
 

  
Abstract— On the base of the data gathered in experiments 

made on the intentionally designed stand there is proposed the 
arctan-approximation to the dependence of the thermal 
conductivity in all  anatomic directions of the wood, which are 
longitudinal, radial and tangential. We conclude that this 
approximation works very well in higher values of the 
temperature. This range, up to 200°°°°C, has to be taken into 
account when there are undertaken the optimization problems 
in the thermal forming of superficial layers of materials which 
are porous and  anisotropic (the wood and sawdust are good 
examples of such materials). 

 
Index Terms— anisotropy, Fourier’s equation, temperature, 

conductivity. 
 

I. INTRODUCTION 

he purpose of compression and thermal plasticization is 
to obtain desired physical properties  
of products, especially in the superficial layer (crust) 

and to convert certain biomasses into an environment-
friendly and renewable source of energy. These are primarily 
porous materials having complex thermo-mechanical 
properties, such as wood - representing materials with 
anisotropic properties and sawdust - representing particulate 
materials. The effect of heat is of primary importance in 
thermal plasticization and geometrical shaping processes. 
Therefore, it is necessary to determine the distribution of 
temperature, especially in the crust during compression and 
thermal plasticization [6]. 
The purpose of modeling the processes of compression and 
thermal plasticization of loose materials, as well as porous 
and anisotropic materials, is to determine the critical stress 
condition which initiates plastic flow. This value is critical 
for the effectiveness of thermal plasticization process and 
depends on the thermo-mechanical parameters of the 
material and the key parameters of the process itself [6]. As 
it has been proven by research, the strength of materials such 
as wood and sawdust evidently decreases with the increase 
of temperature, influenced also by the moisture content of 
the material. Therefore, temperature distribution, especially 
in the thin superficial layer, is one of the main characteristics 
taken into account in formulating constitutive equations, 
especially regarding thermal conductivity and plasticity.  
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For determining the distribution of temperature in a layer of 
thermally plasticized material it is indispensable to 
determine the heat conductivity coefficient λ. 

II.  CHARACTERISTICS OF THE PROCESSES UNDER 

DISCUSSION 

Designing of machines for densification and plasticization of 
structural and waste materials plays a major role in 
development of new processing techniques. These are 
utilized in the production of certain kinds of biomasses as an 
environment friendly and renewable source of energy. 
Moreover, specific physical properties may be obtained in 
the superficial layer of material, an example of which could 
be improving the quality by refinement of wood surface by 
hot rolling. For modeling of materials with porous and 
anisotropic characteristics (Fig.1) and compression and 
plasticization of loose materials (Fig. 2) the primary 
parameter is the critical strain at which plastic flow 
commences.  
     Refining of wood shall be understood as smoothing its 
surface and compacting its internal structure [7]. As a result 
of high temperature influencing  the external layer of wood 
undergoes a hydrolysis process which starts the 
plasticization process. Under simultaneously applied 
pressure the plasticized material fills up wood pores, so it 
contributes to densification of wood structure and 
smoothness of its external surface. Moreover, a simultaneous 
application of pressure and temperature, results in  
a uniformity of wood structure in the layer close to the 
surface and its consolidation occurring mainly in direction 
parallel to fibers. The resulting increase in wood strength 
makes the rolled wood is a better material in some technical 
applications.  

 

Fig.  1. Rolling process of a veneered furniture element.   
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The smoothness of a layer of wood which has been treated 
in such a manner, allows for a considerable reduction of 
sanding and its higher density makes it possible  
to reduce varnish consumption. 

 

Fig.  2. Kinematics diagram of the sawdust compressing process, where :1 
–  initial densification chamber   2 –  forming sleeve, 3 – hydraulic power 
unit. 

