
 

 
Abstract— In this paper a human lower limb cinematic 

analysis is realized, by using a computerized method with a 
flexible character, easy to implement onto computer. Through 
this method we obtain the generalized coordinates motion laws 
of the knee cinematic joint from the equivalent model of the 
human lower limb. These laws are useful for a new human 
knee prosthesis design.   
 

Index Terms—cinematic, knee prosthesis, human lower 
limb. 

I. INTRODUCTION 

ANY researchers have been developed different 
methods for study the human lower limb cinematic 
[1], [2], [3], [4].  

The cinematic methods aim is to study different motion 
types of the human lower limb in order to improve the 
athletes’ performances or to design new human lower limb 
prosthesis.   

The cinematic analysis of a mechanical model consists in 
solving two important problems:  cinematic direct problem 
and cinematic inverse problem.  

In the cinematic direct problem’s frame, the 
displacements from cinematic joint are known, and it will be 
determined the positions – orientation, speeds and 
accelerations of the mechanism elements or some 
characteristic points onto the analyzed mechanism.  

In the cinematic inverse problem, the cinematic 
parameters for some characteristic points motion are known, 
and it will be determined the cinematic parameters of the 
cinematic joints relative motions.   

With these, in the cinematic analysis context, we identify 
many problems such as: 

- Positional problem; 
- Speed problem; 
- Accelerations problem. 
Each of these problems presents a direct or inverse 

aspect.  
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II. HUMAN LOWER LIMB CINEMATIC ANALYSIS 

The method used in this paper has a flexible character and 
assures an interface for dynamic analysis especially for 
finite element modeling of spatial and planar mobile 
mechanical systems [5]. 

For the cinematic analysis the cinematic model presented 
in figure 1, will be considered. The cinematic model 
analysis will be performed only for walking activity, for a 
single gait.   The cinematic parameters variation laws were 
obtained by processing with the MAPLE software aid the 
mathematical models which are defining the human lower 
limb experimentally cinematic analysis. 

From a structural viewpoint, the cinematic chain it 
consists in 8 rotation joints. 

 

The ir   position vectors in the 1iT  reference coordinate 

system are: 
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Fig. 1. The cinematic model equivalent with the human lower limb
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The connectivity order will be:Cx - 1 - 2 - 3 - 4 - 5 - 6 - 7 

- 8 

A. Position calculus 

The position vectors are: 
 

     cx
Tzyx Wrrrrr  11111 ,,  (2) 

     122222 ,, Wrrrrr Tzyx   (3) 

     233333 ,, Wrrrrr Tzyx   (4) 

     344444 ,, Wrrrrr Tzyx   (5) 

     455555 ,, Wrrrrr Tzyx    (6) 

     566666 ,, Wrrrrr Tzyx    (7) 

     877777 ,, Wrrrrr Tzyx    (8) 

     788888 ,, Wrrrrr Tzyx   (9) 

     888888 ,, WSSSSS Tzyx    (10) 
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The 
Cx

Mr   vector, has the following expression:  

 

887654321 Srrrrrrrrr Cx
M   (12) 

 
Changing the versors base at crossing from a reference 

coordinate system to another (introducing the coordinate 
transformation matrices): 

 

     CxCx WAW  11   (13) 

         CxCx WAWAW  21122  (14) 

         CxCx WAWAW  32233  (15) 

         CxCx WAWAW  43344  (16) 

         CxCx WAWAW  54455  (17) 

         CxCx WAWAW  65566  (18) 

         CxCx WAWAW  76677  (19) 

         CxCx WAWAW  87788  (20) 

 
By analyzing the (13) ... (20) relations we observe that: 
  

     1122 CxCx AAA   (21) 
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Based on (21)... (27) relations we identify the coordinates 

transformation matrices for each cinematic joints, with  
901, ii , and .8,1i  

Point: A, B, C, D, E, F, G, H and M positions in rapport 

with cxT  coordinate system, bounded to the coxae bone, 

will be identified through relations: 
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B. Speed calculus 

We follow to determine the M point speed in rapport with 

cxT  reference system.  For this we differentiate successively 

the (28) ... (36) relations, but for achieve this calculus is 
necessary to build the anti symmetric matrices for each 
joint, like this form: 
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For this: 
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For each: A, B, C, D, E, F, G, H and M point we obtain: 
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C.  Acceleration calculus 

These will be obtained by differentiating successively the 
(46) ... (54). For A, and B, we will obtain the accelerations 
from (55) and (56) relations. Similarly, we obtain the 
accelerations of the following points: C, D, E, F, G, H. The 
acceleration for M point is given by (57) relation. 
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III. NUMERICAL PROCESSING   

For the cinematic analysis we consider known the 
geometrical elements. The calculus algorithm was 
elaborated with the MAPLE software’s aid.  The 
geometrical elements dimensions are: Lcx=15,744 mm; 
L1=12,5 mm; L2=12,5mm;       L3=385 mm; L4=5 mm; 
L5=325 mm; L6=10,7 mm; L7=61,85 mm; L8=50,42 mm. 

