
 

  
Abstract— Exact analytical solutions of three nonlinear heat 

transfer models of practical interests namely, steady state heat 
conduction in a rod, transient cooling of a lumped system and 
steady state heat transfer from a rectangular fin into the free 
space by the radiation mechanism, have been obtained. 
Recently, these three problems were investigated by several 
researchers by using homotopy perturbation, homotopy 
analysis and optimal homotopy analysis methods and the 
approximate series solutions were obtained. In this work, exact 
solutions of these three problems have been obtained in terms 
of a simple algebraic function, a Lambert W function and the 
Gauss’s hypergeometric function, respectively. These exact 
solutions are superior to the available approximate solutions, 
agree very well with those obtained by the accurate numerical 
schemes and can also serve as the benchmarks for future 
testing of the approximate solutions. 

 
Index Terms— Heat transfer, Conduction, Convection, 

Radiation, Exact solution 
 

I. INTRODUCTION 
HIS communication primarily focuses on obtaining the 
exact analytical solution of three nonlinear heat transfer 
models having nonlinear temperature dependent terms. 

The first model describes the steady state heat conduction 
process in a metallic rod and is governed by a nonlinear 
BVP (boundary value problem) in ODE (ordinary 
differential equation). Recently, Rajabi et al. [1] have 
solved the resultant model equation by using a popular 
approximate scheme i.e. HPM (homotopy perturbation 
method), whereas, Sajid and Hayat [2] and Domairry and 
Nadim [3] have solved the same problem by using HPM and 
another very popular approximate scheme i.e. HAM 
(homotopy analysis method), and the results were obtained 
in the form of a truncated series. The second model, 
investigated by Ganji [4] using HPM, by Abbasbandy [5] 
using HAM and by Marinca and Herisanu [6] using OHAM 
(optimal HAM), portrays the unsteady heat convection from 
a lumped system. 
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The corresponding controlling equation for this heat 

transfer problem is a nonlinear initial value problem (IVP) 
in ODE. Here again, the solutions were found in series 
form. The third model represents the steady state radiative 
heat transfer from a rectangular fin into the free space and 
the model equation results in a nonlinear BVP in ordinary 
differential equation. This model has also been studied 
recently by Ganji [4], Abbasbandy [5] and Marinca and 
Herisanu [6] by using HPM, HAM and OHAM, respectively 
and the solution in terms of the finite series are found.   

It can be noted that the series solutions have varying 
degree of accuracy and radius of convergence, and are 
strongly dependent on the number of terms in the series as 
well as on the parameters’ values. Due to this, there always 
exists a region beyond which the series solutions start 
diverging and this limits their regular use. However, in such 
cases efforts are made either to obtain the exact analytical 
solutions or to solve the problem with the help of some 
suitable numerical technique. Fortunately, the present work 
shows that all the above three mentioned models are exactly 
solvable in terms of algebraic function, Lambert W function 
[7] and hypergeometric function, respectively. These 
solutions have been obtained by using simple mathematical 
manipulations e.g. assuming an implicit form of the solution 
or reducing the equation into a simpler form by adding and 
subtracting certain terms, as elaborated in the following 
sections. The so obtained analytical solutions are quite 
valuable since:  
(i)   They provide better insight of the actual physical 

process. 
(ii) They can directly be employed to find the accurate 

temperature profiles and temperature gradients for a 
complete range of parameters' values unlike their 
approximate counterparts (series solutions) that have 
convergence related issues for the entire range of 
parameters' values especially for the larger values of 
parameters.   

(iii) These exact solutions can also be utilized in cross 
checking the accuracy of other approximate solutions. 

Description of the mentioned processes, derivation of 
respective mathematical models and the approaches to 
obtain the exact solutions are discussed below, individually.  

II. MODEL 1: STEADY HEAT TRANSFER IN A METALLIC ROD 
This model basically describes the steady state heat 

conduction in a metallic rod and has the practical 
significance in estimating the thermal conductivity of metals 
e.g. heat flow meters [8]. In this process, the two ends of the 
rod are kept at different but fixed temperatures and heat 
transfer takes place from higher temperature to the lower by 
the mode of conduction. At present, it is assumed that the 
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thermal conductivity varies linearly with temperature and 
there is no heat loss to the surrounding from the curved 
surface of the rod. 

