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Abstract—The paper examines the development of models of
steam generation plant using linear identification techniques.
The identification process is carried out using experimental data
of a multi-input multi-output MIMO system representation.
Various techniques of modeling and identification are applied
considering the complete system as a MIMO model and study-
ing the effect of all the inputs on individual in different cases.
The model will also be studied as a SISO system considering
one input and one output at a time.

Index Terms—ARMAX model, Linear identification, State-
space model, Steam generation plant.

I. I NTRODUCTION

T HERE are two types of configurations [1] in the
electricity generation using drum boilers and steam

turbines:
(1) A single boiler is used to generate steam that is

directly fed to a single turbine. This configuration
is usually referred to as a boiler-turbine unit.

(2) A header is used to accommodate all the steam
produced from several boilers, and the steam is
then distributed to several turbines through the
header.

The steam can be used to generate electricity as well as
other purposes [8]. This configuration is commonly used in
industrial utility plants. Boiler-turbine units are nowadays
preferred over header systems, because they can achieve
quick response to electricity demands from a power grid or
network. It is generally accepted that a boiler-turbine unit is
a highly nonlinear and strongly coupled complex system.

The objective of this paper is to develop a class of
models for steam generation plant using linear identifica-
tion techniques. The identification process is based on real
data collected multi-input multi-output MIMO pilot system.
Standard methods of modeling and identification are applied
considering the complete system as a MIMO model and
studying the effect of all the inputs on individual in different
cases. The model will also be studied as a SISO system
considering one input and one output at a time. Simulation
studies are performed and the ensuing results are evaluated.

II. SYSTEM DESCRIPTION ANDDATA ANALYSIS

For the system considered in this paper, the input/output
experimental data has been obtained from [6] based on real
measurements of a steam generator at Abbot Power plant in
Champaign IL. The data comes from a model of this steam
generator. The inputs are listed as follows.

U1: Fuel scaled 0-1

Manuscript received July 22, 2010. This work is supported by the
deanship for scientific research (DSR) at King Fahd University for Petroleum
and Minerals (KFUPM) through projectIN100018.

Magdi S. Mahmoud is with the Systems Engineering Department, King
Fahd University for Petroleum and Minerals (KFUPM), PO Box 5067,
Dhahran 31261, Saudi Arabia. (Phone: 00-966-54201-9258; Fax: 00-9663-
860-2965; e-mail: msmahmoud@ kfupm.edu.sa).

Fig. 1. Steam Generation Plant Diagram

U2: Air scaled 0-1
U3: Reference level
U4: Disturbance defined by the load level

The outputs are

Y1: Drum pressure
Y2: Excess oxygen in exhaust gases
Y3: Level of oxygen in the drum
Y4: Steam flow

Fig. 1 shows the schematic diagram of the Steam generator
model. The simulation data constitutes 9600 samples at a
sampling rate of 3s. This process is a MIMO one. A set
of 4000 samples (5000:9000) are used for testing, another
set of 4000 samples (2500:6500) for validation purpose. The
important statistical parameters of all inputs and outputs are
listed in Table III.

III. L INEAR SYSTEM IDENTIFICATION

It is known that system identification deals with the prob-
lem of fitting mathematical models to time series of input-
output data. The system identification problem addressed
hereafter is to estimate a dynamical model of a system based
on observed data of a steam generator unit. Several methods
to describe a system and to estimate such descriptions exist
[1] , [4]. The underlying procedure to determine such a model
involves three basic ingredients:

• The input-output data.
• A set of candidate models (the model structure)
• A criterion to select a particular model in the set,

based on the information in the data (the identification
method).
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TABLE I
IMPORTANT STATISTICAL PARAMETERS OFDATABASE

INPUTS/OUTPUTS
OF SYSTEM

MEAN STANDARD
DEVIATION

MIN MAX

INPUT 1: 0.504 0.229 0.000 1.07

FUEL SCALED 0-1

INPUT 2: 0.528 0.295 0.000 1.07

AIR SCALED 0-1

INPUT 3: 0.554 2.460 -4.00 4.53

REFERENCE LEVEL

INPUT 4: 0.004 0.010 -0.015 0.023

DISTURBANCE

OUTPUT 1: 329.4 85.94 154 534

DRUM PRESSURE

OUTPUT 2: 4.544 6.157 -0.069 21

EXCESS OXYGEN
IN AIR

OUTPUT 3: 0.552 2.849 -9.55 12.3

DRUM OXYGEN
LEVEL

OUTPUT 4: 14.85 7.571 1.99 34.6

STEAM FLOW

Thus the system identification procedure has a natural logical
flow: first collect data, then choose amodel set, then pick
the best modelin this set.

