
 

Abstract—This article is particularly interested in the failure of 
a dam and the effects that may induce by the generated failure 
wave at downstream of the dam. Practical consequences of 
flooding are hardly a failure if the complete hydraulic 
calculations of the failure flood are not met. In this optic, 
different phases of the calculations, involved in the study of 
rupture of a dam are mentioned. We present and analyze as 
much as the simple or complex methods can be available to 
achieve a possible perfect picture of the spread of flood failure. 
An analysis is presented using available simple or complex 
methods to achieve, as perfect as possible, a picture of the 
spread of failure flood. 

 
 
Index Terms— Boukerdoun dam; unsteady flow; dam failure 
wave; Saint Venant equation; Discretization; boundary 
conditions. 

 

I. INTRODUCTION 
    Floods which are exceptional and natural phenomena are 
characterized by a sudden rise of water levels and by 
overflowing rivers. The origin of this rise in water is due to 
either a rainy episode on the entire basin, or a sudden failure 
of a dam. This study concerns precisely this type of failure 
that may lead to waves which behavior as a first step is 
identical to that of dynamic waves by reducing predominant 
effect of inertia, then a wave of continuity, as the flooding 
subsides when moving further downstream. The 
determination of the propagation of breaking waves should 
help in providing real-time trends from data recorded at 
upstream in order to take appropriate protective measures 
against this phenomenon. The most accurate approach of 
this phenomenon  which   requires   the     least amount of 
information relating to flooding is based on the numerical 
modeling of the Saint Venant equations. These equations, 
which describe the unsteady flow in open channels with free 
surface, consist of an average description of the depth of 
flow. As a result of their mathematical complexity, the 
analytical integration of these equations in the case of an 
unsteady flow is virtually impossible except in some 
idealized situations. The presence of projections and 
hydraulic barriers in transitional flow makes the          
problem even more difficult. The numerical resolution of 
the  system  of   partial  differential  equations  (PDE)  from 
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Saint-Venant for natural channels can be approached using 
either the method of characteristics or other methods such   
as finite differences, finite elements or the finite volume 
method which is generally preferred for its ability to 
reproduce digital discontinuous solutions. In this study the 
finite differences explicit scheme at a fixed time is used, this 
is a direct method for the solution of the Saint-Venant 
equations. It is clear that the description of a load of shallow 
flow does not really fit where the curvature of current lines 
is significant, which can happen in waves induced by an 
instantaneous dam failure. For example, the velocity field in 
the region near the dam is complex, with significant vertical 
components. But such characteristics are fortunately limited 
in time and space and their influence on the behavior of 
distant fields of the flow is relatively low. Properties such as 
conservation, hyperbolicity, assumption of projections are 
accepted as obvious properties. 
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II. DAM FAILURE 

 
    A dam failure can be either a total or partial destruction 
of hydraulic works, their support or their foundations, 
making them completely ineffective. Hydraulic structures 
may suffer injury failure more or less seriously. The natural 
environment is, at one hand, difficult to determine, floods 
and earthquakes which are random events make difficult to 
assess their probable extreme intensities on works lifetime. 
The knowledge and the materials used in the building of 
works are imperfect, despite the rapid technological 
advances in the design and implementation of such works in 
recent decades. The various number of dam failures is 
(insufficient capacity of the spillway, submersion of the 
work ...) amounts in thousands of cases since the first works 
[1] [2]. The most recent data indicate that the number of 
failures of large dams is on average of about 1.5 per year.  
 

III. FLOW GENERATED BY THE RUPTURE OF A 
DAM 

 
A. The flood of failure 

 The most common phenomena associated with failure of 
concrete structures including as that of Boukerdoun are 
slipping and overturning for gravity dams and the loss of 
support or foundation for the arch dam. The failure of a 
concrete dam causes a displacement as a whole of the 
structure which inertia limits the development of velocity. 
The resulting leakage rate is inherent to a process of the 
opening of the continuous work and partly restricted by the 
presence of residues of this structure. Whereas, the failure 
of thin dam looks more like a sudden break releasing 
instantly a wall of water up to the dam. The flow passing 
through the dam during the failure may be determined at 
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any time if the shape of the hole is known. Therefore, 
calculations by formulas of a general hydraulic hydrograph 
resulting from the flood of rupture depends on the available 
knowledge on such phenomena as earthquakes, floods or 
other multiple forms of development and characteristics of 
materials used ( strength, consistency, implementation, local 
damage). Using data derived from the failures observed                 
in the past, the magnitude of the flows resulting from these 
failures can be roughly estimated[3]. 

