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Abstract—The product designers of automatic devices always 

hypothesize their devices to work satisfactorily in real life 

situations; whereas, in fact their hypotheses are not always 

true. The devices, developed according to some preset 

specifications and laboratory conditions, may not work as 

desired when subjected to nature: an uncertain environment. It 

is due to the fact that some sorts of variations, random and non-

random, are crept into during production and working stages. 

These needed to be separated, analyzed and filtered by 

employing appropriate statistical tools (models, techniques 

or/and procedures) to ensure quality of products at optimum 

cost.  

For this purpose, a dynamic statistical process control system 

based on CUSUM control charts of one step ahead forecast 

errors, generated by a linear dynamic system model is 

introduced. This control system is expected to enhance quality 

of automatic devices by minimizing both types of errors in a 

cost effective manner. 

 
Index Terms—Statistical process control system, Noise 

processes, Linear dynamic system models, Recurrence 

equations,  One step ahead forecast errors, CUSUM  quality 

control  charts.   

I. INTRODUCTION 

For statistical process control of automatic devices 

numerous types of control schemes with and without 

memory are available, such as, memory less control schemes 

of Shewhart (1933) and memory (CUSUM) control schemes 

of Johnson (1961) and  Hawkins (1993). Both of these types 

of schemes have their own merits and demerits in process 

control such as Shewhart schemes are effective in detecting 

large process shifts, whereas, CUSUM schemes are capable 

of detecting small shifts in processes. Further,  for 

identification of small shifts in an effective manner V masks  

for  CUSUM charts may be developed and used. For more 

discussion, see Bersimis, et al (2007), Box-Jenkins (1963), 

Crosier (1988) and Hawkins (1993). 

Keeping in view, merits of both of these schemes, 

therefore, a hybrid Shewhart-CUSUM scheme is introduced. 
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For this purpose, sampled observations on performance of 

automatic devices are taken during production or/and 

functioning of automatic devices over some passage of time 

at certain time intervals and are analyzed using a linear 

dynamic system models of Harrison-Akram (1983) and 

Akram (1990, 92, 94). The outcomes of these models are 

then used in Hybrid scheme for determining control of 

automatic devices. These aspects and their practical 

implications are discussed in the following sections. 

II. GENERAL LINEAR DYNAMIC SYSTEM MODEL 

For analysis and forecasting of time series {yt}t=1,2,…, T , 

bearing white noise {δt}t=1,2,…, T , linear growth models of the 

type: 

 

y
t
 = f t    +  δt     


t 
= G t-1 +   wt  

 
are frequently constructed and applied for analyses and 

forecasting of discrete time series, where components of this 

model are defined as follows: 

f = (1 x n) vector of some known functions of independent 

variables or constants.  

t = (n x l) vector of unknown stochastic parameters.  

G =  (n x n) matrix, called, state or transition matrix, of the n 

- number of  nonzero eigenvalues { i}i=  1, ... ,n.  

δt is an observation noise, assumed to be normally 

distributed with mean zero and some known constant 

variance.  

wt= (n x 1) vector of  parameter noise, assumed to be 

normally distributed with mean zero and a constant known 

variance-covariance matrix W = diag (W1,…, Wn), the 

components of which are as defined by Harrison-Akram 

(1983). 

 

Linear Growth Model 

A special case of above general linear dynamic system  

model is a second order (n = 2) model, called a linear 

growth model. It is the most commonly used member of the 

family of  the linear dynamic system models as in many real 

life cases it sufficiently represents the underlying processes 

of many time series in a parsimonious manner. In this paper, 

therefore this model will be considered for further 

discussion. This specific model, in a canonical form, is 

obtained by defining:  

 

f = (1  0)    



t = ( 2 )
’
 , where  the parameter  is the level of 

underlying process of time variant data on functioning of 

automatic devices and  2  is the  regression parameter. 

Statistical Linear Dynamic Control of 

Automatic Devices 

Jamal Tariq Mian , Akram Muhammad Chaudhry 

Proceedings of the World Congress on Engineering 2011 Vol III 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

mailto:jtmian@hotmail.com
mailto:jtmian@uet.edu.pk
mailto:drakramm@hotmail.com
mailto:drakramm@buss.uob.bh


 

G = {gij }i,j=1,2   is a 2x2 transition matrix having non zero 

eigenvalues {i}i=1,2 , such that  g11=1, g12=1, g21=0, g22=2. 

 
W= diag (w1, w2) where for a smoothing coefficient 0   

min ( i
2
 ) i=1,2 the w1 and w2  are defined as follows: 

 

w
1 

 = V(1- )( 1+  2)(  1 2 - ) /  2    

w
2 

 = V(1- )( 1 2 -  )(  1-  2 )(  2
2
 -  ) /  2 

2
    

 

The parameters  and of this model are optimally 

estimated as follows: 

 

For data at time t,  Dt = (yt, Dt-1) , assuming that the prior 

( t-1, | D t-1) ~ N[mt-1 ;  Ct-1] has the posterior (t | Dt) ~ 

N[mt ; Ct] an optimum estimate mt of tis determined by 

setting  f, G, W and priors m0 and C0 as explained by 

Harrison-Akram (1983) and Akram (1992) through the 
following recursive equations: 

 

R
t
  =  GC

t-1
G'   +   W 

 

A
t  

=  R
t 
f  [ V+  f R

t 
f ' ]-1 

 

C
t  

=  [ I – A
t 
f ] R

t 
 

m
t 
=  G m

t-1
 +  A

t 
[y

t
  -  f G m

t-1
] 

 

et = yt – yt
^
 =  y

t
  -  f

*
 G m

t-1  
are one step ahead forecasts 

errors. 

 
where at time t,  R is a system matrix, I is an identity 

matrix, A is an updating or gain vector, W is  a variance-

covariance matrix of parameter noise as defined earlier. The 

dimensions of all these components are assumed to be 

compatible with each other. For more discussion see 

Harrison-Akram (1983). 
The estimates mt of tare then used to generate optimum 

one step ahead forecasts and fairly accurate medium to long 

term forecasts on the behavior of automatic devices. These 

forecasts in turn anticipate automatic devices to respond to 

real life variations.  

