
An Optimization Method for an Aircraft Rear-end
Conceptual Design Based on Surrogate Models

Sergio de Lucas, Angel Velazquez, and Jose M. Vega

Abstract—A new conceptual design method is presented that
is based on the minimization of a target function subject to
some restrictions using surrogates. Specifically, the surrogates
are used to speed up the calculation of both the various
ingredients of the target function and the restrictions. The
surrogates are based on a combination of high order singular
value decomposition (resulting from a set of snapshots that are
calculated using a computational fluid dynamics solver) and
modal interpolation. The method is both flexible and much
more computationally efficient than the conventional method,
especially if the number of design parameters is large. The
method is illustrated considering a simplified version of the
conceptual design of an aircraft empennage.

Index Terms—Conceptual design, high order singular value
decomposition, optimization, surrogate models, reduced order
models.

I. INTRODUCTION

CONCEPTUAL design in industry is evolving in two
conflicting directions: (a) the number of design and

tunable modeling parameters keeps increasing, but (b) the
time span allocated to the design cycles is being shortened.
The difficulty is even deeper since the parameters are of
a highly multidisciplinary nature, which means that a set
of essentially different Physics/Mathematics modeling equa-
tions must be considered. Conceptual design is becoming
increasingly dependent of mathematical methods.

Many documents have been written on multidisciplinary
optimization in conceptual design and on the integration of
surrogate models in this. Kroo et al. [1] decompose the
problem into two levels: a system level whose responsibil-
ity is the coordination of the optimization process, and a
lower level made up of sub-spaces for the various technical
disciplines. Antoine and Kroo [2], [3] linked the different
technical disciplines of engine performance, using a Nelder-
Mead [4] algorithm in reference [2] and a genetic algorithm
in reference [3]. It is also worth mentioning the applications
by Schumacher et al. [5] on the structural design of a wing
box, by Piperni et al [6] on the design of business jets,
and by Queipo et al. [7] on the multi-objective design of
a liquid-rocket injector. Price et al [8] included aspects of an
aircraft design which are not easily modeled, such as the cost
associated to fabrication and maintenance. A recent review
on the subject has been recently published by Forrester and
Kean [9].
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The main object of this paper is to present a new op-
timization method for conceptual design that is based on
the use of surrogate models, which in turn are based on the
combination of (i) the truncated high order singular value
decomposition (HOSVD) of a set of snapshots calculated
by a computational fluid dynamics (CFD) solver and (ii)
modal interpolation. Adopting the idea of Kroo et al., our
system level will be an optimization platform based on a
genetic algorithm (GA) that controls the various technical
disciplines, which are accounted for in the surrogate models.
The use of surrogates reduces the CPU time needed to obtain
each individual fitness, allowing for highly increasing the
number of design parameters.

II. THE HOSVD+INTERPOLATION METHOD

A. Methodology

The method is based on the construction of some surrogate
modules for the technical disciplines of the lower level. Each
surrogate provides an outcome that is a function of the design
parameters and/or the physical variables. When the latter are
discretized, the outcome of each surrogate can be cast into
a n-th order tensor, namely

Ai1...in = f(µ1
i1 , ..., µ

n
in

) (1)

This data can be obtained from various different sources,
such as experimental tests and/or CFD. The size of the
databases can be huge, which may put great difficulties in
its manipulation. The method provides the possibility of
compressing this data, which ease its manipulation and pro-
vides the outcomes for the discretized values of the param-
eters/physical variables. For intermediate values, the method
also allows for converting the required multidimensional
interpolation into series of one-dimensional interpolations,
which can be performed using, e.g., cubic splines.

B. High order singular value decomposition

Let us consider a third order, I1 × I2 × I3-tensor A.
The extension to higher order tensors is straightforward. The
HOSVD of A is of the form

Aijk =
∑
p,q,r

σpqrU
p
i V q

j W r
k , (2)

where σpqr is known as the reduced tensor and the three vec-
tor families {U1

i , ..., U I1
i }, {V 1

j , ..., V I2
j } and {W 1

k , ..., W I3
k }

are the modes of the decomposition, which are are calculated
through the following eigenvalue problems

∑N1
l=1 B1

ilU
p
i = (αp)2U

p
i , for p = 1, ..., I1,∑N2

l=1 B2
jlV

q
j = (βq)2V

q
j , for q = 1, ..., I2,∑N3

l=1 B3
klW

r
k = (γr)2W r

k , for r = 1, ..., I3.