While briquetting of the sawdust and wood wastes without 
binding agents, in order to achieve a sufficiently durable 
briquette consolidation, it is necessary to ensure not only 
adequate reduction of initial volume of compacted material 
but also its plasticization. Moreover, when the sawdust 
 is pushed through the briquetting chamber (Fig.2) and 
further on trough the forming sleeve, in a layer  
of the briquette close to its surface, due to friction, the 
temperature rises up to about 130 0C. At such temperature 
the material (just like in case of hot rolling) undergoes the 
plasticization, thus creating a very thin layer on briquette 
surface, which becomes, after cooling down, a solid and 
smooth reinforcing structure. These conditions require 
appropriate pressure and temperature in the forming sleeve.  
 Theoretical determination of the thermal conductivity 
coefficient for these materials is rather difficult and hence 
the efforts to develop appropriate methods and devices for 
its empirical determination. The experience from various 
tests of the above-mentioned materials was used to develop 
such measuring assembly, designated for testing of wood, 
particulate, fibrous and other biomass materials ( Fig. 3.). 

 
Fig.  3. The station, installed in Laboratory for Material Tests in Poznań 
University of Technology, to the investigation of the thermal conductivity 
coefficient;  1- measuring assembly, 2 – power supply unit, 3– signal 
amplifier,  4 – recording computer with metering card 

 

 

 

 

 

III.  FLOW OF HEAT DURING COMPRESSION 
PROCESSES 

As it has been proven experimentally the strength of 
materials such as wood decreases significantly with the 
increase of temperature [6]. Therefore, the determination of 
temperature distribution in a layer of material during thermal 
plasticization is one of the key points in the development of 
the mathematical model which describes of plasticization 
processes. The transfer of heat by conduction in unsteady 
conditions when the layer of material closely abuts on the 
hot pressing surface is closest to the actual transfer of heat 
[7]. 
      In thermal plasticization process of the analysed 
materials, such as wood, the heat is transferred via a 
unsteady conduction, which is described by the second 
Fourier’s law:                                                           
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where: 
ρ

λ

pc
a =  – thermal diffusivity, T – temperature, t 

time, ρ – density of material, cp – specific heat capacity, λ – 
thermal conductivity coefficient.  
      The solution of this equation, with appropriately defined 
initial and threshold conditions, will allow the determination 
of the temperature as a function of time at any point of the 
analyzed layer of material. The purpose of invoking the 
above equation (1) at this point is to draw attention to the 
significance of the diffusivity coefficient which is critical to 
the accuracy of the result. 
       Since both the thermal conductivity coefficient and the 
specific heat capacity change with temperature [4], the 
relevant empirically established material functions must be 
included in equations 

      λ = f(T),   cp = f(T)                             (2) 

Moreover, the thermal conductivity coefficient depends also 
on the anatomic directions of wood and its values were 
obtained during experimental investigations using testing 
station (Fig.3). 
 

IV.  THE ARCTAN-APPROXIMATION TO THE 

THERMAL CONDUCTIVITY DEPENDENCE ON THE 

TEMPERATURE 
In numerous papers there is described the dependence of the 
thermal conductivity λ on the temperature T (and, moreover, 
there are taken into account other parameters such that the 
moisture). The most popular models are polynomial (of the 
1st and 2nd degree), rational and power ones, here the 
approximating functions are of the form: 

λ(T) = A + B⋅T,  λ(T) = A + B⋅T + C⋅T 2, 

λ(T) = 
CT

B
A

+
+ , λ(T) = BTA⋅  

respectively, where the parameters A, B and C are 
determined in the way the fit to be as good  
as possible; see. e.g. [2, chapters 3-17], [3],  [12], [13], [14], 
[16]. Naturally, the description at hand 
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 is valid within the considered range of the temperature T, 
usually it varies from 20 to 200°C. There are also considered 
other ranges. Let us here cite the paper [15] where there is 
derived the power law concerning the thermal conductivity 
of oak and maple in the temperature range 0.02–1°K; 
Authors conclude that there takes place the power law with 
the reference thermal conductivity and the exponent:  

     A = (9.3 ± 1.9)⋅10–3 W/(K⋅m),  w = 2.7± 0.4.  

Obviously, this model does not remain valid in a higher 
temperature, e.g. for 30°C it produces the senseless value 
9.3⋅10–3⋅303.152.7≈ 25000, while the real thermal 
conductivity is less than 0.30. 

