
 

 
Abstract— The analysis of the pre-tensioned twisted cables 

when subjected to axial loading pose a challenge and this is 
because the analysis has been done by various investigators 
and yielded different responses. Investigators proposed 
different hypotheses to report the predictions. There is no 
unique methodology or mathematical model to predict the 
response of a strand under a load, as accurately as desired. The 
theoretical predictions also differ by small margin from the 
experimental findings. There are several significant factors but 
they have not been considered together in most of the works. 
The test results show that all the theoretical predictions 
underestimate strand extension under fixed end conditions and 
free end conditions. The fixed end conditions and free end 
conditions are two degrees of fixity. The aim of the present 
work is to devise a finite element model that would narrow 
down the gap between the predicted and experimentally found 
responses. The emphasis was placed on the linear elastic global 
behaviour of a simple isotropic straight steel strand under 
small strain. 
 

Index Terms— cable mechanics, strand analysis, finite 
element model,   wire rope mechanics 
 

I. INTRODUCTION 

EVERAL analytical models are available for predicting 
the mechanical behaviour of cables and ropes under 

different loading conditions. The review is limited to strand 
axial response and stiffness only.  Various hypotheses have 
been evolved based on the strand geometry, loading type – 
axial or bending, static, fatigue or vibration and on required 
specifications (stiffness, strength, and damping). Cardou 
and Jolicoeur [1] discussed in detail the mechanical models 
of strands. Since there are many parameters which can vary 
in the construction of a rope strand, and predicting the 
behaviour of such ropes analytically is difficult. Sathikh et 
al [2] in their linear analysis study included the wire shear 
forces and couples together with the effect of wire stretch 
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and rotations, and found that the stiffness matrix yielded 
symmetry as expected in a linear elastic analysis. The use of 
both the strain energy and equilibrium approaches has 
yielded the same results, confirming the correctness of the 
solution. The origin of lack of symmetry in the earlier 
models was identified to lie in the inadequacy of the wire 
twist and change in curvature used. This was overcome by 
using the Wempner’s [3] general formulation and Ramsey’s 
[4] & [5] theory of thin rods.  

 In addition, several models are also available 
for the analysis of synthetic cables. Very recently, Ghoreishi 
et al [6] & [7] have developed two closed-form analytical 
models, which in sequence can be used to analyse the 
synthetic cables.  

 With the development of Finite Element 
methods, certain authors have used the Finite element 
approach to predict the mechanical behaviour of cables. 
Carlson [8] modelled the wires by bar elements as well as 
the connections between the wires. Jiang et al [9] & [10] 
investigated the stress distribution within the wires, in a 
simple straight strand as well as in a three-layered straight 
strand, using a concise 3D Finite element model with 
prescribed displacement field. The wire stretch which 
emerges out of wire rotation was ignored in the formulation 
of the constraint equations of the concise FE model. 
Ghoreishi et al [11] developed a 3D linear finite element 
model with infinite friction between the wires and the core.  

 Although, a few researchers have contributed 
in developing of finite element models, there had been 
limitations. Due to the limitations in the existing finite 
element models such as merging of nodes at the contact 
points (for infinite friction) and inability to represent the 
wire cross section in its realistic elliptical shape, an 
improved three dimensional model is developed in this 
work. 

 Utting and Jones [12], [13] & [14] have 
contributed significantly on the experimental testing on the 
axially loaded strands. These experimental results have been 
used as a reference by various authors to confirm the 
authenticity of their analytical models. 

 Although the different mathematical models 
yield comparable results with experimental findings, they 
still produce some deviations in the results. Since the 
experimental results are very limited, obtaining a general 
conclusion from analytical approaches is also difficult. A 
closer interpretation to the experimental behaviour can be 
achieved by accurately modeling the inter wire phenomenon 
and consideration of Poisson’s effect of the wire/ core. The 
development of the finite element method to cater to a close 
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interpretation with the experimental behaviour was felt 
necessary.  

 Shibu et al. [15] had followed the general 
methodology of Sathikh et al [2] for establishing torque and 
stress balance for 3 layered armoured cable meant for 
oceanography purposes. The present work ventures to 
extend the Sathikh et al [2] model designed for (1/6) radial 
contact to the next level of configuration (1/6/12) and 
building up of  FE model  to predict their strand responses 
with the available test results published in the literature. 