 
B. Predetermination of maximum probable flow through the 
structure 
    To determine the maximum possible flow of failure of 
Boukerdoun dam, the relationship Ritter [4] is used, 
assuming an instantaneous failure. This relationship gives a 
first estimation of the maximum flow in the gap:  

5.1
0

2
max 9.0 LHQ =                                        (1)                     

where: the constant-width of the dam making way for the 
flood, (m) - initial depth of water upstream  
 
C. Forecast of the failure wave propagation at downstream 
of the dam [5][6] 
    Among the techniques for predicting the propagation of 
failure waves in the flow, in-situ tests or on reduced model, 
the theoretical and numerical models, given the rivers, 
objectives and informations available, can be mentioned  
Mathematical models, also constantly developed and 
improved, are used today.The current situation highlights 
the importance of numerical models in studies of failure 
flood propagation of their ability to take into account the 
mode of failure of structure, the geometry of the channel, 
effluents, and the boundary conditions has made them 
compulsory in all studies of  dam’s failure. However, it 
should be clear that the choice of calculation methods is an 
important step to get the desired results and the choice must 
take into account the specific characteristics of each work. 
The values of parameters used to define the gap have a large 
effect on fracture rates and flooding generated near the dam. 
As the distance from the hole and the wave progresses 
downstream these values decrease and their influence 
becomes negligible [7].  
      

IV. MODELS FOR CALCULATING THE 
PROPAGATION OF THE FAILURE WAVE 

 
Nowadays the use of dimensional models is the most 
common because it meets the needs of the vast majority of 
studies undertaken. Whereas the two-dimensional models 
can complete, elaborate or qualify certain aspects treated in 
a comprehensive manner by the assumptions of the 
unidimensional approach. In other situations, the 
combination of both models is the ideal tool for analysis, 
provided of course the knowing of advantages and 
limitations of each. 
 
A. Setting equation for the phenomenon of failure and flood 
wave propagation 
     Flood dam failures are free surface flows, non 
permanent, and non-uniform with horizontal main 
components [8]. The dynamic equations describe their 
change and their transformation through the various sections 
of the canal. The formulation of Saint-Venant is written in 

the form of a system of two equations, one representing the 
conservation of fluid mass, the other, the conservation of its 
momentum. These conservations imply a vertical 
distribution of hydrostatic pressure, zero vertical velocity 
and low vertical accelerations. Their validity is limited to 
relatively slow variations in space and time. Calculated local 
velocities are horizontal and represent an estimate on the 
average depth. By neglecting the transverse velocity relative 
to the longitudinal velocity and the differences in transversal 
water level, these equations integrated over the transversal 
dimension will be reduced to a unidimensional form. The 
one-dimensional shape calculation means in practice a 
further simplification of the data calculation. The spread of 
the flow is along the channel.  
 
B. Equation of mass conservation with free surface 
[6],[7]and[8] 
For an incompressible liquid and a supposed one-
dimensional flow, the equation of conservation of mass is:  

( )xq
t
S

x
Q

=
∂
∂

+
∂
∂

                    (2)  

The function represents the lateral flow per unit length of 
the curvilinear abscissa of the channel. Considering the 
particular derivative of the volume occupied within a 
control surface, the equations are written as follows:  
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1
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On the free surface Vn 
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x
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t
yBtxQtxQ

=∂y / ∂t since y(x, t) is the draught. 
The flow is still one-dimensional, the element of the surface 
d s of the free surface is written d s = B d x since B(x, t) 
represents the mirrored image of the width of the wet cross 
section at abscissa x and at time t.  The balance of flow is:  

  (4)  

where:  

 ( ) ( ) ∫ ∂
∂

=− 2
1

,, 12
x
x dx

x
QtxQtxQ          (5)  

The environment is assumed continuous, the theorem of the 
zero integral leads to the equation: 

 ( )xq
t
yB

x
Q

=
∂
∂

+
∂
∂

                            (6)  