(3)
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Here, the positive scalars αp, βq and γr are known as the high
order singular values of the decomposition and the matrices
B1, B2 and B3 are defined as

B1
il =

∑
jk AijkAljk

B2
jl =

∑
ik AijkAilk

B3
kl =

∑
ij AijkAijl

(4)

Since these matrices are positive definite, the modes can
be selected as orthonormal, which allows for obtaining the
reduced order tensor upon projection on the modes. This
is done multiplying the three equations in (2) by Up

i , V q
j ,

and W r
k , adding in the indexes i, j, and k, and invoking

orthonormality of the modes, which yields the following
expression of the reduced order tensor

σpqr =
I1∑

i=1

I2∑

j=1

I3∑

k=1

AijkUp
i V q

j W r
k (5)

If the elements of the tensor show redundancies (which
are necessarily present if they obbey physical laws such as
the Navier-Stokes equation), then an appropriate truncation
reduces the amount of data to be deal with an only slight
degradation in the approximation. Specifically, truncation to
S1 ≤ I1, S2 ≤ I2, and S3 ≤ I3 in the three indexes yields

Aijk ≈
S1∑

p=1

S2∑
q=1

S3∑
r=1

σpqrU
p
i V q

j W r
k , (6)

which involves only S1×S2×S3+I1×S1+I2×S2+I3×S3

numbers, instead of the I1 × I2 × I3 elements of the tensor
A. Thus, a effective compression results, with a compression
factor I1×I2×I3/(S1×S2×S3+I1×S1+I2×S2+I3×S3),
which is quite large if S1 ¿ I1, S2 ¿ I2, and S3 ¿ I3, and
furthermore increases exponentially as the dimension of the
database increases [10]. The following a priori relative error
bound can be obtained

APREB ≡√∑N1
p=S1+1

(αp)2+
∑N2

q=S2+1
(βq)2+

∑N3
r=S3+1

(γr)2∑N1
p=1

(αp)2+
∑N2

q=1
(βq)2+

∑N3
r=1

(γr)2

(7)

which bounds the relative root mean square (RMS) error and
allows for selecting S1, S2, and S3 requiring that APREB
be smaller that some required bound.

C. Multi-dimensional interpolation

The truncated HOSVD in (6) allows us for obtaining a set
of discrete values of the function f in eq.(1). A continuous
approximation of f results upon interpolation, noting that

f(µ1, µ2, µ3) ≈
S1∑

p=1

S2∑
q=1

S3∑
r=1

σpqru
p(µ1)vq(µ2)wr(µ3), (8)

where the functions up, vq and wr are defined for the discrete
values of the independent variables as

up(µ1
i ) = Up

i , vq(µ2
j ) = V q

j , wr(µ3
k) = W r

k . (9)

Note that the reduced order tensor σ is independent of µ1,
µ2 and µ3. For general values of µ1, µ2 and µ3, the the
outcome f is calculated performing three one-dimensional
interpolations. This method to obtaining surrogates of tech-
nical disciplines will be referred to as the HOSVD+I method
bellow.

III. CASE STUDY

Now, we illustrate the methodology described above with a
specific case study: the problem of optimizing a commercial
aircraft empennage according to a prescribed multidisci-
plinary objective function and a set of restrictions. It is to be
said that the optimized configurations obtained below are not
proposed as candidates for an actual aircraft configuration.
This is because the selection of hypotheses, ingredients of the
objective function, and restrictions is rather simplified and
debatable, and the number of free parameters has been kept
small to speed up calculation. In other words, the application
is made for illustration purposes only.

For the sake of clarity, the various technical disciplines are
described in the appendix, at the end of the paper.

A. The objective function

The objective function to be minimized depends on the
weight of the structure, the viscous drag, and the geometrical
complexity (which somehow accounts for manufacturing and
maintenance costs), as

Φ = ε1W/Wref + ε2D/Dref + ε3C/Cref (10)

where W is the weight of the structure, D is the viscous
drag, C is the complexity, the subscript ref refers to a
reference configuration (see below), and ε1, ε2, and ε3 are
weight factors, which are selected such that ε1 +ε2 +ε3 = 1.

