range we
intend to cover, namely

(uk, vk, pk, Tk) for k = 1, ..., N. (8)

Each snapshot gives the steady state of the system for a
specific set of values of the parameters. These snapshots
are first projected into the virtual geometry using (7) and
then used to obtain the POD modes, which are calculated
independently for each variable. For instance, POD modes
for the horizontal velocity are given by

Uj =
N∑

k=1

αk
juk, (9)

where the coefficients αk
j are such that

(α1
1, ..., α

N
1 ), ..., (α1

N , ..., αN
N ) are the eigenvectors of

the positive definite, symmetric NxN -matrix R, known as
the covariance matrix, defined as

Rij = ⟨ui, uj⟩ (10)

where Ω is the following projection window in the virtual
geometry.

Ω : 6 < x < 10, 0 < y < 0.8, (11)

Note that we are not taking the whole fluid domain to
calculate POD modes, which would be quite computation-
ally expensive. This simplification has been explained and
checked in reference [2]. Now, if the expansion (9) is
truncated to n ≤ N terms, then the relative, root mean square
(RMS) error is bounded by

|error| ≤

√√√√ N∑
i=n+1

γi

/ N∑
i=1

γi (12)

where γ1 ≥ ... ≥ γN ≥ 0 are the eigenvalues of the
covariance matrix (10). This gives an a priori estimate of
the number of POD modes that must be retained to obtain
a fixed error. After truncation and projection back into the
CFD geometry, the POD modes are used to calculate the
flow variables as

u(x, y) =

n1∑
i=1

A1
iUi(x, y) v(x, y) =

n2∑
i=1

A2
iVi(x, y)

p(x, y) =

n3∑
i=1

A3
iPi(x, y) T (x, y) =

n4∑
i=1

A4
iTi(x, y)

(13)
where the POD-mode amplitudes A1

i , ..., A
4
i are unknowns to

be determined below. As an initial guess for the optimization
process below, we shall use a first approximation of the
amplitudes for arbitrary parameter values using POD +
interpolation [1]; see also [6], [9] for related combinations of
POD like methods and interpolation. The amplitudes of the
modes (in terms of these parameters) are calculated in two
steps: (a) at the parameter values associated with the snap-
shots, the POD-mode amplitudes Aj

i = Aj
i (Re, Twall,H)

are obtained by just projecting the snapshots (8) into the
POD basis, which requires projecting back and forth into the
virtual mesh; and (b) at the remaining (intermediate) values
of the parameters, each mode amplitude is calculated using

POD to obtain joint modes associated with dependence on
the three parameters and cubic spline interpolation in each
of these joint modes; see [1] for more details.

C. The overall residual

As anticipated above, the next step consists in calculating
the POD-mode amplitudes (i.e. the coefficients in the expan-
sions (13)) by minimizing the following residual (see [2])

Residual =
∑4

j=1
1

NE
|Ej(xk, yk)|

+
∑4

j=1
1

NBC |BCj(xk, yk)|,
(14)

where (xk, yk) are all points in the following projection
window

6 < x < 10 0 < y < 0.5 +H (15)

which is the counterpart of the projection window in the
virtual geometry that was used above to calculate POD
modes (cf eq.(11) and see Fig. 2); Ej are the left hand sides
of eqs. (1)-(4) and

BC1 = u(p, ymiddle)

−
{
− 24(ymiddle −H)

[
(ymiddle −H)− 1

2

]}
,

(16)

BC2 =
∂p

∂x
−
(
− 48

Re

)
≈ ∆pin

∆xin
− (− 48

Re
), (17)

BC3 = T (0, ymiddle)− Tentrance, (18)

BC4 = T (xheating, ymiddle)− Twall (19)

account for the expressions that are set to zero in the non-
homogenous boundary conditions at the walls. Now even
though using a projection window instead of the whole fluid
domain bears a saving in computational effort, the first term
in (14) still involves all mesh points in the projection window
and can lead to fairly expensive calculations if NE is large.
Here, as in [2] we proceed in a less standard way, noting that
the essence of the POD method is that all snapshots are well
approximated by a small number of modes, which suggests
that the residual could be calculated using only information
from a also small number of mesh points, somewhat larger
than the expected number of POD modes. In the sequel,
we only consider 50 equispaced points in the projection
window to calculate the residual (14). Since the focus of
this work is on the development of a ROM methodology with
variable geometry, a robust (if not particularly efficient) opti-
mization approach has been selected: the genetic algorithm.
The parameters of the genetic algorithm used to compute
the amplitudes in the modal expansions were: 10 bits per
individual, 10,000 individuals in each population, 100 elite
individuals that go over to the next generation, a crossover
probability of 0.8, and a mutation probability such that 1% of
individuals mutate one random bit. The CPU time needed to
reach the solution with 15 modes (Tables III and V) in a 3.20
GHz desktop computer was 3 to 7 minutes depending on the
test case. It should be noted however that this time can be
reduced if the number of generations is lowered; the number
of generations used was chosen to overshoot the necessary
amount.
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TABLE II
RELATIVE ERRORS IN % RESULTING FROM BOTH POD+INTERPOLATION

