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Abstract— Dynamic Design Optimization (DDO) of various 
engineering problems exhibit multiple optima in the feasible 
domain. Such problems can be posed as complex multimodal 
optimization problems. Application of traditional optimization 
techniques to such problems is computationally expensive with 
a high risk of getting trapped into a local optimum. Similarly, 
Genetic Algorithms (GA) suffer from premature convergence 
and weak exploitation capabilities. In this paper, a Niche 
Hybrid Genetic Algorithm (NHGA) is proposed for optimizing 
continuous multimodal models. This architecture of Hybrid 
Algorithms (HAs) organically merges Niche Techniques and 
Nelder-Mead’s Simplex Method into GA. The NHGA is 
executed in the global exploitation and local exploration. In the 
former, a simplex search is performed in the potential niches 
for a quick evaluation of the promising search zones following 
the generation of dynamic niche sets by a Clearing Method 
(CM). A further simplex search (SS) is subsequently executed 
in the exploitation phase for a quick location of a global 
optimum in the located most promising zone and an inverse 
operator introduced to maintain population diversity. The 
proposed technique effectively alleviates premature 
convergence and improves the weak exploitation capacity of 
GAs. To emphasize the application of the algorithm, numerous 
multi-modal functions have been experimented with, and a 5-
degree of freedom vehicle suspension system optimized. 
Analytical results indicate the potential of the approach in 
DDO of mechanical systems. 
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I.  INTRODUCTION  

Demand for higher dynamic performance from complex 
mechanical and structural systems [1, 2] is of significant interest in 
dynamic design. Dynamic design aims at obtaining desired 
dynamic system characteristics and specifies the right shapes, 
sizes, configurations, materials and manufacturing steps of 
elements. Desired dynamic characteristics include vibration 
reduction, noise level reduction, shifting of natural frequencies, 
elimination of resonance, higher dynamic stability and required 
mode shapes or vibration patterns. (DDO) rationalizes design of 
mechanical systems by methods that accommodate the desired 
trade-offs of systems’ characteristics. 
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DDO of complex systems is computationally difficult to achieve 
due to the following factors: It is often a highly constrained, non-
linear problem, whose objective function and constraint functions 
are often implicit, discontinuous or not differentiable, non-convex 
and multi-modal [1, 2, 3]. Hence a successful dynamic sensitivity 
analysis takes a large computational effort and is often 
unachievable [1, 2, 3, 4, 5]. 

Traditional optimization methods are principally 
gradient-based and deterministic, with a high risk of getting 
trapped into a local optimum. The methods need complex 
dynamic sensitivity analysis to guide the search direction in 
every iterative cycle [2]. It is computationally difficult for 
traditional methods to achieve a global optimum in DDO 
problems in mechanical design practice when the objective 
function is complex. A pressing need for wieldy, universal 
and cost-effective global optimization methods, for reliable 
solutions to DDO problems exist. 

GAs provide a general architecture for solving complex 
optimization problems [3]. GAs only need fitness function 
value to guide the search direction and does not need 
gradient information and this alleviates computation expense 
and complex sensitivity analysis steps. Nonetheless, few 
works deal with application of GAs to dynamic design 
optimization of mechanical systems. The works related to 
the subject are Li [4], Keane [5] and Baumal et al [6]. 

GAs usually suffer premature convergence and weak 
exploitation capabilities [3, 7]. From this perspective, its 
application in computation is limited. Premature convergence often 
leads to a non-optimal solution whereas weak exploitation 
capabilities cause slow convergence prior to attaining an accurate 
solution. Premature convergence in GAs is caused by loss of 
population diversity. An effective way to solve the problem is to 
maintain the population diversity while continuously exploring new 
search domain during the evolution process. To improve the 
exploitation capabilities of GAs and speed up the convergence 
process, a common strategy in literature has been to combine a GA 
with a complementary local search technique to develop a Hybrid 
Algorithm (HA) [3, 8, 9]. In HA, the GAs with good exploration 
capacities are often used to locate promising zones within the 
solution space, while the local optimization methods exploit the 
located promising zones in order to achieve the best solution 
quickly and accurately. The hybrid strategy is an effective method 
of improving the performance of GAs for solving complex 
optimization problems [8]. However, the sustenance of population 
diversity and enhancement of exploitation often conflict. GAs have 
to maintain a great population diversity in order to attain a global 
optimum, while enhancement of exploitation capabilities of GAs 
will drive the individuals more towards the optimal individual and 
inevitably decrease the population diversity. 