Among these three ingredients, the only one which re-
quires a surrogate is the weight of the structure. Viscous drag
is calculated (at 15,000 m altitude, Mach 0.8 and α = β = 0)
using a simple wetted area model, which is both simple and
computationally inexpensive enough as to make a surrogate
model unnecessary. In the same way, the complexity ingre-
dient is evaluated from purely geometrical properties, which
involve quite simple computations. Calculation of the weight
instead is much more CPU time consuming, and will be made
using various surrogates accounting for the aerodynamics,
which are needed to calculate the loads that size the structure.
These loads are computed at 1,500 m altitude, Mach 0.5,
and various combinations of the angle of attack and the
sideslip angle, namely (α, β) = (0, 10), (10, 0), and (5, 5).
The structure is dimensioned at the worse conditions.

B. Restrictions

Three restrictions (imposed at 1,500 m altitude, and Mach
0.2) ensure the appropriate performances of the new empen-
nage:

1) The stability derivatives with respect the angle of
attack and the sideslip angle, Cmα and Cnβ , are not
allowed to worse their counterparts in the reference
configuration, which are Cref

mα = −2.8degree−1 and
Cref

nβ = 0.13degree−1, respectively.
2) The horizontal and vertical control derivatives with

respect to the control surfaces deflection angles, Cmδ

and Cnδ , are required to be at least a 90% of their
counterparts in the reference configuration, which are
Cref

mδ = −1.24degree−1 and Cref
nδ = 0.07degree−1,

respectively.
3) Stall is assumed to occur (and the configuration is

discarded) if either the maximum or minimum (along
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Fig. 1. Reference configuration

the span) values of the chordwise lift coefficient
reach some threshold values, which are assumed to be
Clref

max = 1.57 and Clref
min = −1.57, respectively.

Surrogates for the stability and control derivatives, and the
maximum and minimum spanwise values of the lift coeffi-
cient are constructed using the HOSVD+I method.

C. Reference configuration

The reference configuration is defined as follows:
• Fuselage: circular cross-section with maximum diame-

ter = 8m and length = 65m.
• Wing: Profile = NACA4412, swept angle = 40◦, dihedral

angle = 5◦, taper ratio=0.2, and semi-span = 30m.
• Horizontal tail plane (HTP): profile = NACA0012, root

chord = 10m, swept angle = 0◦, dihedral angle = 0◦,
taper ratio = 0.5, and semi-span =15m.

• Vertical tail plane (VTP): profile = NACA0012, root
chord = 10m, swept angle = 30◦, taper ratio = 0.5, and
semi-span = 15m.

D. Design parameters

The fuselage and wings are kept fixed in the optimization
process. Each HTP consists of two pieces and is defined with
six design parameters: λ1 and λ2 (the spanwise lengths of the
two pieces), λ3 and λ4 (the swept and dihedral angles, which
are common to both pieces), λ5 (a cuadratic correction to the
dihedral angle applied in the outer piece), and λ6 (the taper
ratio of the HTP). The VTP is defined with three parameters:
λ7 (the height), λ8 (the swept angle), and λ9 (the taper ratio).

IV. RESULTS AND DISCUSSION

CFD calculation of the snapshots needed to construct
the surrogates are performed with an aerodynamics vortex
lattice (AVL) method, which is also used to calculate the
aerodynamics of all individuals in the standard application
of the conventional method.

A total number of 36 optimizations have been run with
the new method using a standard GA. The first ten of them
have been used to calibrate the complexity function. The
remaining 26 have been divided in two different campaigns.
The first campaign consisted in seven combinations of the
three weight factors. That campaign has been run twice,
using the results in the first campaign as additional seeds
for the second campaign. This allowed for searching new
regions in the parameter space. Table I shows the values
of the three ingredients for the optimized individuals (the
reference values are also provided) and the associated fitness.