AND ROM CALCULATIONS ON THE FIGURES OF MERIT, USING 210
SNAPSHOTS AND RETAINING 15 MODES. POD MODES ARE CALCULATED
IN THE PROJECTION WINDOW (11) AND THE RESIDUAL IS CALCULATED

FROM 50 EQUISPACED POINTS IN THE PROJECTION WINDOW (15).

POD+interpolation ROM
Test point

LR Pdrop Q′ LR Pdrop Q′

P01 0.0 0.5 0.4 1.9 0.4 0.1

P02 1.1 0.2 2.1 1.1 0.1 2.2

P11 10.5 3.6 0.0 10.5 2.5 4.0

P12 8.7 3.4 0.5 13.0 2.4 0.4

P13 0.8 2.8 0.5 0.0 1.0 1.0

P14 0.8 2.8 0.1 0.8 7.1 0.2

P15 14.6 1.8 1.3 17.1 1.4 1.3

P16 14.3 1.7 1.2 14.3 0.9 1.0

P17 1.5 0.5 6.7 1.9 0.5 8.4

P18 0.4 0.5 2.2 0.4 0.3 2.0

IV. RESULTS

To begin with, the ROM developed above is applied retain-
ing the 15 most energetic POD modes calculated from the
above defined 210 snapshots, using the projection window
(11); the residual is calculated using only 50 equispaced
points in the projection window (15). Relative errors (in %)
on the three figures of merit at the test points are qiven in
Table II as calculated using both POD+interpolation and the
ROM; see Table I for the definition of the test points and the
CFD calculated values of the figures of merit. Note that both
POD+interpolation and ROM errors are always smaller than
4%, except for the reattachment length at test points P11,
P12, P15, and P16 and the heat flux at test point P17. The
reason for this lower accuracy seems to be due to the fact
that POD approximations tend to deteriorate when either:

a) The step height is small (test points P11, P12, P15, and
P16, see Table 1) because flow structures have a much
smaller size than for larger values of H.

b) Or the wall temperature is lowest (test point P17),
because heat transfer in this case is associated with
small values of the heat flux near the walls.

In both cases, the actual numerical resolution in POD might
be not sufficient. In order to deal with this difficulty, two
improvements have been made in the method:

1) Increasing the number of snapshots with 35 additional
ones at a step height H = 0.15. Results are given in
Table III and show that results improve everywhere.
Also, errors are now smaller than 2.4 % (including the
approximation of LR at P15 and P16), except for the
reattachment length at P11 and P12 and the heat flux at
P17, which are exact only within 8.7%. In any event,
deviations of this order are admissible from the point
of view of, for example, micro-electro-mechanical sys-
tems (MEMS) design engineering applications since,
in this context, experimental work has uncertainties of
the order of ±10%.

2) Using the same 245 snapshots as in case (a), but
retaining twice the number of modes (a total of 30,
instead of 15). The results obtained are presented in

TABLE III
SAME AS TABLE II, BUT USING 245 SNAPSHOTS

POD+interpolation ROM
Test point

LR Pdrop Q′ LR Pdrop Q′

P01 0.9 0.4 1.4 0.0 0.1 2.0

P02 1.1 0.2 2.4 1.1 0.2 2.5

P11 5.2 2.6 0.7 5.2 1.7 0.3

P12 4.4 2.5 0.1 8.7 1.2 0.2

P13 0.8 2.8 0.2 1.7 0.9 0.5

P14 0.8 2.8 0.1 0.8 0.6 0.3

P15 0.0 0.3 1.3 0.0 0.1 1.3

P16 2.0 0.4 0.8 2.0 4.0 5.4

P17 1.5 0.5 6.9 1.9 1.2 7.5

P18 0.4 0.5 2.4 0.4 0.2 2.1

Table IV, and show that now accuracy is quite good
for the three figures of merit in the ten test points.
Also, results obtained using the ROM (within 1.5%
accuracy) are consistently better than those obtained
using POD+interpolation (2.8% errors). It is to be
noted, however, that this improvement came at the
expense of a larger computational time. While each
run of the ROM in Table III is performed in only 3-
7 CPU minutes, each run in Table IV requires 10-30
minutes.