II.   KINEMATIC RELATIONS 

A. Review Stage 

In strands under pure axial loading, an axial force Fs and 
twisting moment Ms are imposed on the strand. In such a 
case, all the wires in a given layer are assumed to carry 
exactly the same loads. Global strand strains are designated 
by the strand axial strain  and the strand axial twist radians 
per unit length h. A typical helical strand property is 
the coupling which appears between the extension and 
torsion responses.  It is well established that the response of 
a linear elastic strand system has the following form of 
stiffness equation for axisymmetric loading: 
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Figure 1 shows the strand geometry of a single layered 
helical strand , the developed geometry of the helix and also 
the forces such as normal,  binormal , axial forces along the 
3 directions perpendicular to each other and moments  along 
the 3 directions perpendicular to  each other. For the present 
problem, the core is assumed to be rigid radially. 

The equilibrium equations for the force and moment 
resultant have been derived for a general twisted and bent 
rod under the action of distributed forces and moments 
Figure 1 as a general case. 

 
Fig. 1b.  Forces and Moment distribution in a wire. 

 
Sathikh et al [2] model made use of the concept of 

generalized strains derived by Ramsey (1988,1990) in the 
normal, binormal and tangential directions and adopted 
them as 1, 2, and 3 in place of the deformed curvature 
and twist used in the other models, after taking clue from 
Wempner [3].  

 Ramsey [4] & [5] has derived the following 
expressions for an axisymmetrical loading of a strand: 

Wire flexural strain about the wire normal axis: 

01                     (2) 

Wire flexural strain about the wire binormal axis: 
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Wire torsional strain about the wire axis: 
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  The binormal force  ''

1 GHN   equation is also 

modified accordingly. The bending and twisting couples G' 
and H and the wire tension T was modified as mentioned:  

1EIG                         (5) 

2JGH                            (6) 

wAET 
                    (7) 

The resultant strand external force Fs and moment Ms can 
be obtained from the following equations, when the core 
deformations are also added. 

ccs AENTmF  ]cossin[              (8) 
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 Eliminating Nby G and H , and substituting G , 
H  and T  in equations (8) and (9) would yield resultant 
external force and couple. Rearranging, the elements of 
stiffness matrix derived are presented below. 
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Fig. 1a.  Strand Geometry with its cross-section. 
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Since the Sathikh model considered the curvature and 
twist effects with an appropriate contribution from the axial 
stress and has yielded the symmetry of stiffness matrix, as 
expected in any elastic system, it has been adopted as a 
basic theoretical model for this work. 

 Stiffness coefficients of Sathikh et al model is 
expanded to multilayered strand configuration 1/6/12.    
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The theoretical response of the strand under Fixed-Fixed 

loading and fixed free loading is estimated. In the case of 
Fixed-Fixed loading the ends is restrained from strand 
rotation.  As the rotational strain () is zero they induce a 
torque in strand during axial loading. 

In the case of free end, the ends of the strand are not 
restrained from angular displacement, and hence there is 
variation in strand rotation on strand axial load. Under 
Fixed-Free loading the strand moment Ms is considered as 
zero. The responses of the strand (axially loaded metallic 
cable made from 2 layers of wire helically wrapped around 
a central wire) is analytically determined for fixed & free 
boundary condition and compared with the test results of 
Utting and Jones [14]. 

III. EXTRACTION OF FINITE ELEMENT MODEL 

A finite element model was developed to dimensions 
mentioned in  the Table 1. The geometry of the core has 
been obtained by a linear z-axis extrusion. Each wire has 
been generated by the extrusion of its cross section along a 

helix corresponding to the centroidal line of the wire. The 
simple straight strand cable structure has been constructed 
using the commercial CATIA software and was imported to 
ANSYS software for meshing & analysis. Three 
dimensional solid brick elements had been used for 
structural discretization. The model was developed for two 
pitch lengths for second layer for one pitch length for third 
layer and then meshed using 3D solid elements as shown in 
Figure 2 (a) to trade off between the computational time and 
accuracy. 

 The twisted elliptical cross sections of the wire normal 
to the core axis can be observed in Figure 2 (a). To consider 
the accuracy of results of the present finite element model, it 
was compared with experimental data reported by Utting 
[14]. In the experimental study the material modulus was 
determined to be 198000N/mm2. The diameters of the wire 
and core are 3.33 mm and 3.66 mm respectively with the 
wires laid up at a helix angle of 75.4°for first layer & 
75.9°for second layer. An available ‘Master- Slave node 
concept’ called ‘CERIG’ (ANSYS command) was used to 
define a rigid region. Multiple constraint equations to relate 
nodes in the defined rigid region are automatically 
generated by this concept. In the present FE model, any 
plane cut perpendicular to the strand axis would contain 
nodes on the circular section of the core and those on the 
circular section of the wires.  