TABLE I
THE SEVEN COMBINATIONS CONSIDERED IN THE FIRST OPTIMIZATION
CAMPAIGN AND THEIR ASSOCIATED VALUES OF THE WEIGHT, DRAG,

COMPLEXITY, AND FITNESS OF THE OPTIMIZED CONFIGURATIONS

ε1 ε2 ε3 W (Kg) D (N) C Φ

Comb. #1 1/3 1/3 1/3 9,759 18,070 39.6 0.84
Comb. #2 1/2 1/2 0 10,836 15,734 45.2 0.90
Comb. #3 1/2 0 1/2 9,521 18,964 38.6 0.76
Comb. #4 0 1/2 1/2 14,651 15,636 44.4 0.80
Comb. #5 1 0 0 9,511 19,025 38.7 0.85
Comb. #6 0 1 0 12,205 15,016 49.7 0.79
Comb. #7 0 0 0 9,641 20,614 38.2 0.67
Reference - - - 11,124 19,129 57.1 -

TABLE II
COUNTERPART OF TABLE I FOR THE TWELVE COMBINATIONS IN THE

SECOND OPTIMIZATION CAMPAIGN

ε1 ε2 ε3 W (Kg) D (N) C Φ

Comb. #1 0 1/3 2/3 10,510 17,937 39.5 0.77
Comb. #2 0 2/3 1/3 15,181 15,223 46.2 0.80
Comb. #3 1/3 0 2/3 9,520 18,963 38.6 0.73
Comb. #4 1/3 2/3 0 11,158 15,426 46.7 0.87
Comb. #5 2/3 1/3 0 9,713 18,064 39.6 0.89
Comb. #6 2/3 0 1/3 9,520 18,963 38.6 0.79
Comb. #7 1/6 1/6 2/3 9,520 18,963 38.6 0.76
Comb. #8 1/6 2/3 1/6 11,149 15,436 46.7 0.84
Comb. #9 2/3 1/6 1/6 9,520 18,963 38.6 0.85
Comb. #10 1/4 1/4 1/2 9,520 18,963 38.6 0.80
Comb. #11 1/4 1/2 1/4 10,376 16,377 42.7 0.85
Comb. #12 1/2 1/4 1/4 9,520 18,963 38.6 0.84
Reference - - - 11,124 19,129 57.1 -

The second campaign consisted in 12 new GA runs (with
12 new combinations of the weight factors), which have been
seeded with the best individuals of the first campaign. Results
are presented in table II.

The performance of the surrogates is tested comparing
(in table III) the results obtained in the first optimization
campaign, combination #1 with those obtained with the
conventional optimization tool, optimizing with the same
GA. Note that the relative error is always below 3%. Results
for the remaining combinations in both campaigns are com-
pletely similar, except for the restriction on lateral stability,
which shows larger error (up to 7%) in some cases. This
larger relative errors are due to round off errors in the AVL
calculations, which play a role when this restriction shows
quite small values. In any event, those errors could be de-
creased by both retaining more modes in the HOSVD (which
also requires calculating a larger number of snapshots) and
improving the precision of the AVL method.

Thus, the new method provides sufficiently good results.
The computational time required in the new method is much
smaller than its counterpart in the conventional method, since
calculation of the objective function for each configuration
requires 0.0037 CPU seconds with the surrogates and 9.7
CPU seconds with the conventional tool (with directly uses
AVL). Thus, if the GA optimization algorithm involves
300 individuals per generation and 500 generations, each
optimization requires 1.56 CPU hours and 405.4 CPU hours
with the new and the conventional optimization tools, respec-
tively, which means that the computational effort has been
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TABLE III
COMPARISON BETWEEN THE CONVENTIONAL AND REDUCED

OPTIMIZATION TOOLS IN COMBINATION #1, FIRST OPTIMIZATION
CAMPAIGN

Restriction Reduced tool Full tool Error

Cmα -2.81 -2.84 1.1%
Cnβ 0.13 0.13 0.0%
Cmδ -1.63 -1.68 3.1%
Cnδ 0.133 0.135 1.5%