Consider a rod of length, L and uniform cross sectional 
area, cA  with its end maintained at two different 
temperatures i.e. ( 0) aT x T= =  and ( ) bT x L T= = . For the 
above stated assumptions, the steady state energy balance 
over the rod yields the following dimensional equation and 
the allied BCs (boundary conditions): 

( ) 0c
d dTA k T
dx dx

⎛ ⎞ =⎜ ⎟
⎝ ⎠

                   (1a) 

BCI:  aT T=  at 0x =                       (1b) 
BCII: bT T=  at x L=               (1c) 

Where, ( ) 1 a
a

b a

T T
k T k

T T
β

⎛ ⎞−
= +⎜ ⎟−⎝ ⎠

 is the temperature 

dependent thermal conductivity of the rod. With the 
introduction of the following dimensionless variables, the 
governing equation and the associated BCs i.e. (1a)-(1c), 
transform into the following equations i.e. (2a)-(2c): 

x
L

ξ = , a

b a

T T
T T

θ
−

=
−

 

( ) ( )21 '' ' 0βθ θ β θ+ + =                  (2a) 
BCI:  (0) 0θ =                 (2b)                                                       
BCII: (1) 1θ =                      (2c)
 Where, 'θ  & ''θ  represents the 1st and 2nd order 
derivatives of θ  with respect to ξ , respectively. Following 
two different approaches can be adopted to obtain the exact 
solution of the above equation, as demonstrated below: 

A. Approach 1 
A careful visualization of (2a) shows that it can 

conveniently be expressed in the following form: 
( )( )1 ' ' 0βθ θ+ =                   (3) 
Integrating the above equation two times with respect to 

ξ , one obtains the following quadratic equation in θ : 
2

1 22
C Cθθ β ξ

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
               (4) 

Where, ( )1 1 2C β= +  and ( )2 0C =  are the constants of 

integration and have been found from the associated BCs 
i.e. (2b) & (2c). Substituting these values in (4) and solving 
for θ , one finds the following two explicit solutions; two 
solutions appear because of the nonlinear nature of the 
equation. 

21 1 2βξ β ξ
θ

β
− + + +

=              (5a) 

21 1 2βξ β ξ
θ

β
− − + +

=                           (5b) 

Since, 2nd solution is unrealistic and does not satisfy the 
BCs therefore, it is discarded. If one expands (5a) around 

0β =  using Taylor series the following approximate series 
is obtained.  

( ) ( )2 2 3 21 1 ...
2 2

θ ξ β ξ ξ β ξ ξ≈ + − + − +  

On comparing it with the approximate HPM solution 
[(47)] of Rajabi et al. [1] and approximate HAM solution of 
Domairry and Nadim [3] for the convergence control 
parameter 1h = −  (used therein), an exact conformity is 
observed. 

Similar comparison could not be performed with the 
results of Sajid and Hayat [2] as no such solution expression 
was provided. However, in this case the results were judged 
against those of Sajid and Hayat [2] by tabulating the values 
of temperature gradients at 0ξ =  and 1ξ =  (see Table 1). 
An excellent agreement is observed between these values.  

The results obtained by the present method i.e. (5a) have 
also been successfully cross-examined against those 
obtained by (47) of Rajabi et al. [1] and those obtained by 
the accurate numerical methods, as shown in Fig. 1.  Fig. 1 
clearly illustrates that the approximate temperature profile 
obtained by Rajabi e. al. [1] deviates appreciably even for 
moderate values of β  and becomes redundant for larger 
values of β . Although not shown, however, the same 
characteristics can also be attributed to the HAM solution of 
Domairry and Nadim [3] for the convergence control 
parameter 1h = − . On the other hand, no deviation is 
observed in the present solution, even for higher values of 
β . It is also clear from Fig. 1 that as β  varies from 0 to 
∞ , the temperature of the rod tends to reach the higher 
temperature ( 1θ = ) and thus establishes the fact that with 
the increase in thermal conductivity the temperature of the 
rod also rises.  

 
 

B. Approach 2 
In this approach we assume that the solution of (2a) 

exhibits an implicit form i.e. ( )f θ ξ= , in other words, the 
derivative 'θ  is a function of θ  only i.e. ' ( )pθ θ= . 