TABLE IV
SAME AS TABLE II, BUT USING 245 SNAPSHOTS AND 30 MODES

POD+interpolation ROM
Test point

LR Pdrop Q′ LR Pdrop Q′

P01 0.9 0.4 0.2 0.9 0.2 0.1

P02 1.7 0.2 0.6 1.7 0.0 0.6

P11 0.0 2.5 0.5 0.0 1.5 0.5

P12 0.0 2.5 0.3 0.0 1.3 0.3

P13 0.8 2.8 1.0 0.8 1.4 1.0

P14 0.8 2.8 0.2 0.8 1.1 0.4

P15 0.0 0.2 0.7 0.0 0.2 0.3

P16 0.0 0.1 0.0 0.0 0.1 0.0

P17 0.0 0.5 3.0 0.0 0.4 2.2

P18 0.0 0.5 1.0 0.0 0.4 1.0

Now, the question is whether a similar agreement is found
when flow variables are compared at the local level. Figure
4 shows the streamline patterns in the step vicinity for
test cases P01 and P17. Note that the agreement is quite
good. The associated isobars and isotherms are given in
Figs. 5 and 6, respectively. Agreement is again quite good,
except of course at those regions where either pressure or
temperature is almost constant, as was to be expected. POD
modes and the residual were calculated using data from the
projection windows (15) and (11), which excluded that zone
where the flow exhibits a second recirculation bubble at
some test points. It is also noteworthy that only five of the
snapshots exhibited the second recirculation bubble, and that
the CFD grid nodes were fairly sparse in that zone were
the second bubble appears. In spite of these, the second
recirculation bubble is reasonably well approximated. Still,

Proceedings of the World Congress on Engineering 2011 Vol III 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



Fig. 4. Comparison between CFD (solid) and ROM (dashed) streamlines
at test points P01 (top) and P17 (bottom)

Fig. 5. Comparison between CFD (solid) and ROM (dashed) isobars at
test points P01 (top) and P17 (bottom)

the main recirculation bubble is always well approximated
even though the projection window excluded also the main
recirculation bubble in some cases (Fig. 2-up) and a large
part of this bubble in some other cases (Fig. 2-middle).
All these illustrate both (a) the power of POD when this
method is properly used and (b) the fact that the ROM is
quite robust in the sense that selection of the projection
window is not critical. Now, a question arises on whether
the results above can be improved with a better selection of
both the projection window and the points where the residual
are calculated. Concerning the latter, note that choosing 50
equispaced points in the projection window (15), as we did
in Tables II-IV to calculate the residual means that, for
instance, that zone affected by the first recirculation bubble
(0< y < H) contains 18 points when H = 0.1 and 40 points
when H = 0.6. This suggests two improvements:

• A first improvement results from maintaining the projec-
tion windows (15) and (11), but increasing the number
of points in the residual calculation to 100, and ensuring
that 70 of them are in that part of the projection window
affected by the first recirculation bubble (0 < y < H).
Results are shown in Table 5-left. Comparison with
Table IV shows that a significant improvement results
from the increase in the number of points and the better
selection of the 100 points. Note that errors are within
2.3% except for the reattachment length at point P11
and the heat flux at point P17; but note that the CFD
values of and heat flux at these points are quite small,
which explains the larger relative errors.

• The projection window can be split into two sub-
windows in such a way that they roughly cover those
regions affected by the recirculation bubbles. Namely,

6 < x < 10, 0 < η < 0.3; 9 < x < 13, 0.3 < η < 0.8
(20)

6 < x < 10, 0 < y < H; 9 < x < 13, 0.5 < y < H
(21)

Fig. 6. Comparison between CFD (solid) and ROM (dashed) isotherms at
test points P01 (top) and P17 (bottom)

in the virtual and CFD geometries, respectively. Also,
the residual is calculated taking 50 and 15 points in the
first (6 < x < 10) and second (9 < x < 13) sub-
windows, respectively. Results are shown in Table 5-
right and are quite similar to those resulting from the
first improvement above, which shows that the whole
process is quite robust.

TABLE V
TABLE 5 RELATIVE ERRORS % ON THE FIGURES OF MERIT CALCULATED

WITH THE ROM DESCRIBED IN TABLE III, BUT (LEFT) USING 70+30
POINTS IN THE PROJECTION WINDOW (15), AND (RIGHT) USING TWO

PROJECTION SUB-WINDOWS, SEE (11)-(21).