Note that B d y represents the increase in the wet section at 
the curvilinear abscissa x. The previous equation becomes:  

 ( )xq
t
S

x
Q

=
∂
∂

+
∂
∂

                                                              (7) 

 
C. Different forms of the equation of conservation of mass 
[7],[9]: 
 
C.1. Taking into account the velocity 
The equation of conservation of mass, taking into account 
the relation (2), is written as: 

 ( )xq
t
S

x
US

x
SU =

∂
∂

+
∂
∂

+
∂
∂

                                           (8) 

C.2. Taking into account   y and B 
Given the differential and dividing both sides of the 
equation by B, necessarily different from zero, since there is 
a flow in the channel, the following expression is obtained 
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                                            (9) 

C.3. Taking into account the speed of the wave 
The ratio is by definition the average draught. By replacing, 
the equation of conservation of mass for a prismatic channel 
is obtained:  
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                    (10) 

  The general equation of conservation of mass is written 
below:  

 ( )xq
t
S

x
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x
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∂
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+
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+
∂
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            (11) 

D. Saint Venant equation for free surface 
    The equation of Saint-Venant for prismatic channel and 
without any side is given by:  

 0
2
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D.1. Introduction of flow instead of speed in Saint Venant 
equation 
Since the flow is unidimensional and considering the 
equation SUQ = , the general equation of conservation of 
mass, taking into account any side input is written:  

 q
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+
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                                 (13) 

The term
t

U
g ∂
∂1

, reflecting the unsteadiness of the flow, 

when  taking into account the equation of conservation of 
mass is written:  
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, if 1=α  is to be written: 
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The Saint Venant equation takes the following form, by 
combining some terms: 
 ∂y/∂x(1-Q2L/gS2)-Jf+J+1/gS ∂Q/∂t- Qq/gS2 +2Q/gS2∂Q/∂x-
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01
=

∂
∂

t
Q

gS

+qV/gS                     
(16)                                                                    Since the 

flow is permanent , the draught and The speed 

are function of the abscissa x  of the flow. The channel is 
prismatic, and the terms: 
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The flow is gradually growing in the channel, thus q
dx
dQ

=  

the previous equation becomes:  
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V. NUMERICAL METHOD OF RESOLUTION OF THE 

SAINT VENANT SYSTEM 
 
A. Discretization of the domain 
    Solving the problem of dam failure is possible through 
the use of the following one-dimensional Saint-Venant 
equations: 
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Where y is the height of water, Ū, represents the average 
velocity of flow. Each of the two quantities depends on time 
t and space x. By replacing the governing partial differential 
equations by finite differences the resulting algebraic 
equations at each point of the network or at each node can 
be solved, by assuming the initial values at time to the speed 
and the flow depth at all points of this network. At  to

x
t

∆
∆

 + Δt  
the following values corresponding to this interval of time 
are determined Several explicit schemes have been used for 
the unsteady flow with a free surface of which the diffusive 
Lax scheme is taken for the fact that it is a numerically 
stable condition according to the value of the dimensionless 

parameter Cr = u ≤1,0. In this scheme, the governing 

partial differential equations are replaced by finite 
difference quotients as follows: 
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Where:  
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B. Discretization in space 
equations are discretized with a centered scheme:  
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for a variable, a; ai = a (xi) where xi
This equation is applicable only to nodes that are not at the 
edges, but as in any problem the limitations on the edges are 
known so the Riemann problem can be solved. In addition:  

 = i. Δx 
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UU
J
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i =                                                          (26)         

 Where: n  - Manning coefficient 
C. Discretization in time  
Using an explicit scheme so that yU , and eJ at time j, that 
is known and now, these values at time  j+1 can be 
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By putting: 
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equation (28) by 1−Γ , the following equation is obtained:  
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This is a quadratic equation in 1+j
iU  and it follows that:  
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D. Conditions at upstream limit 

At the upstream limit it is accepted that
x
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so the equation (27), of which the depth is modified   and 
 
 contains only terms with indices i and i +1,becomes: 
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     The speed can be then obtained with 
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E. Conditions at downstream limit 
For the downstream end of the channel, the situation is the 
opposite of that of the upstream. 