Therefore, 
( )2

1''
2

d p

d
θ

θ
= , where, p (still unknown) is a 

function  of θ , only. It is worthwhile to mention that this 
approach is quite helpful whenever the independent variable 
ξ   is absent in the concerned equation. Replacing  'θ  & 

''θ  in (2a) by the above respective definitions, one obtains: 

Fig. 1 Dimensionless temperature profiles along the length of the rod  
(model 1), solid lines: exact solution; filled circle: numerical solution 
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( )
( )2

21 2 0
d p

p
d

βθ β
θ

+ + =                  (6) 

Now, substituting 2p y=  and after little manipulations 
the above equation reduces to the following 1st order linear 
ODE: 
( )1 ' 2 0y yβθ β+ + =                 (7) 

Solving the above 1st order linear ODE by integrating 
factor method one finds: 

( )
1

21
C

y
βθ

=
+

                   (8) 

Or 

( ) ( )
1

1
Cdp

d
θθ
ξ βθ

= =
+

               (9) 

Where, 1C  is a constant of integration. Integrating the 
above (9) once more, one finds the expression for θ   [note 
that the equation below is similar, in form, to the (4)]: 

2

1 22
C Cθθ β ξ

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
                      (10) 

2C  is another constant of integration and ( )2

1 1 2C β= +  

and ( )2 0C = are evaluated from the associated BCs, like in 
the first approach. Substituting the values of these constants 
in (10) and solving for θ , one arrives at the following two 
solutions which are exactly same as those given in (5a) & 
(5b).  

21 1 2βξ β ξ
θ

β
− + + +

=                       (11a) 

21 1 2βξ β ξ
θ

β
− − + +

=                      (11b) 

2nd solution does not satisfy the BCs so discarded. Rest of 
the discussion remains same as presented in approach 1.  

 

III. MODEL 2: TRANSIENT COOLING OF A LUMPED SYSTEM  
This model represents the transient cooling of a lumped 

parameter system with specific heat as a linear function of 
temperature. In practice, this situation arises in the cooling 
of heated stirred vessels and cooling of electronic 
components with high thermal conductivity etc [8]. Ganji 
[4], Abbasbandy [5] and Marinca and Herisanu [6] have 
worked out this model by using HPM, HAM and OHAM, 
respectively and the solutions were obtained in the form of 
series. The problem can be stated as: at the outset of the 
experiment, a system with density ρ , volume V  and heat 
transfer area A , is exposed to an environment at different 

temperature ( aT ) and heat is transferred from the system to 
the surrounding by convection. The governing model 
equation is derived by applying the unsteady energy balance 
over the system and is described by the following nonlinear 
IVP (initial value problem) in 1st order ODE: 

( ) ( ) 0a
dTVc T hA T T
dt

ρ + − =                                (12a) 

IC: (0) bT T=                                    (12b) 

Where, ( ) 1 a
a

b a

T T
c T c

T T
β

⎛ ⎞−
= +⎜ ⎟−⎝ ⎠

 is the heat capacity of 

the system showing linear dependency on temperature and 
h  is the constant heat transfer coefficient. With the 
assistance of the following dimensionless quantities, (12a) 
& (12b) attain the dimensionless form given by (13a) & 
(13b), respectively. 

a

hAt
Vc

τ
ρ

= , a

b a

T T
T T

θ
−

=
−

 

( )1 ' 0βθ θ θ+ + =                          (13a) 
IC: (0) 1θ =                                                              (13b) 

A simple rearrangement of the above (13a) yields: 
' ' 1θ βθ

θ
+ = −                           (14) 

Integrating (14) with respect to τ  results in: 
1[ ]Log Cθ βθ τ+ = − +                       (15) 

Where, 1C  is the constant of integration and using IC, it 
is found to be 1C β= . Substituting back the so found value 
of 1C  in (15), provides the following exact analytical 
solution. 

[ ]Log θ βθ β τ+ = −                        (16) 
It can be noted that due to the above implicit form of θ , 

it has to be found for each and every τ  by solving (16) with 
the help of some suitable iterative numerical scheme. This 
feature limits the repeated use of the above formula. 
Keeping this in view, we now develop, from (16), the 
explicit solution form. A constant term [ ]Log β  is added 
and subtracted in (16) and after performing a little 
modification, (17) is obtained. 