TABLE 1 
VALUES OF THE THERMAL CONDUCTIVITY IN THE LONGITUDINAL, RADIAL 

AND TANGENTIAL DIRECTIONS  (LJ, RJ AND TJ, RESP.) OF BEECH SAMPLES 

MEASURED ON THE APPARATUS 

j 
T 

[°C] 
l j 

[W/(m⋅K)]  
r j 

[W/(m⋅K)]  
tj 

[W/(m⋅K)]  
1 40.6 0.3878 0.1722 0.1556 
2 61.2 0.4361 0.1963 0.1558 
3 80.2 0.4479 0.2035 0.1648 
4 100.1 0.4635 0.2058 0.1636 
5 119.3 0.4638 0.2173 0.1667 
6 140.4 0.4577 0.2105 0.1594 
7 161.9 0.4618 0.2173 0.1594 

 
In the Table 1 there are listed the values of the thermal 

conductivity of beech disks (the diameter of 80 mm, the 
thickness 5 mm) measured in the longitudinal, radial and 
tangential directions for seven values of the temperature 
(equal about 40, 60, ..., 160 °C). We examined several 
candidates, the four forms listed above included, to be good 
approximations to the distribution of the points (Tj, yj), 
where y stands for l, r or t. We applied the computer algebra 
system Derive 5.0 from Texas Instruments, Inc., we worked 
with 10 decimal digits and we found that the best least-
squared fit to the set of points (Tj, l j) is the function  

l(T) = a⋅atan(T – 273.15) 2 + b 
where T denotes the temperature [°K], a = 135.10325,  
b = –211.7495284 (see Fig.4).  
This means that the pair (a, b) = (135.10325, –211.7495284) 
makes the quantity  

Q = ∑
=

−+−⋅
n

j
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22 })15.273arctan({  

assumes its smallest value. Both values a and b are 
calculated via the least-squared method (a.k.a. the least 
square method, la méthode des moindres carrés, first 
described, independently, by C.F.Gauss in A.-M.Legendre in 
the turn of 18th and 19th centuries), so they are the solution 
of the system of the equations  
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The quality of the approximation is  

Q
n

1
 ≈ 0.000869; 

the 100-times zoomed errors of the approximation at each 
point Pj are visualized in Fig.4. It verifies that the function at 
hand approximates the distribution { Pj : j = 1, 2, ..., 6} very 
well. It also appropriately exhibits the behaviour of the real 
thermal conductivity for the increasing temperature T, 
namely it approaches to circa 0.4702 W/(m⋅s).  

Obviously, we can use this approximation within some 
limits. A wood starts burning at the temperature about 
250°C, so, clearly, this temperature is the definitely upper 
limit. Therefore we admit the discussed relation when T does 
not exceed, let’s say, 200°C (there is the maximal 
temperature of the heater working in the experimental 
stand).  

What concerns the lower limit for the temperature T, let’s 
admit it to be 20°C. We state it because we gathered the 
experimental results in the stand installed in the hall where 
the temperature was about 20°C. Putting T = 20 and 300 in 
our formula we get 0.132 and 0.288 W/(m⋅K), both values 
can be well accepted when one looks into the tables where 
the thermal conductivities of the wood; for instance [14] 
gives values 0.11-0.45 W/(m⋅K) at T = 20°C and the 
moisture 0-15%.   

Let’s call the proposed approximation as the arctan-
approximation. The arctan-approximation is a linear fit, as 
all four popular models mentioned above. It’s easy to accept 
the arctan-approximation as the natural form of the fit 
description because it relates very well with the natural 
behaviour of the change in the thermal conductivity λ, both 
theoretical consideration and the experiment show that in 
higher values of the temperature T the conductivity λ 
changes insignificantly (see Fig.4, where the stabilization 
takes place at the level about 0.466 W/(m⋅K)). Obviously, 
this property takes no place when the polynomial or 
exponential model is applied. For the rational model with 
assumed value for C = 0 the best least-squared fit is of the 
form  

l(T) = 
T

04867.4
494741.0 −  

with centigrade temperature T [°C] and it shows that the 
stabilization takes place at the level 0.494741, so it is about 
0.0245/0.4702 = 5% higher than the level produced by the 
arctan-approximation. 