 Nodes on the rigid plane which is the loading end of 
the strand was grouped together to form ‘Slave nodes’. An 
additional node called ‘Master node’, which is the retained 
node for the rigid region was created on the axis of the core 
at a distance away from the slave nodes. This master node 
facilitates the axial loading. The nodes on the top surface of 
the wires and core (slave nodes) were automatically linked 
using rigid body elements to the master node to have the 
same displacement as defined by the master node. The 
Figure 1(b) is an illustration which shows the visibility of 
connection between the master node and the slave nodes 
with rigid links.  High friction contact conditions were 
established between the wires and the core (wire/core 
contact), wire &wire have been applied for the nodes 
situated near the helical lines of contact between core and 
wires, wire &wire.  Prediction of strand response for axial 
loading has been attempted for the fixed – fixed and free – 
fixed end conditions. Using these constraints the finite 
element analysis was performed to predict the forces acting 
on the strand.  

 

 
 

TABLE I 
GEOMETRIC DATA OF  3 LAYER 19 WIRE STRAND 

 

Layer 

No. 

No. of 

wires

Helical 

direction and 

angle 

Wire 

diameter 

Pitch 

length 

mm 

Young's 

modulus

N/ mm2 

Poisson‘s 

ratio 

 

1 1 - 3.66 mm - 198000 0.3 

2 6 RH, 75.37o 3.33 mm 84.11 198000 0.3 

3 12 RH, 75.9o 3.33 mm 167.28 198000 0.3 
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The boundary conditions required to simulate the loading 
for the strand model are mentioned as under: 

The bottom end section of the cable is fully clamped by 
constraining all the d.o.f of the nodes are shown in  Figure 
3(a). 

In the case of fixed end loading, strand rotation is 
clamped by constraining all the d.o.f of the master node 
except for its translational d.o.f along strand axis is shown 
in Figure 3(b). 

Unlike the fixed end loading, in the case of free end 
loading, strand rotation about strand axis is permitted on the 
master node are shown in Figure 3(c). 

 

IV. FINITE ELEMENT ANALYSIS RESULTS AND DISCUSSIONS 

The responses of the strand assembly in terms of axial 
load, torque, contact parameters, and stress distribution to 
static axial displacement under two different degrees of 
fixity for a (1/6/12) steel strand have been studied using an  
finite element model. Emphasis is placed on the linear 
elastic global behavior of a simple isotropic straight steel 
strand under small strain. A linear kinematic hardening 
material model has been used.  Rough frictional Contact 
between the center and helical wires, wire & wire contact 
have been simulated.  

          They can simulate general surface-to-surface 
contact with rough friction and sliding not permitted. 
Preliminary simulations performed with various finite 
element models of length up to many pitches, for trade-off 
between the computational time and accuracy justified the 
final selection of a 2 pitch in 2nd layer, 1 pitch in outer layer 
model (8x104 nodes) used in this analysis. A strand axial 
strain of 0.01 at the master node was incremented in steps of 
0.001 in the analysis and results have been compared with 
the Linear analytical extension model of Sathikh [2], and the 
experimental results of Utting & jones [14].  

 Figures 4 show the load response of the strand (at 
master node) to the axial strains for the fixed and the free 
end conditions. 

In the case of fixed end loading, the linear limit of the 
strand force resulting from the present work is 71kN at an 
axial strain of 0.003. The corresponding strand force at the 
same strain from the theoretical model of expansion of 
Sathikh was observed to be 90kN. The experimental results 
of Utting & Jones (1988) were observed to be 71.5kN. The 
theoretical and the FEM findings resulted in a deviation of 
20% and 0.7% respectively when compared with that of the 
test results.  

In the case of free end loading, the linear limit of the 
strand force resulting from the present work is 29.5kN at an 
axial strain of 0.003. The corresponding strand force at the 
same strain from the theoretical model of extension of 
Sathikh was observed to be 32kN. The experimental results 
of Utting & Jones [14] were observed to be 28kN. The 
percentage of deviation of the theoretical and FEM findings 
with the test results was found to be 12.5%. and 5% 

  Master node 

Fig. 2a.  Finite Element Mesh: (a) without master node (b) with master node
(shown nearer to the top surface for clarity) 

       
 
 

 
Figure 3.  Finite Element Mesh: (a) bottom end fully clamped (b) fixed end
loading condition (c)  free end , loading condition. 

 
 
Fig. 3.  Variation of strand axial load for Fixed & Free end condition 
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respectively. In general, it is confirmed that for the same 
strand axial strain, the helical wires with a free end 
condition carry less axial load than with the fixed end 
conditions. However, in the both the loading cases the finite 
element results tend to agree closely with that of the test 
results of Utting & Jones [14]. The very inclusion of 
Poisson’s effect in the formulation of stiffness matrix could 
narrow this deviation. 

