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Abstract—The buckling behavior of a nonuniform nanowire 

under axial compression is studied using the nonlocal elasticity 
theory. We obtain an analytical expression for calculating the 
critical buckling load of the nanowire. The expression can be 
simplified for the special case of the nanowire with uniform 
cross section. Based on the simplified equation, the analyzed 
result agrees with the previous work. In addition, the influences 
of nanolocal and surface effects on the critical buckling load of 
the nonuniform nanowire are analyzed by using the 
Rayleigh-Ritz method. According to the analyzed result, it can 
be found that the critical buckling load decreases with an 
increase of nonlocal parameter. Furthermore, the surface 
effects are more significant for a slender nanowire with a higher 
diameter ratio. 
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I. INTRODUCTION 

For nanostructure materials such as nanowires, surface 
effects become important and can influence their physical 
and chemical properties because of the high 
surface-to-volume ratio. In the recent years, much theoretical 
and experimental work has been done in recent years to 
investigate the surface effects on nanowires.[1-5] For 
example, Jing et al. [1] measured the elastic properties of 
silver nanowires with outer diameters ranging from 20 to 
140 nm using contact atomic force microscopy and found 
that the size dependence of the apparent Young modulus of 
the nanowires was attributed to the surface effect. He and 
Lilley [3] studied the surface effects on the elastic behavior of 
static bending nanowires using the Euler beam theory. 

However, significant increase in theoretical research is 
due to the fact that the experimental study of surface effects 
on the nanoscale is still difficult. Recently, Zheng et al. [6] 
utilized the core–shell model to study the surface effect on 
the elastic property of nanowires and found that the influence 
of surface elasticity on the elastic moduli can be well 
characterized by two dimensionless material and geometric 
parameters. Song et al. [7] developed a high-order continuum 
model to investigate high-frequency wave propagation in 
nanowires with surface effects  
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In addition, some researchers studied the buckling 

properties of nanowires. For example, Wang and Feng [8] 
derived an analytical expression for the axial buckling of 
nanowires with consideration of surface effects and analyzed 
the buckling behavior of nanowires subjected to surface 
elasticity and residual surface tension. Xiao et al. [9] 
established continuum mechanics theory to analyze the 
in-surface buckling of one-dimensional nanomaterials on 
compliant substrates. They found that the energy for 
in-surface buckling is lower than that for normal buckling. 

. 
 

II. ANALYSIS 

A cantilever nanowire with nonuniform cross-section is 
subjected to a uniaxial compression P as depicted in Fig. 1. 
The maximum diameter at the fixed end is D0 and the 
minimum diameter at the free end is D1. The nanowire 
diameter is linearly varied with its length L and has the 
Young’s modulus E and volume density ρ. In this work, the 
surface and small scale effects on the buckling of the 
nanowire are studied by using the nonlocal elastic theory. 
The analysis for the surface effects is considered as a uniform 
surface layer with infinitesimal thickness.[18] 

The buckling equation based on the Euler beam theory 
for a nanowire is expressed by  

( )
dY

V P H
dX
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dM
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                           (2) 

where Y is transverse displacement depends on the spatial 
coordinate along the longitudinal axis X; M is the resultant 
bending moment; V is the is the resultant shear force, H is the 
constant parameter which is determined by the residual 
surface tension, and P is the axial compression force. 

The nonlocal constitutive relations for one-dimensional 
case can be written as [13]  
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where * *E I  is the effective flexural rigidity which includes 
the surface bending elasticity and bending rigidity [8], and 

0e a is the nonlocal constant which is used to modify the 

classical elasticity theory and is limited to apply to a device 
on the nanometer scale. 

Using Eqs.(1)-(3), the nonlocal bending moment M can 
be expressed as: 
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Therefore, the governing equation of buckling for the 
nonuniform nanowire with consideration of both surface and 
nonlocal effects can be expressed as 
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The diameter D(X) of the nanowire varies linearly along the 

longitudinal axis X. Here, the parameters * *( )E I X  and 

H(X) are defined as [8]  
* * 4 3( ) ( ) ( )
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where SE  and   are the surface elasticity modulus and 
residual surface tension of the nanowire per length, 
respectively. 
The corresponding boundary conditions are 
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The nanowire is fixed at the end of X = 0, then boundary 
conditions given by Eqs. (8) and (9) correspond to conditions 
of zero displacement and zero slope at X = 0. Moreover, the 
Eqs. (10) and (11) correspond to zero moment and shear 
force at X = L, respectively.  
The dimensionless variables are defined as follows: 
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where 0D  is the maximum diameter of the nonuniform 

nanowire at the fixed end, therefore, the flexural rigidity 

0EI  of the nanowire at the fixed end should be 
4
0 / 64ED . 