This paper proposes a niche hybrid genetic algorithm (NHGA) 
for a robust global optimization of DDO of mechanical systems. 
The objective of NHGA is to enhance the exploitation capacities 
without sacrificing the global convergence by simultaneously 
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maintaining population diversity. The approach utilizes niche 
techniques [10-12] to maintain the population diversity. In the 
NHGA, a simplex search is initially performed in the potential 
niches likely containing a global optimum in order to speed up the 
convergence process and reliably locate the promising zones within 
the search space. Subsequently a further simplex search is applied  
for a quick detection of a global optimum in the located promising 
zones and an inverse operator [3] introduced to maintain further 
population diversity. 

The Niche Techniques [10-12] are effective in maintaining 
population diversity to enhance the exploration of new search 
domain. The Niche Techniques aim at gathering the individuals on 
several peaks of fitness function in the population according to 
genetic likeness and then enable GAs to investigate the peaks in 
parallel. The niche method adopted in the presented NHGA is the 
Clearing Method [11], and has been used to classify the population 
into various niches based on the specified distance between 
individuals. The basic clearing algorithm is used to preserve the 
fitness of dominant individual in a niche while it reset the fitness 
of all the other individuals of the same niche to zero. Compared 
with other Niche Techniques; Speciation Tree [12] and Sharing 
Fitness Methods [10], it maintains the population diversity 
effectively in a lower population size and is relatively simpler to 
implement. 

To enable quick exploitation of the local information, Nelder-
Mead‘s Simplex Algorithm [13] has been merged with GAs. The 
Simplex Method does not exhibit features that require derivatives 
of objective function, which is an advantage in an event of an ill-
conditioned problem [9]. Consequently, the hybrid strategy with 
Simplex Method has no effect on the generality of GAs, is robust, 
fast and easy to program. 

II. A BRIEF DESCRIPTION OF THE NHGA 

The NHGA consists of exploration and exploitation in the 
search for optima. Exploration aims at locating promising zones 
within the search space and exploitation discovers the optimum in 
the detected promising zones. The purpose of NHGA is to enhance 
the exploitation capacities while effectively maintaining the 
population diversity based on an established compromise between 
exploration and exploitation. 

In exploration the NHGA first performs basic genetic 
operations including selection, crossover, mutation and inverse 
operation. The whole population is then classified to form the 
dynamic niche set based on the distance between individuals. 
Within a certain probability, the simplex search is applied on the 
potential niches which gather more than two individuals to move 
the dynamic peak of every potential niche towards the local 
optimum quickly in the niche. Thus the promising zones can be 
found more quickly and reliably. Subsequently, the exploitation 
phase is initiated to discover the found most promising zone 
within a certain probability. A further simplex search is performed 
for a quick exploitation of the neighborhood of previously found 
best point for achieving a global optimum. The previously found 
best point is chosen as the origin of the initial simplex. The whole 
procedure is iterated until a stopping criterion is met. 

The NHGA maintain population diversity through the niche 
techniques and inverse operation. However, slower convergence 
often occurs due to the greater population diversity. The simplex 
search in the niches is applied to speed up convergence process and 
to locate the promising zones quickly. Only potential niches are 
chosen for the simplex search. The blindness of search can be 
avoided while the efficiency can be improved in the NHGA. 
Another simplex search is to speed up locating the global optimum 
in the most promising zone. The simplex search further enhances 
the exploitation capacities of NHGA. The probability settings of 
simplex search are used to coordinate the balance between 
exploration and exploitation. Figure 1 is the architecture of NHGA. 
The operations inside the dashed rectangles happen in a certain 
probability. The niche generation operation in the squares is to 
refresh dynamic niche sets in the population after the simplex 
search has been executed. 

 

 

Figure 1.  The architecture of NHGA 

III. IMPLEMENTATION OF NHGA 

Based on the ideas above, the procedure of implementing 
NHGA case is given below. 

(1) Initializing population. Let the counter t to be 1. The n-
dimension individuals are encoded in float-point 
parameter between 0 and 1. The initial population P(t) 
with M individuals is generated at random. Then the 
fitness evaluation of all individuals is performed. 
Maximal number of evolution generations T is also set. 

(2) Saving the first N individuals after sorting the 
population by fitness value in descending order, (N<M) 

(3) Selection operation. The stochastic tournament 
selection is used to select the individuals from 
population P(t) and then generates a new population 

)( tP . 

(4) Crossover operation. Arithmetic crossover operation [7] 
is performed in the population )( tP  with the 

probability of crossover Pc. If the two individuals 
chosen for crossover are same, one of them is 
performed non-uniform mutation [7]. Thus a new 
population )( tP  is generated. 

