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Abstract— General stress functions for determining the stress 
concentration around circular, elliptical and triangular cutouts 
in laminated composite infinite plate subjected to arbitrary 
biaxial loading at infinity are obtained using Muskhelishvili’s 
complex variable method. The generalized stress functions are 
coded using MATLAB 7.0 and the effect of fiber orientation, 
stacking sequence, loading factor, loading angle and cutout 
geometry on stress concentration around cutouts in 
orthotropic/anisotropic plates is studied.   

Index Terms – Composites, cutouts, failure criteria, 
stress concentration factors, stress functions 

I. INTRODUCTION 

arious shaped cutouts are made in structures and 
machines to satisfy certain service requirements. These 
cutouts work as stress raisers and may lead to 

catastrophic failure. The behavior of isotropic plates with 
such cutouts, under different loading conditions is already 
studied extensively by many researchers. But, the 
anisotropic media with various shaped discontinuity has 
received very little attention.  
Using Kolosov-Muskhelishvili’s [1] complex variable 
approach, some problems of simply connected regions are 
solved by Savin [2],Lekhnitskii [3], Ukadgaonker and Rao  
[4],[5], Ukadgaonker and Kakhandki [6], Nageswara Rao et 
al [7], Daoust and Hoa [8], Rezaeepazhand and Jafari [9] 
etc. 
Savin [2] and Lekhnitskii [3] found stress concentrations 
around circular, elliptical, triangular and square holes, 
mainly in isotropic media. Though, Savin [2] used integro-
differential approach and Lekhnitskii [3] used series 
approach to define the stress function, the final outcomes are 
same. The analytic solutions for stress analysis of infinite 
anisotropic plate with irregular holes are presented by 
Ukadgaonker and Rao [4],[5] and Ukadgaonker and 
Kakhandki [6]. They adopted Gao’s [10] arbitrary biaxial 
loading condition to eliminate superposition of two uniaxial 
loading problem to obtain solution for biaxial loading 
problem. Ukadgaonker and Rao [5] and Daoust and Hoa [8] 
presented solutions for stress distribution around triangular 
hole with blunt corners in composite plates, whereas 
Nageswara Rao et al [7] found stress field around square 
and rectangular holes. 
In this paper, Kolosov-Mushkhelishvilli’s complex variable 
approach is adopted to obtain generalized stress functions. 
The effect of hole geometry, material properties, fiber 
orientation, stacking sequence, loading factor and loading 
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angle on stress field around cut-outs is studied. For 
numerical results Graphite/epoxy, Glass/epoxy and isotropic 
materials are considered. 

II. COMPLEX VARIABLE FORMULATION 

For thin anisotropic plate, using generalized Hooke’s law, 
Airy’s stress function and strain-displacement compatibility 
condition, the following characteristic equation is obtained, 
roots of which represents constant of anisotropy (Lekhnitskii 
[3]). 
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ija are the compliance co-efficient. 

The roots of the equation (1) are; 

111  is  ;  222  is  ;   

113  is  ; 224  is                                         (2)                   

The stress components for plane stress conditions can be 

written in terms of Muskhelishvili’s stress functions ( )( 1z  

and )( 2z ) and constants of anisotropy (s1 and s2), as 

follows (Savin [2]):       
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 )(')('Re2 2211 zszsxy                             

)(' 1z  and )(' 2z are the first derivatives of the 

Mushkhelishvili’s complex stress functions )( 1z  and 

)( 2z , respectively. 

The stresses in Cartesian coordinates given in equation (3) 
can be written in orthogonal curvilinear coordinate system 
by means of the following relations         
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m and n are the direction cosines. 

III. MAPPING FUNCTION 

 
The area external to a given hole (here, circular, elliptical or 
triangular), in Z-plane is mapped conformably to the area 
outside the unit circle in ζ plane using following mapping 
function.   
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0km , for circular hole 
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mk k,1 , for elliptical hole, where, a and b 

are the semi major and semi minor axis of the ellipse, 
respectively  

...17,14,11,8,5,3k  and 3/13 m ; 45/15 m ; 

162/18 m ; 2673/711 m ; 729/114 m ; 

111537/9117 m , for triangular hole.  

For anisotropic materials, the deformations undergo affine 
transformation. Hence, the mapping function (equation (5)) 

is modified by introducing complex parameters js .    
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IV. ARBITRARY BIAXIAL LOADING CONDITIONS 

 
In order to consider several cases of in-plane loads, the 
arbitrary biaxial loading condition is introduced into the 
boundary conditions.  This condition has been adopted from 
Gao’s [10] solution for elliptical hole in isotropic plate. By 
means of this condition solutions for biaxial loading can be 
obtained without the need of superposition of the solutions 
of the uniaxial loading. This is achieved by introducing the 
biaxial loading factor λ and the orientation angle β into the 
boundary conditions at infinity. 