  Assuming that: 
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which the depth is modified and containing only terms with 
the indexes i and 1−i , is written as follows: 
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 F.   Stability of the scheme 
    It is usually required in explicit finite difference schemes 
that the ratio of Δx and Δt satisfies a condition of stability. 
A scheme is stable if an error made in the solution does not 
increase when the calculations are progressing in time. In 
the case of unstable scheme the error is amplified quickly 
and masks the true solution in some time intervals. In order 

that Lax scheme should be stable, the time and space steps 
must meet the following condition, called condition of 
stability of flow:  

 
cU

xt
+

∆
≤∆                                                                  (34) 

VI. NUMERICAL RESULTS 
 
   During a dam failure, a wave propagates downstream 
along the channel leading to significant flooding. The 
calculation program (dam failure) that is developed in 
Delphi aims to give an order of magnitude of the respective 
levels achieved in such a channel. The information provided 
in this program (dam failure) are the height of water in the 
dam and the width of the latter, the length, slope and 
roughness of the channel which allow to estimate the flow, 
the speed, the height and also the speed of the wave at 
different points in the channel that the user can choose to 
get results. This program is suitable for instant failures. The 
user must provide the maximum flow at the dam. In this 
case the Ritter formula (1) is used for the estimation of the 
maximum failure flow for rectangular shape of the gap 
failure.  
In a given channel, the program performs the following 
calculations:  
- Calculation of inflow at the dam with a hydrograph of 
failure flow 
- Calculation of reached water level at the foot of the dam 
using the equation (32), then the speed through the 
hypothesis of the uniform state and finally the speed.  
- Calculation of the water level reached at the downstream 
end of the channel through the equation (33), then speed 
through the uniform state hypothesis then the flow and the 
speed.  
- Calculation of the water level and the speed reached in the 
intermediate nodes of the channel by the equation (27) and 
(31), then the flow and the speed of the waves caused by the 
failure.  
- The results are highly dependent on assumptions 
considered in the choice of different parameters (Manning 
coefficient, slope, height of initial water in the dam, width 
of the dam ....). In this context, a low reading can only come 
from repeated use of the program in a same problem.  
It should also be noted that some cases are, a priori, 
excluded, such as: 
The presence of singularities (topography or work 
irregularity) very marked.  
 
A. Dam Characteristics 
     Maximum height of the dam: 55.0 m, crest length 609.7 
m, crest width 10 m. The maximum level of natural  terrain 
367.62 m. The length of the channel is equal to 14737.29 m, 
the channel slope equals to 0.001, and Manning’s 
coefficient equals to 0.05.  
    The maximum flow at the time of failure, which     
depends   on   the geometry of   the dam,  and  obtained    by 
the Ritter formula, is: Qmax = 0.81*609.7*553/2 m3

In view of the results obtained by simulation by means of 
the calculation program developed in Delphi, the 
Boukerdoun dam may constitute, upon failure, a real danger 
for all the infrastructure of any kind whatsoever and for 

/s. 
 
B. Interpretation of results  
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people who located downstream of the dam. The most 
precise approach to the problem, requiring less data on the 
flood, is that of the numerical modeling of St Venant 
equations. In these equations, the unknown is the speed and 
the height of water, and to perform the mathematical 
modeling, the studied channel is cut in several sections, and 
with the numerical scheme used, in this case, the finite 
difference method, the partial derivatives are replaced by an 
algebraic system that has allowed to calculate approximate 
values of velocities and water heights. 

In this study, relative to an instantaneous failure, and as 
illustrated by the figures above namely those of heights, 
speeds and flow rates (Figures 1 to 10) and also the speed of 
the waves and taking into account the variation of the slope, 
the roughness of the walls and filling heights inducing 
dynamic variables at time t = 1390.1 s and at the foot of the 
dam, the downstream area is suddenly submerged. The 
water depth and the flow reach respective values of 39.2136 
and 190808.2 m m3 / s, the speed is about 7980 m / s, the 
speed of the wave reaches a value of 19.6134 m / s, 