After having settled on the preceding three choices, we
have, at least implicitly arrived at a particular model: the one
that best describes the data according to the chosen criteria.
It then remains to test whether this model is good enough,
that is, whether it is valid for its purpose. Such tests are
known as model validation. They involve various procedures
to assess how the model relates to observed data, to prior
knowledge and to its intended use.

IV. PARAMETRIC MODEL STRUCTURES

Parametric models describe dynamical systems in terms of
differential equations (time-domain) and transfer functions
(frequency-domain). This provides insight into the system
physics and compact model structure. Generally, you can
describe a system using an equation, which is known as the
general-linear polynomial model or the general-linear model,
see Fig.2.

The linear model structure provides flexibility for both
the system dynamics and stochastic dynamics. However, a
nonlinear optimization method is needed to carry-out the
estimation of the general-linear model. This method requires
intensive computation with no guarantee of global conver-
gence [2]. Simpler models that are a subset of the general
linear model structure shown in Fig. 2 are possible. By
setting one or more of the polynomialsA(q), B(q), C(q)
or D(q) equals to 1 one can create several simpler models
including AR, ARX, ARMAX, Box-Jenkins, and output-
error structures [2]. Each of these methods has their own
advantages and disadvantages. Experience has shown that [4]
for any particular problem the choice of the model structure
to use depends on the dynamics and the noise characteristics
of the system. Using a model with more freedom or param-
eters is not always better as it can result in the modeling of
nonexistent dynamics and noise characteristics. This is where
physical insight into a system is helpful.
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Fig. 2. General Polynomial Model

In what follows, we will summarize the essential features
of some the linear identification methods.

A. ARX model

The use of equation error models, also denoted by linear
regression models, is widespread in the modeling and iden-
tification of dynamical systems. The essential characteristic
of the linear regression model is that a residual component
is defined which is a linear function of the unknown model
coefficients. In the SISO (single input single output) situation
we can write:

y(t) + a1y(t − 1) + · · · + ana
(t − na)

= b1u(t − 1) + · · · + bnb
(t − nb) + e(t) (1)

with y(t) the output signal,u(t) the input signal of the
model, anda1 . . . ana

b1 . . . bnb
unknown parameters. The

use of these kinds of models in estimation and identification
problems is essentially based on the argument thata least
squares identification criterion is an optimization problem
that is analytically solvable.

Since the white noise terme(t) here enters as a direct
error in the difference equation, the model is often calledan
equation error model. The adjustable parameters in this case
are

θ = [a1 . . . ana
b1 . . . bnb

] (2)

If we introduce

A(q) = 1 + a1q
−1 + · · · + ana

q−na ,

B(q) = b1q
−1 + · · · + bnb

q−nb (3)

We see that the model corresponds to

G(q, θ) =
B(q)

A(q)
H(q, θ) =

1

A(q)
(4)

In the ARX model the AR refers to the auto-regressive part
A(q)y(t) andX refers to the extra inputB(q)u(t) (called the
exogenous variable). In special case wherena = 0, y(t) is
modeled as a finite impulse response (FIR). Such model sets
are particularly common in signal processing applications.
The signal flow of ARX model can be depicted as in Fig.3.
The signal flow can be depicted as in the Fig.3. From the
picture we see that the model is not the most natural one
from a physical point of view: the white noise is assumed to
go through the denominator dynamics of the system before
being added to the output. However, the predictor defines
linear regression.
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Fig. 3. ARX model structure

Computing the predictor for the system above we get

ŷ(t|θ) = B(q)u(t) + [1 − A(q)]y(t) (5)