Meanwhile, ( )x ,  , ( )x , ( )h x and p denote the 

diameter ratio, dimensionless nonlocal parameter, 
dimensionless flexural rigidity, dimensionless residual 
surface tension, and dimensionless buckling load, 
respectively. 
Using the dimensionless variables given by (12), the 
governing equations and associated boundary conditions can 
be simplified to the following dimensionless forms: 
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Since the parameters ( )x , ( )x and ( )h x  are dependent 

on the position x along the nanowire, the method of 
Rayleigh-Ritz is used to determine the critical buckling load. 
In order to solve Eqs.(13)-(17) by the Rayleigh–Ritz method, 
we set  
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where iu  are constants, and ( )i x  is the admissible 

function which required to satisfy the geometric boundary 
conditions, but need not satisfy the natural boundary 
conditions, In this present work, 

1( ) ,      1, 2,3,...,10i
i x x i    was chosen. Then, 

substituting Eqs. (18) into Eqs.(13)-(17) and applying the 
Rayleigh quotient, the following eigenvalue problem can be 
obtained:  
Ku pMu                 (19) 

where u is the eigenvector of expansion coefficients, and 
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Furthermore, ( )x and ( )h x given by Eq. (12) can be 

expressed in terms of ( )x as 
4 3( ) ( ) ( )x x x                   (22) 
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    Solving Eq.(19) and using the dimensionless variables 
given by Eq. (12), the critical buckling load can be expressed 
as 

0
2

cr

pEI
P

L
                                                                                (25) 

In case of setting ( ) 1x  and 0  in the above 

analysis, it implies that a uniform nanowire with surface 
effects but without nonlocal effect is assumed. For the case, 
the critical buckling load of a uniform nanowire can be 
obtained based on the analysis, and the result can also be 
yielded from the previous study [8]. In addition, the critical 
buckling load of a uniform nanowire without both surface 
and nonlocal effects can be written as [19] 

2
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24
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L


                                                                       (26) 

 
III. RESULTS AND DISCUSSION 

In order to examine the expression derived as above, we 
compare this work with the previous study, the following 
surface properties are used in the analysis:  =0.89 N　m 

and sE =1.22 N　m. [8] It implies the nanowire is a uniform 

cross-section when the value of diameter ratio 1 0/D D  is 

assumed to be unity. Fig. 2 shows the dimensionless critical 

buckling load 0/cr crP P  for the uniform nanowire with 

surface effects but without nonlocal effect for the different 

aspect ratios 0/L D . When the aspect ratio values of 20 and 

30 were considered, it can be seen that the result excellently 
agrees with the previous exact result [8]. 
    In addition, the influences of surface effects, nonlocal 
parameter and diameter ratio on the buckling of the 
nonuniform nanowire are analyzed. Fig. 3 depicts the 
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dimensionless critical buckling load of a nonuniform 
nanowire for different nonlocal parameters and diameter 
ratios. For different diameter ratios, it can be seen that the 
influence of surface effects on the critical buckling load is 
significant. When the diameter ratio value is large, the 
influence becomes more and more prominent. For a slender 

nanowire with a larger value of 0L / D , the surface effects 

are more significant. In addition, no matter whether the 
surface effects is considered or not, increasing the nonlocal 

parameter decreases the value of 0/cr crP P . This is because 

the internal interaction force increases as the nonlocal 
parameter increases.  
 

IV. CONCLUSIONS 
In this article, we studied the axial buckling of a 

nonuniform nanowire. The Rayleigh-Ritz method was used 
to analyze the influences of nonlocal and surface effects on 
the buckling behavior of the nanowire. According to the 
analysis, the following results are obtained: 
 

1. The dimensionless critical buckling load increased 
with an increase of aspect ratio value.  

2. When the value of diameter ratio increased, the 
surface effects on the critical buckling load of the 
nonuniform nanowire becomes more and more 
prominent.  

3. When the nonlocal effect was taken into account, 
the critical buckling load increased with 
decreasing nonlocal parameter.  
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Fig. 1.  A cantilever nanowire with a varying diameter and a uniform 
surface layer. 
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Fig. 2. The comparison of dimensionless critical buckling load of a 
uniform nanowire with surface effects but without nonlocal effect. 
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Fig. 3. The dimensionless critical buckling load of a nonuniform 
nanowire for different nonlocal parameters and diameter ratios 
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