Clmax 1.51 1.55 2.6%
Clmin -1.24 -1.21 2.5%

Optimization function Reduced tool Full tool Error

Weight (Kg) 9,759 10,052 3.0%
Drag (N) 18,070 18,070 0.0%

Complexity 39.6 39.6 0.0%
Total fitness 2.51 2.53 0.8%

divided by a factor of 260. On the other hand, the new tool
requires a previous AVL-calculation of the snapshots, which
requires about 122.5 CPU hours. If we added that time to the
optimization computational effort, the resulting time is 124.1
hours. This means that the time needed to run just one opti-
mization is reduced by a factor of 3.6, which is small. But, as
it happen in the illustration above, conceptual optimization
usually requires a quite large number of additional optimiza-
tions runs, which do not require recalculating the surrogates
provided that the flight conditions remain unchanged. As
the number of additional optimizations increases, the benefit
of the new method increases, approaching the asymptotic
reduction factor of 260. For instance, in the 36 optimizations
runs performed above, the reduction factor was 81.7. It is also
to be noted that the CPU time required by the conventional
computational tool (608 CPU days) would make this tool
impractical in this task, while its counterpart for the reduced
tool (7 days) is quite reasonable.

V. CONCLUSION

A method has been presented for optimization based con-
ceptual design in Aeronautics that is made up of two levels. A
GA is used to optimize a target function, which includes var-
ious multidisciplinary ingredients. The technical disciplines
are modeled using surrogates, which are constructed using a
combinations of HOSVD and one-dimensional interpolation.
The computation of the surrogates requires running the
original computational tools at some structured, discretized
values of the design parameters. Each technical discipline
needs to run the computational tool only for the parameters
involved in the discipline. Thus, the advantages of the
surrogate models become more evident as the number of
free parameters increase. This is because the computational
effort to CFD calculate the snapshots databases (necessary
to construct each surrogate) increases exponentially with the
database dimension.

The surrogates are much more computationally efficient
than the conventional tool and can be defined as independent
of the various modeling parameters that must be tuned
in advance. Thus, tuning as well as optimization can be
performed using the surrogate models. For instance, in the
example considered in the article, the number of free design
parameters was nine and five additional tunable parameters

(the three weight in the objective function and the parameters
b and m appearing in the definition of complexity) were
present. In practice, more design and tunable parameters are
present.

The illustration method of section III is rather simplified,
but the advantages of the method would be even clearer
in more realistic conceptual design problem, which could
include:

1) A larger number of free design parameters in the
definition of the HTPs and the VTP, to account for,
eg., torsion in the HTP and higher order corrections in
the already considered geometric properties.

2) A more detailed model for the structure
3) A better modelization of viscous drag and stall, using

a description of the boundary layer.
4) A multi-fidelity approach, in which various aerody-

namic models are sequentially used, in the whole
parametric spaces and in subregions near pre-optimized
configurations.

5) A gradient like method can be combined with the GA
to speed up convergence of the elite individuals.

We expect that the method presented in this article, which
is flexible enough to be combined with any specific optimiza-
tion method, is a promising alternative to current approaches
in conceptual design tasks, which must be completed within
specific cost and time constrains.

APPENDIX

A. Purely geometrical ingredients

The HTP and the VTP geometries are first described
in terms of various design parameters. The two fitness
ingredients that only depend on the geometry, namely the
complexity and the viscous drag, are then considered.

1) Parametrization of the geometry: Both HTPs are de-
fined similarly, using a generatrix, which provides the centers
of the chord wise sections. The generatrix of the right HTP
is given by

x = λ3y if y > 0,
z = λ4y if 0 < y < y1,
z = λ4y + λ5(y − y1)2 if y > y1,

(11)

where y1 = λ1/
√

1 + λ2
3 + λ2

4. Here, x, y, and z are
the Cartesian coordinates in a system with origin at the
center of the root section; the x axis is defined along the
fuselage axis, the z axis is contained in the plane of the
root section pointing upwards, and the y axis perpendicular
to the fuselage symmetry plane pointing to the right. Thus,
the generatrix consists of a straight segment whose length
is λ1, followed by a parabolic segment, whose length is λ2.
The HTPs are generated with NACA0012 profiles, with a
chord distribution defined by the taper ratio, λ6; the airfoils
are contained in the normal plane of the projection of the
generatrix on the y-z plane(see Fig. 2, left plots). The ruled
surface generated by the mid lines of the HTP profiles will
be referred to as the mid-lines surface.

