
 
 

 

 
   Abstract- This paper relies on the disease-free and 
endemic equilibrium points of SVEIRS epidemic 
model. 
 
   Index terms- Epidemic models, Equilibrium points, 
SEIRS epidemic models; SVEIRS epidemic models, 
positivity, vaccination control.  
 

  
I. INTRODUCTION 

   Important control problems nowadays related to Life 
Sciences are the control of ecological  models  like, for 
instance, those of population evolution (Beverton-Holt 
model, Hassell model, Ricker  model etc.[1-5]) via the online 
adjustment of the species environment carrying capacity,  
that of the population growth or that of the regulated 
harvesting quota as well as the disease propagation via 
vaccination control.  In a set of papers, several variants and 
generalizations of the Beverton-Holt model (standard 
time–invariant, time-varying parameterized, generalized 
model or modified generalized model) have been 
investigated at the levels of stability, cycle- oscillatory 
behavior, permanence and control through the manipulation 
of the carrying capacity (see, for instance,  [1-5]). The design 
of related control actions has been proved to be important in 
those papers at the levels, for instance, of aquaculture 
exploitation or plague fighting. On the other hand, the 
literature about epidemic mathematical models is exhaustive 
in many books and papers. A non-exhaustive list of 
references is given in this manuscript, cf. [6-14] (see also the 
references listed therein). The sets of models include the most 
basic ones, [6-7]: 

- SI- models where not removed- by – immunity 
population is assumed. In other words, only 
susceptible and infected populations are assumed. 

- SIR -models, which include susceptible, infected and  
removed- by –immunity populations.  

- SEIR- models where the infected populations is split 
into two ones (namely, the “ infected” which  incubate 
the disease but do not still have any disease symptoms 
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and the “ infectious” or “ infective” which do exhibit 
the external disease symptoms). 

   The three above models have two possible major variants, 
namely, the so-called “pseudo-mass action models”, where 
the total population is not taken into account as a relevant 
disease contagious factor or disease transmission power, and 
the so-called “true-mass action models”, where the total 
population is more realistically considered as being an 
inverse factor of the disease transmission rates.  There are 
other many variants of the above models, for instance, 
including vaccination of different kinds: constant [8], 
impulsive [12], discrete - time etc., by incorporating point or 
distributed delays [12-13], oscillatory behaviors [14] etc. . 
On the other hand, variants of such models  become  
considerably simpler for the disease transmission among 
plants [6-7]. Some generalizations involve the use of a mixed 
regular continuous-time/ impulsive vaccination control 
strategies for generalized  time-varying epidemic model 
which is subject to point and distributed time-varying delays, 
[12-13], [22-23], [25].  Another well-known types of 
epidemic models are the so-called SVEIRS epidemic models 
which incorporate the dynamics of a vaccinated population 
and the “infected” population without external symptoms of 
the SEIR-type models is replaced with an “exposed” 
population subject to a certain dynamics,[30-31].The 
infected population E(t) of SEIR models, which includes 
those infected which do not still have external disease 
symptoms ( those having those symptoms are usually 
referred to as the “ infectious” population I (t) ), is replaced in 
the SVEIRS models by the so-called “exposed” population E 
(t) . Thus, in the context of SVEIRS models, the infected and 
infectious populations of the SEIR models are joined in a 
single “infected” population I (t) while there is an exposed 
population E (t) present in the model. In this paper, we focus 
on the existence and some properties of disease- free and 
endemic equilibrium points of a SVEIRS models subject to 
an eventual constant regular vaccination rather than to an 
impulsive vaccination type. Some issues about  boundedness 
and positivity of the model are also investigated. The 
following SVEIRS  epidemic model, of a  modified true-mass 
action type, with regular constant vaccination is considered: 
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where S, V, E , I  and R are, respectively, the susceptible, 
vaccinated , exposed , infected (or infective or infectious)  
and recovered populations,  tN  is the total population 

being the sum of the above ones,  10 ,Vc   is a constant 

vaccination action.  There are potential latent and immune 
periods denoted by  and  , respectively, which are internal 
delays in the dynamic system (1.1)-(1.5), b is the natural birth 
rate and death rate of the population. b  takes into account 

a vaccination action on newborns which decreases the 
incremental susceptible population through time, 1  is the 

average rate for vaccines to obtain immunity  and move into 
recovered population,  (disease transmission constant) and 

 are average numbers for contacts of an infective and a 

vaccinated individual per unit of time, [30]. The periodic 
impulsive, rather than regular, vaccination action of [1], can 
be got from (1.1)-(1.5) with 0cV . A variant of the above 

SVEIRS model (1.1)-(1.5) has been proposed in [31] without  
regular vaccination with the alternative incorporation of an 
impulsive periodic vaccination with a period 0T . 
 

II.  DISEASE-FREE EQUILIBRIUM POINT 
   The potential existence of a disease-free equilibrium point 
is now discussed which asymptotically removes the disease if 

b . 