Now introduce the vector

ϕ(t) = [−y(t − 1) · · · − y(t − na)u(t − 1) . . . u(t − nb)]

Then we can write the equation above as

ŷ(t|θ) = θT .ϕ(t) = ϕT (t).θ (6)

The predictor is a scalar product between a known data vector
ϕ(t) and a parameter vectorθ. Such a model is called a linear
regression in statistics and the vectorϕ(t) is called regression
vector. It is of importance since the simple and powerful
estimation methods can be applied for the determination of
θ. In case some coefficients of the polynomials A and B are
known, we arrive at linear regression of the form

ŷ(t|θ) = ϕ(t).θ + µ(t) (7)

whereµ(t) is a known term.

B. Least square method

The linear regression employs predictor (6) whereϕ is
defined by

ϕ(t) = [−y(t − 1) · · · − y(t − na)u(t − 1) . . . u(t − nb)]

Using the least squares (LS) criterion for linear regression
[4], the prediction error becomes

ε(t, θ) = y(t) − ϕT (t).θ (8)

and the criterion function withL(q) = 1 and l(ε) = 1
2ε2 is

VN (θ, ZN ) =
1

N

N∑

t=1

1

2
[y(t) − ϕT (t).θ]2 (9)

A unique feature of this criterion is that it is a quadratic
function in θ. Therefore, it can be minimized analytically,
which gives, provided the indicated inverse exists, the least
square estimate (LES):

θ̂LS
N = argminVN (θ, ZN )

=
[ 1

N

N∑

t=1

ϕ(t)ϕT (t)
]
−1 1

N

N∑

t=1

ϕ(t)y(t)

= [R(N)]−1f(N) (10)

where

R(N) =
1

N

N∑

t=1

ϕ(t)ϕT (t), f(N) =
1

N

N∑

t=1

ϕ(t)y(t)

ared × d matrix andd × n vector, respectively

If the regression vectorϕ(t) contains lagged input
and output variables, the entries of the above equation will
be of the form

[R(N)]ij =
1

N

N∑

t=1

y(t − i)y(t − j) 1 ≤ i, j ≤ na

Similar sums ofu(t − r).u(t − s) or u(t − r).y(t − s)
for entries ofR(N). They will consist of estimates of the
covariance functions of{y(t)} and {u(t)}. The LSE can
thus be computed using only such estimates and is therefore
related to correlation analysis.

C. Recursive algorithm

Suppose that the weighting sequence has the following
property:

β(t, k) = λ(t)β(t − 1, k) 0 ≤ k ≤ t − 1

β(t, t) = 1 (11)

This means that we may write

β(t, k) = Πt
k+1λ(j)

We note that the following assumption implies that

R̄(t) = λ(t)R̄(t − 1) + ϕ(t)ϕT (t)

f(t) = λ(t)f(t − 1) + ϕ(t)y(t) (12)

Now

θ̂t = R̄−1(t)f(t) = R̄−1(t)[λ(t)f(t − 1) + ϕ(t)y(t)]

= R̄−1(t)[λ(t)R̄(t − 1)θ̂t−1 + ϕ(t)ϕT (t)]

= R̄−1(t){[R̄(t) − ϕ(t)ϕT (t)]θ̂t−1 + ϕ(t)y(t)}

= θ̂t−1 + R̄−1(t)ϕ(t)[y(t) − ϕT (t)θ̂t−1] (13)

We thus have

θ̂t = θ̂t−1 + R̄−1(t)ϕ(t)[y(t) − ϕT (t)θ̂t−1]

R̄(t) = λ(t)R̄(t − 1) + ϕ(t)ϕT (t) (14)

which describes a recursive estimation algorithm. At time
t−1 we store only the finite dimensional information vector

X(t − 1) = [θ̂t−1, R̄(t − 1)]

SinceR̄ is symmetric, the dimension ofX is d+d(d+1)/2.
At time t this vector is updated using the above equations,
which is done with a given, fixed amount of operations.

V. M ULTIVARIABLE ARX M ODEL

Considering the inputu(t) to be anm-dimensional vector
and the outputy(t) to be andp-dimensional vector, we get
the generalization of the equation error model as

y(t) + A1y(t − 1) + · · · + Ana
(t − na)

= B1u(t − 1) + · · · + Bnb
(t − nb) + e(t) (15)

whereAi arep × p matrices andBi arep × m matrices.