[ ]Log e Logβθβθ β τ β⎡ ⎤ = − +⎣ ⎦                    (17) 
Equation (17) can be further expressed as: 
( ) ( )e eβθ β τβθ β −=                         (18) 

The L.H.S. of (18) can be replaced by the Lambert W 
function (implemented as ProductLog function in some 
mathematical softwares e.g. Mathematica). A Lambert W 
function is basically the inverse function of yx ye=  i.e. y= 
Lambert(x) and is symbolized by ( )y W x= . In general, the 
domain and range of the function is the set of complex 
values however, for [0, )x ∈ ∞  Lambert W function yields 

single real values. For 1( , )x e
−∈ −∞ , Lambert W function 

does not evaluate to any real value whereas, for 
1[ ,0)x e

−∈  it computes two real values. Now, with this 

function available, the transient dimensionless temperature 
profile is given by: 

TABLE I 
COMPARISON OF SLOPES OF THE DIMENSIONLESS 

TEMPERATURE PROFILE AT BOTH THE ENDS OF 
THE ROD (MODEL 1) 

S. 
No. β 

θ'(1) θ'(0) 

Numerical 
solution 

Sajid & 
Hayat [2] 

Exact 
solution 

(5a) 

Numerical 
solution 

Exact 
solution 

(5a) 
1 0.5 0.833333 0.833333 0.833333 1.250000 1.250000 
2 2 0.666667 0.666667 0.666667 2.000000 2.000000 
3 5 0.583333 0.583333 0.583333 3.500000 3.500000 
4 50 26/51 26/51 26/51 26.000000 26.000000
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1 ProductLog eβ τθ β
β

−⎡ ⎤= ⎣ ⎦                     (19) 

Expanding θ  around 0β =  by using Taylor series, 
yields the following expansion which harmonizes well with 
the (18) of Ganji [4] and (9) of Abbasbandy [5] for 
convergence parameter 1h = − . 

( ) ( )
2

2 2 34 3 ...
2

e e e e e eτ τ τ τ τ τβθ β− − − − − −≈ + − + − + +  

Fig. 2 compares that the transient temperature profiles 
obtained by the present (19), HPM solution obtained by 
Ganji [4] and those obtained by numerical scheme. It is 
clear that the present solution match very well with the 
numerical solution whereas, the solutions obtained by Ganji 
[4] show considerable discrepancies except for 0β =  
where the (13a) becomes linear. Fig. 2 also supports the fact 
that with the increase in β , the specific heat increases 
which in turn causes the decrease in temperature gradient.  

Extending the comparison, the initial rates of temperature 
change, given by the following (20), have also been found 
using (19) and plotted in Fig. 3 along with those obtained by 
Abbasbandy [5].  

1'(0)
1

θ
β

−
=

+
                          (20) 

Accuracy is evident by the overlapping profiles. Similar 
comparisons with the OHAM solution of Marinca and 
Herisanu [6] have been avoided due to their more involved 
solution expression. However, it can be shown that our 
present solution, being exact in form, is superior to the 
approximate solution of Marinca and Herisanu [6].  

 

 

 

IV. MODEL 3: RADIATIVE HEAT TRANSFER FROM A 
RECTANGULAR FIN 

This model represents the steady state heat transfer from a 
rectangular fin to the free space by the radiation mechanism. 
Such situations appear in the cooling of the heated parts of 
the space vehicles. This problem, too, has been tackled by 
Ganji [4], Abbasbandy [5] and Marinca and Herisanu [6] 
with the help of HPM, HAM and OHAM, respectively and 
the solutions were obtained in the form of series. We 
consider a rectangular fin having cross sectional area cA , 
perimeter P , length L  and the constant thermal 
conductivity and emissivity as k  and ∈ , respectively. The 
fin base is maintained at a higher temperature bT  and the fin 
is transmitting the heat energy into the space by the mode of 
radiation. It is assumed that the steady state is prevailing and 
the negligible heat transfer takes place from fin end. 
Keeping these assumptions in view, the governing model 
equation is derived by applying the steady energy balance 
over the fin element and is described by the following 
nonlinear BVP in 2nd order ODE: 

4 4( )c s
d dTA k P T T
dx dx

σ⎛ ⎞ = ∈ −⎜ ⎟
⎝ ⎠

                    (21a) 

BCI:  bT T=  at x L=  (at fin base)                 (21b) 

BCII: 0dT
dx

=  at 0x =  (at fin end)                  (21c) 

It is worthwhile to note that the space temperature can 
very well be replaced by the absolute zero temperature i.e. 