One window, 70+30 points Two windows, 50+15 points
Test point

LR Pdrop Q̃′ LR Pdrop Q̃′

P01 0.9 0.2 0.9 0.9 0.2 0.6

P02 1.7 0.1 2.3 1.7 0.1 2.4

P11 5.2 1.9 0.2 5.2 1.7 0.5

P12 0.0 1.3 1.5 0.0 1.3 0.7

P13 0.8 0.9 0.1 1.7 0.9 0.0

P14 0.8 0.6 0.3 0.8 0.6 0.3

P15 0.0 0.1 1.2 2.4 0.2 1.1

P16 2.0 1.0 2.7 0.0 0.3 0.8

P17 1.1 0.5 7.6 1.1 0.5 7.6

P18 0.4 0.1 2.2 0.4 1.6 2.2

V. CONCLUSIONS

A method has been presented to generate ROMs in fluid-
thermal problems with variable geometry. In particular, the
required CFD-calculated snapshots are obtained in compu-
tational domains with variable shape and number of grid
points. The results obtained show that the method is flex-
ible, robust, and accurate enough to be used for practical
engineering applications. In particular, three parameters are
considered in the test problem, namely the Reynolds number,
the wall temperature, and the step height, which could
be considered as representative of a variety of industrial
problems in which flow topology, thermal, and geometry
properties need to be analyzed simultaneously. Some remarks
about the results are now in order:

1) When considering test points located well inside the 3-
D parametric space (test points P1 and P2), the ROM
global results (main recirculation region reattachment
length, pressure drop, and heat flux) are within 2%
of the CFD solution even with the simplest ROM
configuration (210 snapshots, 15 POD modes, and
residual calculated using 50 equispaced points in the
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simplest projection window). The spatial distribution
of the flow variables is also close enough to the CFD
solution to be used for detailed analysis purposes. The
CPU time needed to generate each of these ROM
results is of the order of 3 minutes, which is much
smaller that the time needed to generate a CFD solution
(of the order of 8 to 10 hours).

2) The accuracy of the method degrades, as it could be
expected when the selected test points are close to
the boundary of the 3-D parametric space. In this
case, discrepancies with the CFD solutions using the
simplest ROM configuration (Table II) are of the order
of 3% except at some points where they can be as large
as 17%. The time needed to generate the ROM model
goes up to about 7 minutes. Adding some snapshots in
the region of lower step height (Table III) reduces the
largest errors to 8.7%, which it is already acceptable for
engineering purposes and still requires a CPU time of
7 minutes, which is quite competitive when compared
to the time needed to generate a full CFD solution.

3) Accuracy can be increased either retaining more POD
modes (30 instead of 15, see Table IV), which gives
excellent accuracy but requires a CPU time of 10-
30 minutes (still competitive compared to CFD) or
selecting better both the projection window and the
points where the residual is calculated (Table V).
This gives both an excellent precision (errors within
3% except at those points where the approximated
quantities are really small, where it is still reasonable,
of the order of 7%) and a fairly small CPU time
(3-7 minutes). Concerning the latter improvement, it
is convenient that the projection window includes at
least a part of the structured flow regions (e.g., second
recirculation bubble), and that the selected points to
calculate the residual are located in a balanced way,
namely that there is a sufficient amount of them in the
most structured regions. Nevertheless, the method is
robust enough in connection with all these guidelines
since, for instance reasonable results (even in the
second recirculation bubble) are obtained selecting a
projection window that does not contain the second
recirculation bubble (or even does not contain the first
recirculation bubble either, see Fig. 2), and calculating
the residual using equispaced points in the first projec-
tion window, which puts only a few points in the first
recirculation bubble.

4) For simplicity, we have retained the same number of
POD modes in each flow variable, but this can of
course be improved selecting an appropriate number
of modes for each flow variable. This could be done
in an efficient way using the a priori error estimate
(12), which is based on the singular values of each
POD.

5) Adding 15 additional snapshots in that region of the
parameter space where the ROM results exhibited
largest errors highly improves the efficiency at a rea-
sonable computational cost. This opens the possibility
of designing a method to select the snapshots in such
a way that only a few of them are enough, if properly
selected. Its number should be just somewhat larger
than the number of POD modes (say, twice the number

of modes). The method would provide a dramatic
reduction in computational time since it is essentially
associated with the CFD calculations of the snapshots.
The remaining calculations in the method are quite
inexpensive after the improvements introduced above.

6) Gradient like methods could be used to dramatically
decrease computational time, which as explained above
would require a redefinition of the residual and an
efficient calculation of the gradient. Some care should
also be taken with non-uniqueness of local minima of
the residual, which is under research.
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