We may introduce the polynomials

A(q) = I + A1q
−1 + · · · + Ana

q−na ,

B(q) = B1q
−1 + · · · + Bnb

q−nb (16)
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These are now matrix polynomials in the backward shift
operatorq−1.The system here is given by

y(t) = G(q, θ)u(t) + H(q, θ)e(t)

with

G(q, θ) = A−1(q)B(q) H(q, θ) = A−1(q) (17)

The inverseA−1(q) of the matrix polynomial is interpreted
and calculated in a straightforward way. Clearly,G(q, θ) will
be ap×m matrix whose entries are rational functions ofq−1.
The factorization in terms of two matrix polynomials is also
called a (left) matrix fraction description (MFD).

The parameter vector in this case is given by

θ = [A1 . . . Ana
B1 . . . Bnb

]

ϕ(t) = [−y(t − 1) · · · − y(t − na)u(t − 1) . . . u(t − nb)]

We get the output equation as

y(t) = θT .ϕ(t) + e(t) (18)

This is in obvious analogy with linear regression. This can
be seen asp different linear regressions, written on top of
each other, all with the same regression vector.

When additional structure information is imposed on the
parameterization, it is normally no longer possible to use
the above equation, since the different output components
will not employ identical regression vectors. Then ad-
dimensional column vectorθ and ap × d matrix ϕT (t) has
to be formed such that

y(t) = ϕT (t)θ + e(t) (19)

A. Least Square Estimation

If the outputy(t) is a p-vector and the norm

l(ε) =
1

2
εT Λ−1ε (20)

is used, the LS criterion takes the form

VN (θ, ZN ) =
1

N

N∑

t=1

1

2
[y(t) − ϕT (t).θ]T Λ−1[y(t) − ϕT (t).θ]

This gives the estimate

θ̂LS
N = [

1

N

N∑

t=1

ϕ(t)Λ−1ϕT (t)]−1 1

N

N∑

t=1

ϕ(t)Λ−1y(t)

In case we use the particular parameterization withθ as an
r × p matrix,

ŷ(t|θ) = θT .ϕ(t)

the LS criterion becomes

VN (θ, ZN ) =
1

N

N∑

t=1

‖y(t) − θ.ϕ(t)‖2

with the estimate

θ̂LS
N = [

1

N

N∑

t=1

ϕ(t)ϕT (t)]−1 1

N

N∑

t=1

ϕ(t)yT (t)

The above expression brings out the advantages of the
structure

ŷ(t|θ) = θT .ϕ(t)

e

u y+
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Fig. 4. ARMAX Model Structure

To determine ther × p estimateθ̂N , it is sufficient to invert
an r × r matrix.

The recursive algorithm however follows the same
procedure as in the single input single output case described
above.

VI. ARMAX M ODEL

The basic problem with the ARX model is the lack of
adequate freedom in describing the properties of the distur-
bance term. We could add flexibility to that by describing
the equation error as a moving average of white noise. This
gives the model:

y(t) + a1y(t − 1) + · · · + ana
(t − na)

= b1u(t − 1) + · · · + bnb
(t − nb) + e(t)

+ e(t) + c1e(t − 1) + · · · + cnc
e(t − nc) (21)

It can be rewritten as

A(q)y(t) = B(q)u(t) + C(q)e(t) (22)

where

A(q) = 1 + a1q
−1 + · · · + ana

q−na

B(q) = b1q
−1 + · · · + bnb

q−nb

C(q) = 1 + c1q
−1 + · · · + cnc

q−nc (23)

and

G(q, θ) =
B(q)

A(q)
H(q, θ) =

C(q)

A(q)
(24)

the parameter vector is given by

θ = [a1 . . . ana
b1 . . . bnb

c1 . . . cnc
]

In the view of the moving average (MA) partC(q)e(t) the
model is called ARMAX model. The ARMAX model has
become a standard tool in control and econometrics for both
system description and control design.