Note that the arctan-approximation is very sensitive to the 
roundings. For the data here reported it admits to have the 
coefficients rounded to third decimal place,  

λ(T) = 135.103⋅arctan(T – 273.15)2 –211.749 
and it exhibits the eye-inspected differences when the pair 
(a, b) is rounded to (135.10, –211.75) – the graph drops 
down about 0.01 for T = 400 °K, (135.10, –211.74), 
(135.10, –211.7), (131, –211) – the graph goes up about 
0.005, 0.09 and 0.588 (from 0.461 to 1.049). 
Four popular fits are not so catastrophic sensible. For 
instance, the best least-squared fits are  

l(T) = 0.02728144338⋅T 0.471613212, 
l(T) = 0.0005321294619⋅T + 0.2464546191, 

l(T) = –8.605342471⋅10–6⋅T 2 + 0.006976148824⋅T –
0.9460821095, 

in the classes of power functions, of polynomials of 1st and 
2nd degrees, resp. When we take the coefficients with less 
number of digits we get the formulas  

l(T) = 0.027⋅T 0.47, l(T) = 0.00053⋅T + 0.25,  
l(T) = –8.605⋅10–6⋅T 2 + 0.006976⋅T –0.9461 

and it does not essentially affect the quality of 
approximations; the same good conditioning occurs  
for the rational fit,  

l(T) = 0.495–4.05/T, 
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and no further rounding can be accepted, the graph of the 
function l(T) = 0.5–4/T is shifted up,at T = 20°C from 
0.2915 to 0.3 W/(m⋅K).  

Although the stability of these functions is the advantage of 
these models, the arctan-approximation fits better to the 
measured values, namely it better exhibits the values of the 
thermal conductivity for higher values of the temperature  
T (and just this behaviour is the point of our interest). 

Analogical analysis was made for the radial and tangential 
directions and, finally, all three arctan-approximations (with 
6 decimal digits, after the data listed in Table 1) are  

l(T) = 135.103  ⋅arctan(T –273.15)2 –211.749 
r(T) =   74.9405⋅arctan(T –273.15)2 –117.499, 
t(T) =   53.5509⋅arctan(T –273.15)2 –  83.9475, 

where T [°K].The graphs of these dependencies of the 
thermal conductivity are shown in Fig.5. 

 

Fig.  4. Seven points Pj = (Tj, l j), the curve λ = l(T), the point (300, 0.283)  
and the error line magnified 100 times. 

 

Fig.5. Measured points and the approximating curves for the latitudinal, 
radial and tangential thermal conductivities 

Obviously, the arctan-approximating formulas can  
be produced in centigraded temperature T; then we have 

l(T) = 133.806  ⋅arctan T 2 –209.712, 
r(T) =   57.7231⋅arctan T 2 – 90.7389, 
t(T) =   12.6700⋅arctan T 2 –  19.7389, 

where T [°C]. The change in coefficients a and b is due to 
the (double) nonlinearity of the approximating function, but, 
obviously, the graphs are as that seen in Fig.5 (the only 
change needed is to scale the horizontal axis in Celsius 
degrees). After the last three formulas the longitudinal, 
radial and tangential thermal conductivities stabilize at the 
level 0.4701, 0.2097 and 0.1631, resp.   

V. FINAL  CONCLUSIONS 

The research results presented in this paper are part of  
a wider testing programme focusing on strength properties of 
compressed materials and covering also determination of the 
In the investigation of the dependence of the thermal 
conductivity λ = λ(T) of the wood on the temperature T, 
there have to be considered three natural directions of the 
wood, so there have to be described the longitudinal l, the 
radial r and the tangential t thermal conductivities. In the 
paper we report the experiment providing the values of these 
conductivity coefficients for six values of the temperature T. 
For the ovendry disks made of beech these values were 
gathered on the stand intentionally designed for this purpose 
and installed in Laboratory of Material Tests in Poznań 
University of Technology. On the base of this data we 
propose to describe the discussed dependence λ = λ(T) via 
the arctan-approximation. Within the standard range of the 
temperature, let’s say varying from 20 to 200°C, this 
approximation fits very well to the experimental data and 
coincides with the stabilization taking places when the 
temperature is high enough. The description of the discussed 
relation is essential to a future research concerning the heat 
transfer (in all three directions) in the plasticization 
processes of natural materials. 
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