The VTP geometry is simpler. Its planform is trapezoidal
and the horizontal sections are NACA0012 profiles whose
centers move along the VTP generatrix, which is defined as

x = λ8z, y = 0 (12)
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Fig. 2. Generation of the HTPs

where 0 < z < λ7. The distribution chord is given by the
taper ratio, λ9.

2) Geometrical complexity: The complexity depends only
on the geometry, and is defiend adding the contributions from
the HTP and the VTPs, as

CEMPENNAGE = (1 + b)(2CHTP + CV TP ) (13)

where the penalty b is applied when the VTP is present (it
can be absent in some configurations). The complexity of the
HTP is estimated as

CHTP =
∫ λ1+λ2

0

m
√

1 + κ(s)mds (14)

where s is the arch length along the generatrix and κ is the
curvature of the generatrix. Since the generatrix of the VTP
is a straight line, it exhibits zero curvature and the complexity
of the VTP is defined as

CV TP =
∫ λ7

√
1+λ2

8

0

m
√

1 + κ(s)mds = λ7

√
1 + λ2

8 (15)

where λ7 and λ8 are defined as above.
The exponent m and the penalty b are to be calibrated,

nothing that increasing m emphasizes the effect of high
concentrated values of κ, which occur in, e.g., sharp junctions
between smooth pieces of the HTP. After some calibration
that consisted in a previous campaign of GA runs (for various
values of m and b) similar to the campaigns described in
section III, the following values have been selected

b = 0.1, m = 2 (16)

Since the calculation of the integrals appearing in (14) and
(15) is computationally inexpensive, no surrogate model is
constructed to calculate complexity.

3) Viscous drag: The total viscous drag is calculated at
cruise conditions (altitude=15,000m, Mach=0.8) using a flat
plate boundary layer analogy, which allows for adding the
contributions of the HTPs and the VTP, as

D = 2DHTP + DV TP (17)

The contribution from each HTP (the VTP is treated simi-
larly) is given by

DHTP =
1
2
cfρ∞U2

∞WA (18)

where ρ∞ and U∞ are the density and velocity at the free
stream, WA is the wetted area of the HTP, and cf is the
friction coefficient. The latter is estimated as [11]

cf = 0.455/(log Rem)2.588, (19)

where Rem is the Reynolds number, based on the HTP mean
chord.

As it happened with complexity, these calculations are
computationally inexpensive and thus no surrogate model is
constructed.

B. Purely aerodynamic restrictions

Aerodynamic restrictions involve the stall and the stability
and control derivatives of the empennage. Aerodynamic
interaction between HTP and VTP is neglected. Stability
and control derivatives are calculated adding the contri-
butions of the HTP and VTP, which are calculated using
the AVL method to the fuselage/wings/HTP and the fuse-
lage/wings/VTP, respectively.

1) Stability and control: AVL is run at zero angle of attack
and zero sideslip angle, altitud=1,500m, and M=0.5. The
derivatives of the vertical and lateral moments coefficientes
with respect to the angle of attack α and the sideslip angle
β provided by the AVL method, Cmα and Cnβ, are made
dimensionless with the dynamic pressure at the free stream,
a wing reference area, and the mean chord of the wing.
Thus the contributions of the HTP and VTP are re-scaled in
the same way and they can be added to obtain the stability
derivatives of the empennage. The control derivatives with
respect to the deflection of the vertical control surface, δ,
are defined similarly. Summarizing, the stability and control
derivatives are defined as

CHTP
mα = F1(λ1, ..., λ6), CHTP

nβ = F2(λ1, ..., λ6) (20)

CV TP
nβ = F3(λ7, λ8, λ9) (21)

CHTP
mδ = F4(λ1, ..., λ6), CHTP

nδ = F5(λ1, ..., λ6) (22)

CV TP
nδ = F6(λ7, λ8, λ9) (23)

where functions F1, ..., F6 are treated using as surrogate
model that resulting from applying HOSVD+I to these
functions.