A version with an enforced integration in the system
description is the ARIMA(X) model which is useful to
describe the systems with slow disturbances. The signal
flow in ARMAX Model can be depicted as in Fig.4 The
predictor for the ARMAX model can be obtained as

ŷ(t|θ) =
B(q)

C(q)
u(t) +

[
1 −

A(q)

C(q)

]
y(t) (25)

or

C(q)ŷ(t|θ) = B(q)u(t) + [C(q) − A(q)]y(t) (26)
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Fig. 5. Box-Jenkins Model Structure

This means that the prediction is obtained by filteringu and
y through a filter with denominator dynamics determined by
C(q). The predictor can be rewritten in formal analogy as
follows.

ŷ(t|θ) = B(q)u(t) + [1 − A(q)]y(t)

+ [C(q) − 1][y(t) − ŷ(t|θ)] (27)

Introducing the prediction error

ε(t, θ) = y(t) − ŷ(t|θ)

and the vector

ϕ(t) = [−y(t − 1) · · · − y(t − na)u(t − 1) . . . u(t − nb)

ε(t − 1, θ) . . . ε(t − nc, θ)]

Then the predicted output can be written

ŷ(t|θ) = ϕT (t, θ).θ (28)

Due to the non linear effect ofθ in the vectorϕ(t, θ) it is
called pseudo-linear regression.

VII. B OX-JENKINS MODEL

A natural development of the output error model is to
further the properties of the output error. This can be done
by assuming that the true process is

y(t) =
B(q)

F (q)
u(t) +

C(q)

D(q)
e(t) (29)

Where

B(q) = b1q
−1 + · · · + bnb

q−nb

F (q) = 1 + f1q
−1 + · · · + fnf

q−nf

C(q) = 1 + c1q
−1 + · · · + cnc

q−nc

D(q) = 1 + d1q
−1 + · · · + dnd

q−nd (30)

In a practical sense, this would seem the most natural finite-
dimensional parameterization and the transfer functions
G(.) and H(.) are independently parameterized as rational
functions. This model, see Fig.5, gives us a family of output
error related models.

The parameter vector in this case is given by

θ = [b1 . . . bnb
f1 . . . fnf

c1 . . . cnc
d1 . . . dnd

]

VIII. S TATE-SPACE MODEL

In state-space models, the relationship between the input,
noise and output signals is written as a system of first order
differential or difference equations using an auxiliary state
vector x(t). The description of linear dynamical systems is
especially useful in that it insights into physical mechanisms
of the system can usually be more easily incorporated
into state-space models than into the polynomial models.
For most physical systems it is easier to construct models
with physical insight in continuous time than in discrete
time, simply because most laws of physics are expressed
in continuous time. This means that the modeling normally
leads to a representation

ẋ(t) = F (θ)x(t) + G(θ)u(t) (31)

Here for ann-dimensional system and anm-dimensional
input, the matricesF and G are matrices of dimensions
n × n and n × m, respectively. Moreoverθ is a vector of
parameters that correspond to the unknown values of physical
coefficients, material constants, and the like. The modeling is
usually carried out in terms of the state variablesx that have
physical significance and then the measured outputs will be
known combinations of the states.

Let η(t) be the measurements that would be obtained with
ideal, noise-free sensors:

η(t) = Hx(t) (32)

Usingp as the differential operator the above state represen-
tation can be written as

[pI − F (θ)]x(t) = G(θ)u(t) (33)

Which means that the transfer function fromu to η is

η(t) = Gc(p, θ)u(t)

Gc(p, θ) = H[pI − F (θ)]−1G(θ) (34)

Let the measurements be sampled at time instantst =
kT, k = 1, 2, . . . and the disturbance effects at those time
instants bevT (kT ). Hence the measured output is

y(kT ) = Hx(kT ) + vT (kT )

= Gc(p, θ)u(t) + vT (kT ) (35)

There are several ways of transportingGc(p, θ) to a repre-
sentation that is explicitly discrete time. Suppose that the
input is constant over the sampling intervalT

u(t) = uk = u(kT ), kT ≤ t ≤ (k + 1)T (36)

Then (31) can be easily solved fromt = kT to t = kT +T ,
yielding

x(kT + T ) = AT (θ)x(kT ) + BT (θ)u(kT ) (37)

where

AT (θ) = eF (θ)τ

BT (θ) =

∫ τ

τ=0

eF (θ)τG(θ)dτ (38)

Introducingq as the forward shift ofT time units, we can
write

[qI − AT (θ)]x(kT ) = BT (θ)u(kT )
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Or

η(kT ) = GT (q, θ)u(kT )

GT (q, θ) = H[qI − AT (θ)]−1BT (θ)

Hence the output from the sampled data can be got as

y(t) = GT (q, θ)u(t) + vT (t), t = T, 2T, 3T . . .