0sT =  [4]-[6]. Taking this fact into account and defining 
the following dimensionless variables, the above equations 
are conveniently expressed into the dimensionless form 
given by (22a) - (22c).   

b

T
T

θ = ,  x
L

ξ = , 
3 2

b

c

PT L
kA

σ
ε

∈
=  

And the (21a) - (21c) become 
2

4
2

d
d

θ εθ
ξ

=                             (22a) 

BCI:  1θ =  at 1ξ =  (at fin base)                  (22b) 

BCII: 0d
d

θ
ξ

=  at 0ξ =  (at fin end)                  (22c) 

To solve the above BVP, the same approach has been 
followed as adopted previously for the solution of problem 

1, and here also, it is assumed that the derivative d
d

θ
ξ

 is a 

function of θ  only i.e. ( )d p
d

θ θ
ξ

=  where, p is yet to be 

found. This assumption leads to 
( )2

1''
2

d p

d
θ

θ
= . Replacing  

''θ  in (22a) by this relation, one obtains: 

( )2
42

d p

d
εθ

θ
=                               (23) 

Now, replacing 2p  with y , the (23) attains the following 
1st order linear ODE: 

42dy
d

εθ
θ

=                            (24) 

Integrating the above equation, one finds  

Fig. 3. Initial rate of change of dimensionless temperature vs. β  (model 2)
solid lines: exact solution; filled circle: numerical solution 

Fig. 2. Transient profile of the dimensionless temperature (model 2), solid
lines: exact solution; filled circle: numerical solution 
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5
1

2
5

y Cεθ= +                             (25) 

1C  is constant of integration and can be evaluated with 

the help of BCII i.e. (22c) and is found to be 5
1 0

2
5

C εθ= − ; 

where, 0θ  is the unknown dimensionless temperature at the 
fin base. Substituting this value of 1C  in (25), one gets  

( )
2

5 5
0

2
5

dy
d

θ ε θ θ
ξ

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
                       (26) 

A minor rearrangement of the above equation yields 

( )5 5
0

2
5

d dθ ξ
ε θ θ

=
−

                         (27) 

Integrating the above equation between the limits 
prescribed by the BCs I & II, following definite integral is 
found. 

( )0 5 5 0
0

2
5

d d
ξθ

θ

θ ξ
ε θ θ

=
−

∫ ∫                       (28) 

The integration of the above equation gives the following 
result. 

( )
5 5

2 15 55 5
0 00

5 1 1 61 , , ,
5 2 52

HG Fθ θθ
θ θε θ θ

⎡ ⎤
− ⎢ ⎥

− ⎣ ⎦
 

3 / 2
0

6
5 1 5

72
10

i π ξ
ε θ

⎡ ⎤Γ ⎢ ⎥⎣ ⎦− =
⎡ ⎤Γ ⎢ ⎥⎣ ⎦

               (29) 

The unknown 0θ  is computed by solving the following 
nonlinear equation which has been obtained by forcing (29) 
to satisfy the unutilized BCI i.e. 1θ =  at 1ξ = . 

( ) 2 15 55
0 00

5 1 1 1 6 11 , , ,
5 2 52 1

HG F
θ θε θ

⎡ ⎤
− ⎢ ⎥

− ⎣ ⎦
 

3/ 2
0

6
5 1 5 1

72
10

i π
ε θ

⎡ ⎤Γ ⎢ ⎥⎣ ⎦− =
⎡ ⎤Γ ⎢ ⎥⎣ ⎦

                     (30) 

Where, [ ]zΓ  and 2 1[ , , , ]HG F a b c z  are the well known 
Gamma and the Gauss' Hypergeometric functions, 
respectively and are defined as follows: 

1

0

[ ] z tz t e dt
∞

− −Γ = ∫  

1
1 1

2 1
0

[ ][ , , , ] (1 ) (1 )
[ ] [ ]

b c b acHG F a b c z t t tz dt
b c b

− − − −Γ
= − −

Γ Γ − ∫  

Ganji [4], Abbasbandy [5] and Marinca and Herisanu [6] 
have solved this problem by using HPM, HAM and OHAM, 
respectively and solutions are obtained in terms of the 
series. For comparison purposes, the two terms HPM and 
HAM solutions of Ganji [4] and Abbasbandy [5] are 
reproduced below, however, because of complexity in the 
expression of Marinca and Herisanu [6], it has not been 
considered here. 