 

Comments 

i) In practice more specific version having the eigenvalues  

1 =1 and 2 =1 is commonly used for a linearly growing  

phenomena. However, for the exponential growth 1 =1 and  

2 < 1 are considered. Exact value of  2 that depends upon 

the nature of phenomena being studied and their appropriate 

representation by the exponential functions, such as Logistic 

and Gompertz functions may be estimated by exponential 

growth estimation procedure of Akram (1992). 

 

ii) The above model is written in a canonical form. If 

desired, it may be transformed in to a diagonal form by using 

inverse transformation of Akram (1988). 

 

iii) The variance V is assumed to be known. If unknown then 

it may be estimated on line using on-line variance learning 

procedure of  Harrison-Akram (1983).  

 

III. STATISTICAL PROCESS CONTROL SCHEMES 

For statistical process control of automatic devices one 

step ahead forecast residuals or errors et are first 

standardized as: 

 A

et t t etZ e - e  S ; where 
A

t t

1

e e  T
T

i

  and 

   
2

A

et t t

1

S = e - e T-1
T

i

  

 

where Zet are normally distributed with mean zero and 

variance one i.e. Zet ~N (0,1) and then used for Shewhart 

and CUSUM  process control schemes. 

A. Shewhart Control Limits 

For detection of large shifts in process parameters from 

their preset specifications, the Shewhart control limits are 

defined as: 

  

0  Zα/2; where Zα/2 is a standard normal variate at (1- α)% 

level of confidence i.e. upper control limit UCL is + Zα/2 and 

lower control limit LCL is - Zα/2. 

B. CUSUM  Control Limits 

For detection of small shifts in performance of automatic 

devices from their preset specifications (means and standard 

deviations) the following control limits, suggested by 

Hawkins (1993) are defined as follows: 

 

Control Limits for CUSUM 

Writing CUSUM
+
 as accumulation of deviations relative to 

upper error specifications or reference points of functioning 

of automatic devices the  upper and the lower control limit 

are defined as follows.   

 

CUSUM
+

t = Max{0,Vi – k + CUSUM
+

t-1} 

CUSUM
-
t = Min{0,Vi – k + CUSUM

-
t-1} 

 

whereas Vi =  {  Set- 1 }/2 for some known constants 

1 and  2. Furthermore, Vi  is  N (0,1).  

 

For more discussions see Bersimis, et al (2007), Hawkins 

(1993), Lowry, et al (1995) and Woodall, et al (2004). 

 

k=  /2ng  where   is the shift in process mean over ng 

number of observations in a group or replications at time t. It 

is the reference value, e.g. for shift   of mean process, say 

 = 0.02 and one observation in each subgroup k=0.01. 

 

For using V- mask, if desired, lead distance d may be 

computed as: d = h/k; where h is the height or distances from 

the cumulative statistic to the V mask legs.  

IV. PRACTICAL ASPECTS OF LINEAR GROWTH MODEL AND 

CONTROL LIMITS 

To see whether automatic devices are functioning in 

accordance with the preset specifications, data on their 

functions are recorded over some passage of time. These 

time variant data are then analyzed using the above linear 

growth model and its parameters are optimally estimated 

through the stated recursive equations. The estimates in turn 
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are used to generate one step ahead forecasts residuals or 

errors. These residuals, as stated earlier,  are standardized 

before drawing charts and computing the control limits of 

both of these schemes. For computation of Shewhart control 

limits a value of Zα/2 2 is preferred; whereas for CUSUM 

charts Zα/2 < 2 may be considered.   

Statistically, a process is declared in control if at (1- α)% 

level of confidence a significant number of residuals or 

errors are within the control limits of both the schemes and 

the errors do not reflect non randomness in their distribution. 

That is, the processes of automatic devices are declared in 

accordance with the preset specifications. Otherwise the 

functions of devices are considered not in control.    

In case of devices not in control, the distribution of  

residuals are closely examined for presence of any unwanted 

noise exhibiting autoregressive  structures using ATS of 

Akram (2001) or AIC of Akaiki (1973). For further 

discussion see Akram-Irfan (2007).  

V. CONCLUSION 

In general, Shewhart and the CUSUM control scheme 

using one step ahead forecast residuals or errors generated 

by the linear growth model are expected to perform well for 

detection of large and small shifts in performance 

parameters of processes. However, in some cases higher 

order (n>3) linear dynamic system models with uncorrelated 

and correlated noise terms may be required to analyze 

performance data.  

For this purpose higher order linear dynamic system  

models may be constructed and applied using model 

construction and application procedures of Harrison-Akram 

(1983) and Akram (1990, 1992 and 1994) and using 

statistical process control schemes of Harris - Ross (1991). 

For in depth review of such control schemes, see Bersimis, 

et al (2007).  
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