IX. MIMO S IMULATION STUDIES

Multivariable systems are often more challenging to
model. In particular, systems with several outputs could
be difficult. A basic reason for the difficulties is that the
coupling between several inputs and outputs leads to more
complex models. The structures involved are richer and more
parameters will be required to obtain a good fit.

However, models for prediction and control will be able
to produce better results if constructed for all outputs si-
multaneously. Therefore, in this section, the complete steam
generator system will be treated using MIMO ARX model
and state-space model.

A. MIMO ARX model

For simulation using the MIMO ARX Model all the
four inputs and outputs of the system were considered. For
simplicity in exposition and to avoid bias, the values of the
system matrices were specified as

na =




228 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8


 , nb =




6 9 6 9
6 9 6 9
9 9 6 9
9 6 6 9




nc =




3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3




It must be noted that the coefficientsna, nb and nc

were selected to yield the best fitness levels. The delay
coefficients were however not considered as optimum results
were available without delay in the system. The model was
constructed using samples over the range[5000 − 9000].
The validation of the model so obtained was carried out on
samples over the range[2500 − 6500].

The results of the simulation are plotted in Fig.6 along with
the percentage fitness of the various modeled outputs with
respect to the measured outputs for the MIMO ARX model.

B. State-Space model

The result of several simulation experiments indicated that
a state space model of order6 yields optimum results. Further
increase in the order yielded only a negligible increase in the
fitness of the models. With the model order equal to 9, lower
fitness levels were obtained, but it showed better results in
the residual analysis. Therefore, to strike a balance between
the complexity of the model, the fitness and residuals the

Fig. 6. Fitness Levels for MIMO ARX Model

order of the state space model was selected as6. The system
matrices so obtained are

A =


A1 A2

A3 A4





A1 =




0.9801 −0.0075 0.0112
0.0119 0.8827 −0.0618
−0.0093 0.0371 0.9315





A2 =




−0.0027 −0.0058 0.0000
0.0389 −0.1092 −0.0363
−0.1377 0.2576 −0.0077





A3 =




0.1283 −0.2289 −0.1460
0.1213 −0.1286 0.0468
−0.0705 0.0478 0.1061





A4 =




−0.3670 −0.1585 0.2250
0.4288 0.0213 0.2496
0.2198 −0.5664 0.9134





B =




0.0010 −0.0003 −0.0001 −0.0240
−0.0154 −0.0012 −0.0004 −0.3559
0.0145 −0.0100 0.0004 −0.1065
−0.0884 −0.0730 0.0042 −0.1648
−0.0982 0.0605 −0.0002 0.3970
−0.0087 0.0055 0.0003 0.0463




C =
[

C1 C2

]

C1 =




4.0849 −0.2798 0.4308
−0.0376 0.0352 0.0228
−0.0353 −0.0904 0.0802
0.1698 −0.1087 −0.1254




C1 =




0.0194 0.1252 0.0915
−0.0172 0.0147 −0.0826
0.0025 0.0185 0.0108
0.0108 −0.0120 −0.0061




D = 0

Just as in the earlier case, The model was constructed using samples
over the range[5000 − 9000]. The validation of the model so
obtained was carried out on samples over the range[2500− 6500].
The results of the simulation are plotted in Fig.7 along with the
percentage fitness of the various modeled outputs with respect to
the measured outputs for the state space model.