2 4 2
21 6 51

2 6Ganji
x x xθ ε ε

⎛ ⎞ ⎛ ⎞− − +
≅ + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
           (31) 

2 21 11 (1 )
2 2Abbasbandy

x xh h hθ ε ε
⎛ ⎞ ⎛ ⎞− −

≅ − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      

4 2
2 2 6 5

6
x xhε

⎛ ⎞− +
+ ⎜ ⎟

⎝ ⎠
             (32) 

Figs. 4 & 5, plot the dimensionless temperature profiles 
obtained by the above approximate series solutions, the 
accurate numerical scheme as well as those obtained by the 
presently obtained exact solution i.e. (29) & (30). It can be 
noted that the same value of the parameter ε  have been 
taken as those considered by Ganji [4] and Abbasbandy [5] 
i.e. 0.09ε =   and 0.7ε = , respectively. It is clearly visible 
in Fig. 4 that the profile obtained by Ganji [4] slightly 
deviates with the numerical solution whereas, the profile 
obtained by the exact analytical solution shows an excellent 
matching with its numerical counterpart.  

 

 

 
 

Similarly, in Fig. 5, the two terms HPM solution of Ganji 
[4] yields divergent results whereas, the two term HAM 
solution of Abbasbandy [5] show minor deviations with the 
numerically obtained accurate profile. However, the five 
term HAM solution obtained by Abbasbandy [5] matches 
well with the numerical solution. In contrast to this, the 
exact analytical solution i.e. (29) & (30) are in complete 
agreement with the numerical solution. It can be verified 
that the deviations in the series solutions of Ganji [4] and 
Abbasbandy [5], will increase with the increase in the value 
of ε , however, this is not true for the currently derived 

Fig. 5. Dimensionless temperature profiles along the length of the fin 
(model 3), solid lines: exact solution; filled circle: numerical solution 

Fig. 4. Dimensionless temperature profiles along the length of the fin 
(model 3), solid lines: exact solution; filled circle: numerical solution 
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exact solution. The true profiles signify the sharp decrease 
in temperature with the increase in the parameter ε . This 
observation is in compliance with the physics of the 
problem. 

V. CONCLUSION 
Exact analytical solutions of the three nonlinear heat 

transfer models of real significance and arising in heat 
transfer have been obtained in the form of elementary 
algebraic and transcendental functions. These problems 
represent steady state heat conduction in a solid rod, the 
unsteady cooling of a lumped parameter system and the 
steady state radiative heat transfer from a rectangular fin to 
the space, respectively. The corresponding exact solutions 
have been obtained in terms of a simple algebraic function, 
Lambert W function and Gauss’s hypergeometric function, 
respectively. These obtained exact solutions agree very well 
with the corresponding true numerical solutions and are 
found to be superior to the previously available approximate 
HPM, HAM and OHAM solutions. These exact solutions 
provide better insight of the physical process and are valid 
for all parameter ranges unlike their approximate 
alternatives; moreover, these can be pretty useful in judging 
the accuracy of other approximate solutions.  
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NOMENCLATURE 
A     [m2]   heat transfer area  

cA    [m2]   cross-sectional area  

, ,a b c   [-]    constants 

ac    [J/kg.K]  specific heat at temperature aT   

( )c T    [J/kg.K]  specific heat at temperature T   

1C , 2C   [-]    constants of integration  

h     [J/s.m2.K] heat transfer coefficient  

ak    [J/s.m.K]  thermal conductivity at temperature aT   

( )k T   [J/s.m.K]  thermal conductivity at temperature T   
L     [m]   length of rod  
p     [-]    function of θ  
t     [s]    time  
T     [K]   temperature   

sT     [K]   radiation sink temperature   
u     [-]    dummy variable 
V     [m3]   volume  
x     [m]   distance variable   
y     [-]    function of θ  
z     [-]    dummy variable 

   
Greek letters 
β     [-]    dimensionless parameter for ( )k T  and ( )c T  
∈     [-]    emissivity 
ε     [-]    conduction radiation parameter 
θ     [-]    dimensionless temperature 
ρ     [kg/m3]  density  

σ     [W/m2.K4] Stephan-Boltzmann constant (=5.669×10-8) 
τ     [-]    dimensionless time 

ξ     [-]    dimensionless distance 
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