(5) Mutation operation. Non-uniform mutation operation 
[7] is performed in the population )( tP  with the 

probability of mutation Pm, and a new population 
)( tP  is generated. 

(6) Inverse operation. An individual is chosen at random to 
perform the inverse operation in the current population. 
Namely, we randomly choose two loci in the individual 
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chosen and inverse the genes between the two loci to 
generate a new population )( tP . 

(7) Niche generation operation by clearing method. First, a 
new population with M+N individuals is generated by 
putting N saved individuals and )( tP  together. Then 

the normalized Euclidean distance between n-
dimension individuals in the new population has to be 
calculated by the following expression (3). 
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When DXX
ji
  (D, namely niche radius) is true, the Xi is 

compared with X j by the fitness value. The individual with lower 
fitness value is punished with formula (4) to reduce its fitness value 
sharply. 

0),min( 
ji XXF       (4) 

After those operations above, a new population )(tPniche
 with 

various niches is generated. Obviously, the number of niches in the 
new population )(tPniche

 is the number of those individuals with 

non-zero fitness value. Let the current population )(tPcurr
 be 

)(tPniche
, namely, )()( tPtP nichecurr  . 

(8) Performing local simplex search in the potential niches 
with probability Ps1. First, the niche number of 
population )(tPcurr

 and the individual number in every 

niche are calculated. Then the simplex search is 
performed S1 times in every potential niche, which has 
more than two individuals. The initial simplex consists 
of the fittest individual in the potential niche and two 
individuals generated at random. The best vertex in the 
final simplex is used to replace the worst individual in 
the niche. Finally, the niche generation operation by 
step (7) is performed to generate a new population 

)(1 tPsim
. Let the current population )(tPcurr

 be 

)(1 tPsim
, namely, )()( 1 tPtP simcurr  . 

(9) Performing simplex search in probability Ps2 within the 
found most promising zone. First, initial simplex 
consists of the best individual in the population )(tPcurr

 

and other two individuals generated at random. Then 
simplex search was run S2 times. The final simplex 
vertexes are used to replace the inferior individuals in 
the population )(tPcurr

. Finally, niche generation 

operation by step (7) is performed to get the new 
population )(2 tPsim

. Let the current population )(tPcurr
 

be )(2 tPsim
, namely, )()( 2 tPtP simcurr  . 

(10) Sorting )(tPcurr
 with M+N individuals by new fitness 

value in descending order. The first N individuals are 
saved. 

(11) Termination of the algorithm. If Tt  , then t=t+1, the 
first M individuals generated by step (10) is regarded as 
next population P(t); then go to (3).  If t>T or the best 
individual is not improved during a given generations, 
then the algorithm is terminated. 

When Ps1 = 0 and Ps2= 0, the NHGA degenerates into a 
general GAs with a niche. Moreover, Smith proved that the 
simplex method is computationally stable regardless of the 
number, and positioning of the vertices of the initial simplex 

[14]. Therefore it is reliable to use an initial simplex with three 
vertexes for a simplex search in the NHGA. The vertices 
generated randomly in initial simplex provide a certain 
exploration capability for simplex search, as will be shown later 
in this paper by numerical experiments. Clearing method is 
more effective in the GAs with elitist strategy [11] when the 
clearing capacity is set to 1. Hence the clearing capacity is set 
to 1 in the NHGA. Furthermore, the fitness function value 
should not be less than 0 in the NHGA. 

IV. SETTING THE NHGA PARAMETERS 

Some parameters introduced in the NHGA have to be set and 
tuned to NHGA for effective performance. Based on a number of 
test runs, those parameter settings are given as follows:  

Based on experiments, reasonable settings are, Ps1 is between 
0.6 and 1.0 while Ps2 is generally between 0.3 and 0.5, S1=20~50 
and S2=50~100. The S1 and S2 may increase accordingly as the 
complexity and dimensions of optimization problems increase. 
New individuals are generated more frequently because of inverse 
operation and the mutation in crossover operation in the NHGA. 
The dynamic niche set in the population keeps varying. Hence Ps1 
should be relatively large. The simplex search with relatively 
small running times S1 helps to speed up the convergence rate 
while preventing the premature convergence. The simplex search 
in the most promising zone is performed only when some 
promising niches including likely global optimum are survived 
and other inferior niches are eliminated. Therefore Ps2 should be 
relatively small and simplex search times S2 should be relatively 
large. 

The M and T are generally problem dependent. The increase 
of M and T improves the performance of NHGA as the complexity 
and dimension of optimization problems are increase. However, M 
may be between 10 and 30 for problems with less than 100 
dimensions because of enhancement measures of population 
diversity in the NHGA. The number of saved individuals N is set 
to 20% ~ 30% of M. The niche radius D is also problem-dependent 
and may be between 0.005 and 0.5.  