 

Fig. 1 Arbitrary biaxial loading condition 

 
The boundary conditions for in-plane biaxial loading 
conditions are as follows: 
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Where, 
'x

  and 
'y

  are stresses applied about x`, y` axes at 

infinity (Refer Fig. 1). By applying stress invariance into 
above boundary conditions, boundary conditions about 
XOY can be written explicitly as: 
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For inclined uniaxial tension: λ=0, β≠0 
(a) Loading along x-axis      : λ=0, β=π/2 
(b) Loading along y-axis      : λ=0, β=0 
For equi-biaxial tension        : λ=1, β=0 
For shear stress                     : λ=-1, β=π/4 or 3π/4 

 

V. STRESS FUNCTION FOR CUTOUTS OF DIFFERENT SHAPES 

 
The scheme for solution of anisotropic plate containing a 
cutout subjected to remotely applied load is shown in Fig. 2. 
To determine the stress function, the solution is split into 
two stages: 

A. First Stage 

The stress functions )( 1z and )( 2z are determined for the 

hole free plate under the application of remotely applied 

load. The boundary conditions 1f and 2f are found for the 

fictitious hole using stress functions )( 1z  and )( 2z . 

The stress function )( 1z and )( 2z are obtained for hole 

free plate due to remotely applied load 


yx  ,  as 
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C is taken zero, because no rotation is allowed. 
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The boundary conditions 21 , ff on the fictitious hole are 

determined from these stress functions as follows.                                                                                    



















































N

k
k
k

N

k

k
k

m
KK

mKK

f

1
12

1
21

1

)(

1
)(







 



















































N

k
k
k

N

k

k
k

m
KK

mKK

f

1
34

1
43

2

)(

1
)(







                     (9)                                                                                      
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B. Second Stage 

 
For the second stage solution, the stress functions 

)( 10 z and )( 20 z  are determined by applying negative 

of the boundary conditions 1
0

1 ff   and 2
0

2 ff   on 

its hole boundary in the absence of the remote loading. 
The stress functions of second stage solution are obtained 

using these new boundary conditions ),( 0
2

0
1 ff  into 

Schwarz formula:   
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By evaluating the integral the stress functions are obtained 
as         
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C. Final Solution 

                   

The stress function )( 1z  and )( 2z for single hole 

problem, can be obtained by adding the stress functions of 
first and second stage. 

)()()( 10111 zzz    

)()()( 20212 zzz                                             (12)   

 
          (1)                             (2)                           (3)   

 
Fig.2.Problem configuration with scheme of solution 

VI. RESULTS AND DISCUSSION 

 
The numerical results are obtained for Graphite/epoxy 
(E1=181GPa, E2=10.3GPa, G12=7.17GPa and ν12=0.28) and 
Glass/epoxy (E1=47.4GPa, E2=16.2GPa, G12=7.0GPa and 
ν12=0.26). Some of the results are obtained for isotropic 
plate (E=200GPa, G=80GPa and ν=0.25) also for sake of 
comparison. The steps followed in computer implementation 
are as under:  

1. Choose the value of biaxial load factor, λ and load 
angle, β for the type of loading. 

2. Calculate the compliance co-efficient, aij from 
generalized Hooke’s Law. 

3. Calculate the value of complex parameters of 
anisotropy s1 and s2 from the characteristic equation 
(equation 1). Some of the constants of anisotropy s1 
and s2 are presented in Table 1. 

4. Calculate the constants: 
a1,b1,a2,b2,B,B’,C’,K1,K2,K3,K4etc. 

5. Evaluate the stress functions and their derivatives. 
6. Evaluate stresses. 

The stress functions obtained above are the generalized 
solutions. Using these functions, stress distribution for 
different loading conditions and material parameters can be 
obtained.  
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The following loading cases have been considered. 
1. Plate subjected to uni-axial tension at infinite 

distance. 
2. Plate subjected to biaxial tension at infinite 

distance. 
 

Table 1 Constants of anisotropy 
Fiber 

angle 

Graphite/epoxy Glass/epoxy 

s1 s2 s1 s2 

0 -0.0000 + 
4.8936i 

0 + 
0.8566i 

0.0000 + 
2.3960i 

-0.0000 + 0.7139i 

90 -0.0000 + 
1.1674i 

0.0000 + 
0.2043i 

-0.0000 + 
1.4007i 

0.0000 + 0.4174i 

0/90 -0.0000 + 
3.6403i 

0.0000 + 
0.2747i 

-0.0000 + 
2.0142i 

0.0000 + 0.4965i 

45/-
45 

-0.8597 + 
0.5109i 

0.8597 + 
0.5109i 

-0.6045 + 
0.7966i 

0.6045 + 0.7966i 

 
The stress concentration around elliptical hole varies as ratio 
of lengths of minor axis (2b) to major axis (2a) varies. The 
circle (b/a=1) and crack (b/a=0) are the special case of 
ellipse. As b/a approaches zero, the stress concentration at 
the end of major axis of the ellipse tends to be infinite for all 
materials (Refer Fig 3). For isotropic material the stress 
concentration is found higher when uni-axial load is applied 
compared to equi-biaxial loading.     
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Fig. 3: Change in maximum stress concentration factor for 
elliptical hole as ratio of semi minor to semi major axis 
varies from 0(crack) to 1.0(circle). 
 