In the case of fixed end condition, as the ends are 
restrained from strand rotation, they induce torque which 
tends to untwist the strand during axial loading. Considering 
high friction also the play an vital role in increase of torque. 
Figure 5 shows the torque or moment variation. 

In the case of free end, the ends of the strand are not 
restrained from angular displacement, and this variation in 
strand rotation is plotted as a Figure 6. The rotation values 
from the present case tend to agree with that of experimental 
values . 

Table 2 shows the comparison of strand responses with 
the theory, present and test results. 

The following are the observations of the finite element 
model: 
(i)    In the case of the fixed and free end loading, It is 

observed that for the same strand axial strain, the 
helical wires with a free end condition carry less axial 
load than with a fixed end. This is the reason that the 
axial (tensile) rigidity with the free end condition is less 
than that with a fixed end.  

(ii) In the case of the fixed end loading, It is observed that 
for the same force, the helical wires with a fixed end 
condition torque is produced because of arresting the 
rotation. The percentage of deviation of the theoretical 
and FEM findings with the test results was found to be 
20%. and 0.7% respectively 

(iii) In the case of the free end loading, It is observed that 
for the same force the helical wires with a free end 
condition rotation is there because it is not restrained 
from angular displacement. The percentage of deviation 
of the theoretical and FEM findings with the test results 
was found to be 12.5% and 5% respectively. In general, 
the present of FEM model indicated a good correlation 
with the experimental findings. 

(iv) For a constant strain value 0.05, stress distribution 
along Z axis for free end and fixed end condition are 
shown in Figure 7(a) and Figure 7(b) respectively. The 
Von Mises stress & maximum principal stress plots are 
also shown in Figure 7(c&e) and 7(d&f) for free end 
and fixed end condition respectively.  

(v) In free end condition the maximum stress was found to 
be in concentrated in the core and its adjacent layer. In 
another words, the distribution of strand force is more 
in the core its adjacent layers.  The percentage 
distribution of strand force between the wires in the 
layer is shown in Figure 8. 

(vi) In the fixed end condition the ends of the strand are 
restrained from rotation and hence it tends to induce 
torque which again influences the stress levels in the 
outer layer. Also, the strand force was found to be more 
uniform between the layers and the core. This is again 
illustrated in Figure 8  

(vii) These stress plots however represents the trend of stress 
distributions under axial loading which in turn would 
help the designer in finding the stress intensity 
locations. This would be very useful in design for 
strands. 

 
 
 
 
 
 
 

 
 
Fig. 5.  Variation of torque with axial strain for fixed-end loading 

 
 
Fig. 6.  Strand rotational response for free end loading 

TABLE II 
COMPARISON OF STIFFNESS COEFFICIENTS WITH THEORETICAL, FEM 

AND EXPERIMENTAL FINDINGS FOR BOTH END CONDITIONS 
 

Load 

Case 

Extension (ε / P) 

(microstrain/kN) 

 

Torsional 

Restraint (Ms / Fs) 

(Nm/kN) 

 

Rotation – (γ / Fs) 

(micro rad/kN) 

FREE 
FEA Theory Test FEA Theory Test FEA Theory Test

91.47 95.31 92.5 0.00 0.00 0 -49.32 -47.08 -50.51

FIXED 36.32 32.61 38.33 1.15 1.33 1.23 -0.52 0.00 -1.16
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V. CONCLUSION 

In the present work, the global strand response were 
predicted using multilayer FE model and compared with 
extended equations of Sathikh [2] model cater to 3 layered 
wire rope strand and the published test results of Utting [14] 
for various end conditions, ranging from  fixed end to free 
end. In general, the finite element results indicated a good 
correlation with the experimental values. Further, this model 
can provide information about the linear effects such as the 
stress distribution, their locations etc., which are otherwise 
difficult to address but do have an influence in the failure of 
the wire.  
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Fig. 7.  (a) stress distribution for free end condition along Z axis (b)  stress
distribution for fixed end condition along Z axis  (c) Von-Mises stress for
free end condition (d)  Von-Mises stress distribution for fixed end condition
(e) Max principle Stress for free end condition (f)  Max principle Stress
distribution for fixed end condition  

       

 
Fig. 8.  (a)Wire wise distribution of force in strand for various layers ( Layer
1= core, Layer 2=6 wires & Layer 3= 19 wires) (b) layer wise distribution of
strand force for both ends of fixity. 
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