V. EXPERIMENTS WITH BENCHMARK FUNCTIONS  

The NHGA was applied to the set of typical multimodal 
functions with high dimensions listed below.  
 
(1) Generalized Schwefel’s function 
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(4)  Generalized Penalized’s function 
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(5)  Generalized Griewank’s function 
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The number of local minima in f1~f5 increases 
exponentially with the problem dimension [15]. They 
appear to be the most difficult class of problems for many 
optimization algorithms (including EAs) [15]. f2~f6 possess 
one global optimum 0, while the global optimum of f1 is 
12569.5. The dimensions of test functions were all set to 30 
in this experiment. The NHGA ran 100 times for every test 
function. Table 1 summarizes the results of NHGA. The 
results from FEP in [15] are also listed in Table 1. 

TABLE I.  STATISTICAL RESULTS  FOR VARIOUS GENETIC 
ALGORITHMS  

NHGA 
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f1 346 35498 2000 -12569.4866 0 
f2 600 50046 2000 0 0 
f3 778 55508 2000 1.25e-6 1e-6 
f4 652 43598 2000 0 0 
f5 531 35105 2000 0 0 
f6 678 48686 2000 1.21e-6 1.04e-6 

FEP[9] 
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f1 9000 -12554.5 52.6 
f2 5000 0.046 0.012 
f3 1500 0.018 0.0021 
f4 1500 9.2e-6 3.6e-6 
f5 2000 0.016 0.022 
f6 2000 0.0081 0.00077 

 
It is observed that NHGA performs consistently significantly 

better than FEP for the functions. From table 1 it was possible to 
note that NHGA efficiently and reliably yields more accurate 
global optimum for the complex and high-dimension multimodal 
problems. It is also noted that the NHGA leads to a good reliability 
with a small population size as is the case of this experiment. Due 
to application of a clearing method and inverse operation, the 
mutation in crossover  
and random individuals in the initial simplex play important roles 
in maintaining the population diversity just as large population 
size does. 

Table 2 shows the effect of the main components of NHGA on 
performance of NHGA through optimizing function f5.  The NHGA 
ran 100 times for every case in Table 2. For the simplex search in 
the potential niches, the search in the most promising zone and 
inverse operation play important roles in improving the 
performance of NHGA. 

TABLE II.  STATISTICAL RESULTS OF OPTIMIZING FUNCTIONS 
WITH VARIOUS COMPONENTS OF NHGA 

1.0 ;50 ;20   2000;T ;3.0  ;10  ;1.0  ;85.0 21  DSSMNMPP mc
 

 Pa1=0 
Pa2=0 

No 
Inverse 

Operator 

Pa1=0 
Pa2=0.3 
Inverse 

Operator 

Pa1=0.8 
Pa2=0 

Inverse 
Operator 

Pa1=0.8 
Pa2=0.3 

No 
Inverse 

Operator 

Pa1=0.8 
Pa2=0.3 
Inverse 

Operator 

Best 
mean 

0.16348 0.00142 0.0234 0.0395 0 
 

Standard 
deviation 

0.078 0.008 0.008 0.03 0 

 
 

VI. DDO OF A 5-DOF VEHICLE SUSPENSION SYSTEM  

NHGA 

The vehicle suspension system in [1] is employed treated by the 
proposed NHGA. Fig.2 illustrates the dynamic system considered 
for optimal design. The objective of the DDO is to minimize the 
magnitude of seat acceleration under the required vehicle speed 
and road profiles in the specified time range. For brevity the 
problem is posed as follows: 
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where )(),(),(),(),( 54321 tztztztztz  are the independent 

generalized coordinates, representing the suspension system‘s five 
degrees of freedom, b is the design variable vector [k 

,k2,k3,c1,c2,c3]
T; f1(t) and f2(t) are vertical displacement functions of 

two wheels related to the road conditions; ],0[ t  is the time 

range in which the constraints must hold. The b is related to 
)(),(),(),(),( 54321 tztztztztz by equations of motion, similar to 

equation (2). A detailed description of the optimization model can 
be seen in [1]. The parameter values of the suspension system in 
the numerical example are given as follows: the seat mass 
m1=131.63kg, the car-body mass m2=2042.541kg and its moment 
of inertia I=4632.355kg.m2 the wheel mass m4=m5=43.846kg, the 
wheel stiffness k4=k5=262689N/m, the wheel damping 
c4=c5=875.63 N. s/m, the wheelbase L=3.04m, vehicle velocity 
V=11.43m/s. The bounds of design variables are shown in table 3. 
The road condition is shown in figure 3. 
 