The generalized coordinate system variations from the 8 
joints equivalent to the human lower limb are presented in 
the cinematic diagrams (figures: 2, 3, 4, and 5). 

In figure 6, the human locomotion system’s 3D virtual 
model is presented. This was designed by and simulated 
with the MSC NASTRAN software’s aid. For virtual 
simulation we follow the procedures from [6] and we 
implement the motion laws resulted from the analysis 
developed previously (figures 2 3, 4 and 5), on a human 
subject without locomotion disabilities.   

We mention that the motion laws were processed for each 
joint individually, in such a manner that the virtual model 
can perform a single gait in the walking activity. 
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IV. CINEMATIC RESULTS APPLICATION ONTO KNEE 

PROSTHESIS MECHANICAL SYSTEMS  

Based on cinematic motion laws imposed for a knee 
prosthesis mechanism, we design a 3D virtual model of cam 
mechanism prosthesis, with the CATIA V5 R16 aid. This 
mechanism is similar with a one designed for human ankle 
prosthesis [7].  

We integrated the FESTO YSR-20-25-C shock absorber 
in the prosthesis resistance structure, which enables some 
axial adjustments with a view to establishing the prosthesis 
alignment. Figure 7 shows the new knee prosthesis design. 
This is where we identify 1-femur component, 2-cilindrical 
joint, 3- cam follower, 4- cam, 5- tibia component, 6-
FESTO shock absorber, 7-aditional shock absorber 
mechanism.  After simulating the virtual model and 
validating the cam mechanism through calculation, we 
executed and adapted this prosthesis in accordance with an 
amputee's needs and suggestions. In figure 8, we present an 
aspect from the new prosthesis experimental tests, which 
were performed with SIMI Motion’s aid. 

 

 
Fig. 2. q3 variation angle [degrees], corresponding with the equivalent

hip joint 

 
Fig. 3. q5 variation angle [degrees], corresponding with the equivalent

knee joint 

Fig. 4. q7 variation angle [degrees], corresponding with the equivalent
ankle joint 

Fig 5. q8 variation angle [degrees], corresponding with the equivalent 
foot joint 

Fig.  6. 3D model, designed and simulated with MSC NASTRAN 
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Fig. 7. Virtual model of the prosthesis used in human knee

disarticulations 

 

V. CONCLUSION 

For cinematic modeling we use a method which is based 
on simple matrices formalism with the possibility to 
implement on a computer program for the direct or inverse 
cinematic analysis. This method is valid for planar and 
spatial cinematic mechanisms with possibility to study the 
cinematic parameters in the absolute or relative motion 
mode. For the mathematical models processing 
corresponding to the cinematic analysis, a program under 
MAPLE programming language was elaborated.  

It was elaborated a cinematic scheme for the human lower 
limb equivalent mechanism, based on some specialty 
literature references, but also with proper observations 
mainly for knee joint. Mathematical model were elaborated 
for position, speeds and accelerations determination, for 
some interest points, used for experimental modeling, 
according with a new prosthesis design for knee joint. 

The novelty element which assures the prosthesis models 
design is represented by cam mechanisms.  

Based on an experimental cinematic analysis of these 
prostheses, by using SIMI Motion software, the angular 
amplitude developed by this mechanism is appropriate with 
the one developed by a healthy human subject. So, for the 
human knee joint replacement mechanism, the angular 
amplitude for walking activity was 63 degrees (figure 9), 
and the one developed by a healthy subject was 65 degrees 
[9], [10].   

The prosthesis presented in this paper is cheap, in 
comparison with the ones manufactured by the specialized 

prosthetic centers.  The knee mechanism functionality 
validates the cinematic analysis of the human lower limb.   
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Fig. 8. The new knee prosthesis and an aspect from the new prosthesis

experimental tests achieved with SIMI Motion software 

Fig. 9. The new prosthesis flexion/extension angular displacement 
variation, depending on time 
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