The mapping function having 7 terms is used for triangular 
hole. As number of terms increases the hole shape 
converges to equilateral triangle and corner radius 
decreases. With the 7-term mapping function the corner 
radius is found 0.0031 with side length 2.3676.     
Stress is a point function and varies as we go around the 
hole boundary. Fig. (4) shows the stress distribution around 
triangular hole for different materials (corner radius, 

r=0.0476). The hole geometry and material parameters are 
taken same as Ukadgaonker and Rao [5] and Daoust and 
Hoa [8]. Fig. (4) can be compared with Fig. (3) (pp. 178) of 
Ukadgaonker and Rao [5] and Fig. (6) (pp. 127) of Daoust 
and Hoa [8].  
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Fig. 4: Normalized tangential stress around the triangular 
hole (corner radius=0.0457, load angle, β=00, fiber 
orientation angle, Φ =00). 
 
The Graphite/epoxy and Glass/epoxy lamina are considered 
to understand the effect of fiber orientation angle on 

normalized tangential stress. The maximum (σ/σ) on the 
boundary of hole corresponding to fiber orientation angle 
ranging from 00 to 900 are shown in Fig. 5, 6 and 7. For 
plates with circular and elliptical hole the maximum tensile 

stress (σ/σ) increases as fiber orientation angle increases, 

whereas maximum compressive stress (σ/σ) decreases 
(Refer Fig 5 and 6). For the plate containing triangular hole 
the effect of fiber orientation angle (Φ) on normalized 

tangential stress (σ/σ) for Graphite/epoxy and Glass/epoxy 
material is studied for load angle β=00 and β=900. The 

Graphite/epoxy plate subjected to uni-axial loading (=0, 
β=00) experience highest stress concentration when fiber 
orientation angle is Φ=900. (Refer Fig. 7)  
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Fig. 5: Effect of fiber orientation angle (Φ) on normalized 

tangential stress (σ/σ) for Graphite/epoxy and Glass/epoxy 
plate with circular hole   
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Fig. 6: Effect of fiber orientation angle (Φ) on normalized 

tangential stress (σ/σ) for Graphite/epoxy and Glass/epoxy 
plate with elliptical hole having a/b=2.0  
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Fig. 7: Effect of fiber orientation angle (Φ) on normalized 

tangential stress (σ/σ) for Graphite/epoxy and Glass/epoxy 
plate with triangular hole with corner radius=0.0031   
 
The load angle (β) is varied from 00 to 900 and 
corresponding maximum normalized tangential stress is 
found. The effect of load angle (β) on maximum normalized 

tangential stress (σ/σ) for Graphite/epoxy and isotropic 
plate with circular, elliptical and triangular hole is presented 
in Fig. (8), (9) and (10), respectively. The maximum and 
minimum values of maximum normalized tangential stress 
corresponding to some load angle are tabulated in Table (2).   
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Fig. 8: Effect of load angle (β) on maximum normalized 

tangential stress (σ/σ) for Graphite/epoxy and isotropic 
plate with circular hole   
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Fig. 9: Effect of load angle (β) on maximum normalized 

tangential stress (σ/σ) for Graphite/epoxy and isotropic 
plate with elliptical hole having a/b=2.0 
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Fig. 10: Effect of load angle (β) on maximum normalized 

tangential stress (σ/σ) for Graphite/epoxy and isotropic 
plate with triangular having corner radius r=0.0031   
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Table 2. The stress concentration factors for various load 
angles.  
 Graphite/epoxy 

(0/90) 

Graphite/epoxy 

(45/-45) 

Isotropic 

Material 

Circular 
hole 

4.9150 at β=00, 
900 

4.9150 at 
β=450 

3.0(For 
all load 
angle) 

2.9578 at 
β=450 

2.9578 at β=00, 
900 

Elliptical 
hole 
(a/b=2) 

8.8301 at 
β=900

 

5.8502 at 
β=630

 

5.0 at 
β=900

 

2.7621at β=330   1.7798 at β= 00 2.0 at 
β=00 

Triangular 
hole 
(corner 
radius, 
r=0.0031) 

67.0607 at 
β=900 

39.6906 at 
β=290 

34.7472 
at β=300, 
900 

 28.6624 at β= 
410 

22.7871 at 
β=900 

25.8104 
at β=00, 
600 

VII. CONCLUSION 

The general stress functions for determining the stress 
concentration around circular, elliptical and triangular 
cutouts in laminated composite plate subjected to arbitrary 
biaxial loading at infinity are obtained using 
Muskhelishvili’s complex variable method. The solution 
presented here can be a handy tool for the designers. From 
the numerical results following points can be concluded: 

1. The principle of superposition can be avoided by 
introducing biaxial loading factor. 

2. As the ratio of minor to major axis in elliptical hole 
decreases from 1.0 to 0, the stress concentration at 
the tip of major axis approaches infinity. The stress 
concentration factor for isotropic material under 
biaxial loading is always smaller than that obtained 
when uniaxial loading is applied. 

3. The stress concentration factor is greatly affected 
by fiber orientation and loading angle.  

4. The bluntness of the corner radius has significant 
effect on stress concentration. 
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