 

 

Figure 2.  The  5-DOF half car model 
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Figure 3.  The road surface profile 

 
 
The NHGA was implemented in MATLAB and the 

NEWMARK method numerically used to solve the equations of 
motion. The main parameter values for running NHGA in this 
example are given as follows: Pc=0.85, Pm=0.1, D=0.1; N=5; 
Ps1=0.8; S1=20; Ps2=0.3;S2=50 and the fitness function in [8] is 
adopted as below: 
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Table 4 shows the statistical results for 20 independent runs 
of NHGA with different population sizes M and maximal iteration 
number T. Table 5 shows the results obtained by NHGA, Gradient 
Projection Method [1] and complex GA [5]. The complex GA uses 
an additional complex operator, which consists of reflection, 
contraction and rotation, to improve the worst individuals before 
crossover operation. 

Table 3 shows that good reliability and high-quality solutions 
are achievable by NHGA. It is noted that the average of total 
fitness evaluation number is acceptable with a small population 
size. This is implicit that NHGA achieves good reliability and 
high-quality solutions without sacrificing the efficiency of the 
algorithm. Table 4 also suggests that two extrema can be found 
simultaneously. Based on table 4, the two extrema are better than 
the results from the other two methods.  

Figure 4 illustrates the transient impulse response of the 
vehicle seat with the optimal parameters of extremum 1 in Table 5. 
It is evident that, NHGA exhibits the capacities of locating 
multiple extrema simultaneously with a high probability. It is very 
helpful for engineers to choose other optima when the global 
optimal design is expensive or even impossible to manufacture in 
a practical project. As mentioned above, the NHGA, which is 
designed to solve the dynamic design optimization problems, 
shows the following characteristics: 
(1) locates a global optimum robustly and quickly with small 

population; 

(2) Good adaptability and availability without complex sensitivity 
analysis; 

(3) Searches multiple peaks in parallel with a small 
population. 

 
 
 

 
Figure 4.   Transient impulse of seat 

 
 

TABLE III.  DESIGN VARIABLES 

 
Design 

variable
s 

k1 
kN/m 

k2 
kN/m 

k3 
kN/m 

c1 
kN.s/m 

c2 
kN.s/m 

c3 
kN.s/m 

Upper 
bound 

8.756 35.025 35.025 0..350 0.876 0.876 

Lower 
bound 

87.563 175.126 175.126 8.756 14.010 14.010 

 
 

TABLE IV.   STATISTICAL RESULTS FOR 20 INDEPENDENT RUNS OF 
NHGA 

  Average 
Objective 

value 

Standard 
Deviation 
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e Times 

Average 
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on 
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20 100 6.442 6.478 0.01 0.02 17 14 5896 
20 200 6.419 6.429 0.0007 0.0003 20 20 11785 
30 100 6.425 6.435 0.002 0.002 20 20 7885 
30 200 6.418 6.428 0.0003 0.0006 20 20 14989 

 
 

TABLE V.   RESULTS OBTAINED BY VARIOUS METHODS 

 
Design Variables k1 

kN/m 
k2 

kN/m 
k3 

kN/m 
c1 

kN.s/m 
Gradient Projection Method 8.756 30.025 42.205 2.257 
Complex GA 8.750 34.000 41.000 1.750 

Extremum  1 8.756 35.025 163.338 3.422  

NHGA Extremum  2 8.756 35.025 35.025 3.660 

 
Design variables c2 

kN.s/m 
c3 

kN.s/m 
f0 

m/s2 

Gradient Projection Method 13.575 14.010 6.532 
Complex GA 14.000 14.000 6.675 

Extremum  1 13.430 10.678 6.417  

NHGA Extremum  2 13.467 14.010 6.427 
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VII. CONCLUSION 

The NHGA effectively reduced premature convergence and 
improved weak exploitation capacities of GA. The proposed 
NHGA, is wieldy, cost-effective for global optimization method, 
alleviates dynamic sensitivity analysis in the DDO of problems 
considered. A significant improvement of the weak exploitation 
capacity of genetic algorithms is evident. The NHGA has been 
successfully applied to dynamic design optimization of a vehicle 
suspension system. The results show that NHGA may achieve 
reliable and accurate global optimum within an acceptable 
computational effort for the a mechanical system. The architecture 
is potential and can be used to generate more cost-effective hybrid 
algorithms. 

Although NHGA is implemented with a clearing method and 
simplex method, other niche techniques and local search methods 
could be used under the proposed architecture to generate a more 
potential hybrid algorithm. The NHGA is simpler than other 
methods. 
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