C. Comparison of MIMO Models

A comparison between the fitness percentages between the
MIMO ARX model and the state space Model is shown in Table
IX-C. Generally speaking, it is better to work with state space
models in the multivariable case, since the model structure com-
plexity is easier to deal with. It is essentially a matter of choosing
the model order. However we observe that the fitness levels for
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Fig. 7. Fitness Levels for State-Space Models

TABLE II
COMPARISON OFFITNESSPERCENTAGES

Outputs
Percentage Fitness

MIMO ARX
Model

State Space
Model

y1 82.27 81.79

y2 49.59 49.93

y3 84.54 66.1

y4 88.21 87.7

the MIMO ARX model are relatively greater than the state space
model.

The ARX model is the simplest model incorporating the stimulus
signal. The estimation of the ARX model is the most efficient
of the polynomial estimation methods because it is the result of
solving linear regression equations in analytic form. Moreover, the
solution is unique. In other words, the solution always satisfies the
global minimum of the loss function. The ARX model therefore is
preferable, especially when the model order is high.

D. Residuals analysis

The leftovers from the modeling process - the part of the data
that the model could not reproduce are the residuals

ε(t) = ε(t, θ̂N ) = y(t) − ŷ(t|θ̂N )

It is clear that these bear information about the quality of the
model. If we have a data setZN , be it estimation or validation or
a nominal modelm. We wish to know the quality of the model,
which in a sense is a statement about how it will be able to
reproduce new data sets.

A simple and pragmatic approach is to compute the basic

Fig. 8. Comparison of Fitness Levels of MIMO Models

statistics for the residuals from the model:

S1 = max|ε(t)|, S
2

2 =
1

N

N∑

t=1

ε
2(t)

This means that the modelm has never produced a residual than
S1 (or an average error ofS2) for all data we have seen. It’s likely
that such a bound will hold also for future data.

The statistics in the above equation have an implicit invariance
assumption: Theresiduals do not depend on something that is likely
to change. Of special importance is that they do not depend on
the particular input used inZN . If they did, the values ofS1 and
S2 would be limited, since the model should work for a range of
possible inputs. To check this it is reasonable to study the covariance
between residuals and past inputs:

R̂
N
εu =

1

N

N∑

t=1

ε(t)u(t − τ)

If these numbers are small we have some reason to believe that the
measuresS1 andS2 could have relevance also when the model is
applied to other inputs.
Another way to express the importance ofR̂N

εu being small is as
follows: If there are traces of past inputs in the residuals, then there
is a part ofy(t) that originates from the past input and that has not
been properly picked up by the modelm. Hence the model could
be improved.

Similarly if we can find correlation among the residuals them-
selves, that is, if the numbers

R̂
N
ε (τ) =

1

N

N∑

t=1

ε(t)ε(t − τ)

are not small forτ 6= 0, then part ofε(t) could have been predicted
from past data. This means thaty(t) could have been predicted,
which again is a sign of deficiency in the model.

Residual analysis was carried out on the MIMO ARX and MIMO
state space models and it is clearly seen that the ARX model is able
to reproduce new data sets better than the state space model.

Next we look at the simulation of multi-input single-output
(MISO) cases.

X. MISO SIMULATION RESULTS

In the process of identifying good models of a system it is often
useful to select subsets of the input and output channels. Partial
models of the systems behavior will then be constructed. It might
not for example, be clear if all the measured inputs have a significant
influence on the outputs.

That is most easily tested by removing an input channel from the
data, building a model for how the outputs depend on the remaining
input channels and checking if there is a significant deterioration
in the model output’s fit to the measured one.

Generally speaking, the fit gets better when more inputs are
included and worse when more outputs are included. To understand
the latter fact, it should be realized that a model that has to explain
the behavior of several outputs has a tougher job than one that
simply must account for a single output.

If there are difficulties to obtain good models for a multi-output
system, it might thus be wise to model one output at a time, to
find out which are the difficult ones to handle. Therefore we have
divided our system into partial MISO systems considering the effect
of all the inputs on each output individually.

A. MISO ARX model

For simulation of the system using the MISO ARX model four
separate cases were considered in which the effect of all the four
inputs was studied with respect to each outputY1, Y2, Y3 and Y4

taken one at a time.
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Fig. 9. Fitness of Various MISO Models forY1

Fig. 10. Fitness of Various MISO Models forY2

Considering the MISO ARX model for the outputY1 the selected
orders of the model were:

na = 20

nb =
[

25 25 25 25
]

nk =
[

0 0 0 0
]

The delay coefficients were not considered since satisfactory results
were obtained even without them. Once again, the model was
constructed using samples over the range[5000 − 9000]. The
validation of the model so obtained was carried out on samples
over the range[2500 − 6500].