reflecting the very violent feature (Fr = 
c

U
≈ 2.0) of the 

flow which impacts on the shape of the channel are very 
irreversibly devastating. At a distance x = 7368.645 m and 
time always equals to 1590.1 s, a very sharp increase in 
flows and speeds at the expense of a reduced height of 
approximately 13.63031 m is observed. This decrease is 
explained by the effect of wall friction which caused a loss 
of relatively large load. Finally at t = 3.47 hours and at a 
distance of x = 14737.29.0 m all hydraulic parameters of 
flow cancel out by virtue of the power loss of hydraulic 
flow. Water levels calculated at all points downstream of the 
dam depend particularly on the resistance factor used, 
namely the Manning coefficient n to characterize the active 
bed of the channel (Fig. 6, 7). More the resistance to flow 
and the loss of linear and local loads are important more the 
speed of propagation of the flood decreases resulting 
therefore in a higher flood and greater erosion.  
It should be noted that the results obtained by simulation are 
dependent on the boundary condition used at the edge  

maxQ  of the failure area given by the Ritter formula.  
The simulations carried out on the flow generated by a 
hypothetical failure of the Boukerdoune dam, and given 
their dynamic energy suggest that the spread of the resulting 
flooding is always accompanied by a quarrying and a major 
transfer of major sediments in some parts of the downstream 
channel causing significant physical changes in the  
geometry of the channel. In areas with low or zero slopes 
therefore suitable to the deposit of over thrust material 
because the hydraulic power decreases, the maximum water 
levels observed and calculated are due especially to the 
raising of the bottom of the channel.  The stability and 
safety of hydraulic structures and the behavior of the dams 
are heavily dependent on the calculation of the failure wave 
propagation downstream of these structures. For the initially 
retained scheme, ie an instantaneous failure, it allows to 
draw a hydraulic picture of the failure floods that the work 
might generate. This scheme has provided a large amount of 
informations, concerning the unsteady flow, calculated at 
several points in the downstream channel of the 
Boukerdoune dam. The duration of the simulations can be 
hours if it is desired to reach the emptying of the reservoir to 

find when the water has returned to normality, at least in 
appearance. Failure waves as indicated by the (fig. 1, 4) 
diminish gradually moving up to the downstream of the 
dam, ie the distance x = 2653 m, up to time t = 2000s 
reaching the maximum value of 35m to extinguish off 
completely at the end of the term at x = 12379 m. 

 
Fig.1. Variation of the wave velocity of failure at the foot of the dam. 

 
Fig. 2. Variation of the height at x =7368.645 m of the dam 

 
.Fig. 3. Variation of the velocity at x = 7368.645 m of the dam. 

 
Fig. 4. Variation of the wave velocity of failure at x = 7368.645 m 

 
Fig. 5. Variation of the velocity at t =100s. 
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Fig.6. Influence of Manning coefficient on the velocity(x=7368.645 m).  

 
Fig.7.  Influence of Manning coefficient on the velocity(x = 7368.645 m). 

     
Fig.8.  Influence of slope  the water level   (x = 7368.645 m).  

   
Fig.9.  Influence of slope on the  velocity (x = 7368.645 m). 

        
Fig.10.  Influence of slope on the velocity (x = 7368.645m).  

 
VII. CONCLUSION 

 
    Failure studies are fundamental elements of the safety 
analysis of a dam. They provide a fairly accurate picture of 
runoff that must be propagated to downstream areas 
receiving flood failure waves and the time should make this 
wave to reach the areas where flooding could result in very 
damaging consequences. They aim to enable the conception 
of protecting works such embankment, recalibration, and 
respecting up in such a way that floods generated by the 
rupture do not affect the geometry of the channel through 
their erosive effects and the organization of emergency to 
protect people and property against flooding. Often, failure 
studies give the possibility to collect data covering the 
reservoir and it’s downstream. The data relating to the 
topography and bathymetry are often used by numerical 
models. As a reliable source that transmits the various codes 
of calculation of reliable data and consistent with the degree 
of precision required by the calculations, these data are used 
to perform the calculations of the Boukerdoune dam. In 
themselves, these calculations are now simple and 
inexpensive to run. The results of failure are very useful for 
the safety of structures. They should therefore be exploited 
in an optimal way to secure a maximum of these works 
against floods which can cause their destruction. The 
security of coastal populations depends on the quality of 
information they receive. It is necessary to interpret the 
numerical results or graphs such as those presented in this 
study and to convey avoiding any ambiguity, but taking into 
account the limitations inherent in scientific studies.  
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