2) Stall restrictions: The flight conditions to impose stall
restrictions are: altitude=1,500m, Mach=0.2, and β = 0. As
explained in section III.B, imposing stall restrictions require
to calculate with AVL the span-wise maximum (at α = 25◦)
and minimum (at α = −25◦) values of the chord-wise lift
coefficients on the various cross sections, Clmax and Clmin.
These are

Clmin = F7(λ1, ..., λ6), Clmax = F8(λ1, ..., λ6) (24)

As above, these two functions are treated using as surrogate
model that resulting from applying HOSVD+I to these
functions.

C. Aerodynamics + structures ingredients

Aerodynamic loads result from AVL calculations per-
formed at Mach=0.5, altitud=1,500m, and three combina-
tions of the angle of attack and the sideslip angle, namely
(α, β) = (0◦, 10◦), (10◦, 0◦), and (5◦, 5◦).
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Fig. 3. The structure

1) Aerodynamic loads: AVL provides the local pressure
distribution p(x, s), where x is the stream-wise coordinate
and s is the arch length along the generatrix. Using these,
the shear force, bending moment, and torsional moment
are calculated and a safety factor of 1.5 is applied. These
calculation must be performed for all possible configurations
of the HTP (namely, for all combinations of the HTP design
parameters λ1, . . . , λ6), and the tree above mentioned com-
binations of the angle of attack and the sideslip angle. Since
the two pieces of the HTP must be considered independently,
a total number of six distributions of shear force, Q, bending
moment, M , and torsional moment, T must be considered.
These depend on s0 and the six free parameters of the HTP,
as

Q = Qj(λ1, ..., λ6, s0),
M = Mj(λ1, ..., λ6, s0),
T = Tj(λ1, ..., λ6, s0)

(25)

for j = 1, ..., 6. The HOSVD+I method provides surrogates
for these eighteen functions. The VTP is treated similarly but
the load distributions are independent of the angle of attack,
namely

Q = Q7(λ7, λ8, λ9, z0),
M = M7(λ7, λ8, λ9, z0),
T = T7(λ7, λ8, λ9, z0)

(26)

Again, the HOSVD+I methodology provides surrogates for
these tree functions.

2) Weight: The weight is associated to the structure
needed to support the loads calculated above. Concerning
the HTP (the VTP is treated similarly), the main assumption
is that aerodynamic loads are completely supported by a
longitudinal torsion box, which extends span-wise along the
HTP. The torsion box (Fig.3) is formed by a leading and
a trailing spars, which are located at 20% and 55% of the
chord, respectively, and the cover joining both spars on their
upper and lower edges, to complete the box. The height and
the width of the box vary spanwise and will be denoted as
h and d, respectively.

Thus, the structural elements in the torsion box are the
cover and the spars, whose thicknesses are to be determined.
Cover thickness includes the actual skin thickness plus
the effects of stringers, and it is estimated setting up the
admissible stress σadm = 360MPa in

tcov ≈ M(s)
σadmd(s)h(s)

(27)

where s is the arch length along the generatrix of the HTP,
as above, and M is provided by a surrogate, as explained
above.

The spars thickness is defined as

tsp(s) ≈ qmax

τadm
(28)

where the admissible shear stress is set to τadm = 180MPa
and the maximum shear flow is calculated as

qmax(s) =
∣∣∣∣

T (s)
2d(s)h(s)

∣∣∣∣ +
∣∣∣∣
Q(s)
2h(s)

∣∣∣∣ (29)

where T and Q are obtained with surrogates, as explained
above. A minimum thickness of 2.5mm is considered in both
the cover and the spars.

Once the thickness of the critical case at each section is
obtained. The weight is computed as

W = 2
∫

ST B

ρcovd(s)tcov(s)+ρsph(s)tsp(s)
c(s) dS

+ρS

(
AS −

∫
ST B

d(s)
c(s)dA

) (30)

where the first integral accounts for both the weight of the
equivalent upper and lower panels of the box and the spars
weight, and the third term accounts for the remaining of the
stabilizer. In these integrals, STB is that part of the mid-lines
surface of the HTP occupied to the torsion box, AS is the
total area of the mid-lines surface, and the dA = sinϕdxds
is the differential area along the mid-lines surface; ρcov and
ρsp are the skin and spars material density, respectively, and
ρs is the density per unit surface of the stabilizer part that
is not torsion box, defined in such a way that it accounts for
the weight of other components and mechanical parts.
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