B. MISO ARMAX model
For the MISO ARMAX model for the output the selected orders

of the model were:

na = 15 nb =
[

15 15 15 15
]

nc = 1 nk =
[

0 0 0 0
]

The orders of the MISO Box Jenkins model used for outputY1

were:

nb =
[

5 5 5 5
]

nf =
[

15 15 15 15
]

nc = 5 nd = 5

nk =
[

0 0 0 0
]

The MISO ARX, ARMAX, BJ models were generated for all the
four outputsY1, Y2, Y3 andY4. The fitness of various MISO models
for the different output is shown in Figs 9 through 12. The fitness
levels in each modeling case are now combined together in Fig.13
to facilitate the analysis of the results and is shown below:

It is quite evident from the simulation results, fitness plots and
comparison of prediction errors that the ARMAX model has shown
better results in the simulation of the multi-input single output
systems.

Fig. 11. Fitness of Various MISO Models forY3

Fig. 12. Fitness of Various MISO Models forY4

Selection of one output at a time has also helped in deciding
which output is difficult to model. It is very clear from the above
results that the second output, namely Oxygen level in flue gases is
difficult to model. A main reason for the same, as is visible in the
plot of the measured output is that the level of Oxygen in flue gases
remains at zero for indefinite intervals of time. It is also desirable
that the level of Oxygen in flue gases remains at zero.

XI. SISO SIMULATION STUDIES

Models used for simulations could be very well built for single
output, considering single input. These models cannot however be
used for control purposes and are intended solely for analysis of
the behavior of individual inputs and outputs of the system.

Considering all the inputs to the steam generation plant, it is
found that the most significant input is the fuel flow rate and the
most significant output is the drum pressure. Therefore simulation
of the SISO model was carried out taking into account the above
stated input and output.

Fig. 13. Comparison of Fitness Levels of MISO Models
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Fig. 14. Fitness of Various SISO Models forY1

The sample ranges were selected very carefully and the sets of
samples used for modeling and validation were small to ensure
better fitness levels.

In the different cases, the samples from 1000 - 1200 were used
for creating the ARX model and the samples from 500 - 700 were
used for validation.

A. SISO ARX model
The orders of the ARX model were selected as

na = 20 nb = 25 nk = 0

B. SISO ARMAX Model
The number of coefficients of the ARMAX model was specified

as

na = 15 nb = 15 nc = 1 nk = 0

C. SISO Box-Jenkins model
The selected order of the BJ model was

na = 15 nf = 20 nc = 5

nd = 5 nk = 0

The fitness percentages of the three models are compared and
the results are shown in Fig.14 The fitness level of the ARMAX
modeled data was found to be the best. One possible reason is
the influence of disturbance. Unlike the ARX model, the ARMAX
model structure includes disturbance dynamics. ARMAX models
are useful when you have dominating disturbances that enter early
in the process, such as at the input. The ARMAX model has more
flexibility in the handling of disturbance modeling than the ARX
model.

The Box-Jenkins (BJ) structure provides a complete model with
disturbance properties modeled separately from system dynamics.
The Box-Jenkins model is useful when you have disturbances that
enter late in the process. For example, measurement noise on the
output is a disturbance late in the process.

XII. C ONCLUSIONS

There are a variety of model structures available to assist in
modeling the steam generator system. The choice of model struc-
ture is based upon an understanding of the system identification
method and insight and understanding into the system undergoing
identification. The characteristics of both system and disturbance
dynamics play a role is the proper selection of the model. These
system identification methods can handle a wide range of system
dynamics without knowledge of the actual system physics, thereby
reducing the engineering effort required to develop models.

With respect to the complexity of the model, the fitness levels
and the residual analysis it is concluded that the ARX model suits
the given system best for the data history provided. However it
is noted that the ARX model may not be as good if disturbance
dynamics are considered.
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