Proposition 1.  Assume that b . Then the disease-free 

equilibrium point 0 ** IE  fulfils : 
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If  b  then there is no disease-free equilibrium point.  □ 

 
Proof: The equilibrium points are calculated from (1.1) as 
follows by zeroing (1.1), (1.2), (1.4) and (1.5) and making 

).( 31 identical to a disease-free equilibrium value *E what 

leads to: 
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   The disease-free equilibrium point satisfies the constraints:  

0 ** IE                                                                      (2.6) 
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The proof follows directly from the above equations.      □    
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.  Note also that if 0 , as 

in the particular case of impulsive-free SVEIRS model 
obtained from that discussed in [1],  then the disease-free 

equilibrium satisfies 0 **** RIVE ,  1 ** SN . 

In such a case, the model can be ran out with population 
normalized to unity.                                                         □     
   Note that the exposed population at the equilibrium defined 
by (1.3) can be equivalently described by a differential 
equation obtained by applying the Leibniz differentiation 
rule under the integral symbol to yield: 
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The following assumption of sufficiently small disease 
transmission constant  is made: 
 
Assumption 1. It is assumed  that the diseasec transmission 
constant is small enough such that the inequality 
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   The local asymptotic stability of the disease-free 
equilibrium point is guaranteed by that of the linearized 
incremental system about it. The linearized model about the 
equilibrium becomes to be defined from (1.1)-(1.2), (2.12) 
and (1.4)-(1.5) by the state 
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where, after using the identities in Proposition 1 and  taking 
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for some real 0 , where 
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and the matrices *A   and *A   are entry-wise defined by: 
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with all the remaining entries being zero. The following 
inequalities apply for equivalent norms of vectors and square 
matrices M of dimension or, respectively, order n: 
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1. By continuity with respect to parameters, for any 
sufficiently large  RM ,    RM,, 2121   with 

021 ,  as t  such that for Mb  : 
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                                                    (2.24) 

and,  one gets from (2.16), 
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                                                                                       (2.25) 
and for b being large enough such that it satisfies: 

  





















 ab,

b

,max
ln,

b
lnmaxmaxb








141 1      (2.26) 

with ab  being some existing real positive constant, 

depending on the vaccination constant cV , such that 

 








1

1 1
cV , it follows from inspection of  

(2.24)-(2.25) that    b* ebA
~


0  . Using again 

(2.18)-(2.19), it follows that the following close constraint to 
(2.21): 

     blnln 5
2

1
 

     015
2

1
bblnelnblnln b         

                                                                                      (2.27) 
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guarantees  that 
  

1
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

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
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~
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~
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            bb ee,max 15      (2.28) 

where  
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

ifee
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bb
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                                                                                   (2.29) 
   Note that the linearized system  about the disease-free 
equilibrium point ) is asymptotically stable if and only if 

  000   s*s***
d eA

~
eA

~
A
~

AIsdet 



   

 ;    0  sRe:s:s CC                                  (2.30) 

which is guaranteed under the two conditions below: 

1)   00  *
dAIsdet ,  0  sRe:s:s CC , 

equivalently, *
dA 0  is a stability matrix 

2) The 2 -matrix measure  *
dA 02 of  *

dA 0  is negative, 

and, furthermore, the following constraint holds 

  cc V,Vmaxb  111   

which guarantees the above stability condition 2 via 
(2.28)-(2.29) and (2.15): 
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1  









           

  cc V,Vmaxb  11                                     (2.31)    

   The following result is proven from Proposition 1,  the 
above asymptotic stability conditions  for the linearized 
incremental system about the disease- free equilibrium point, 
which implies that of the nonlinear one (1.1)-(1.5) about the 
equilibrium point,  and the related former discussion:     
 
Proposition 2.  It exists a sufficiently large 

  cc V,Vmaxb  11   such that the disease- 

free equilibrium point is locally asymptotically stable for any 
constant vaccination  10 ,V c  and a sufficiently small 

amount    , a sufficiently small delay   and a 

sufficiently small    (this being applicable if   ). □   

                                                                                    
   Note that the statement of Proposition 2 guarantees the 
local stability of the disease-free equilibrium point under its 
existence condition of Proposition 1 requiring b .   

   
III.  ENDEMIC EQUILIBRIUM POINT 

    The existence of one or two  endemic equilibrium points 
which keep alive the disease propagation is now discussed: 
 
Proposition 3. Assume that 0 . Then, the following 

properties hold: 

(i) 
 










1

be b
for 0cV and 

    be b  for 0cV . Thus, it exists at least one 

endemic equilibrium point at which the susceptible, 
vaccinated, infected, exposed and recovered populations are 
positive and the vaccinated population is zero if and only if  

0cV ( i.e. in the absence of vaccination action).  

Furthermore, such an equilibrium point satisfies the 
constraints: 
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 (ii) If the transmission constant is small enough satisfying 

 









1

be
:

b
 for 0cV  and 

    be b  for 0cV then there is no reachable 

endemic equilibrium point.                                                □ 
 
Proof: The endemic equilibrium point is calculated as 
follows: 

  0
11 *
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b
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



           (3.2)  

with 
0*E , 0*I                                                            (3.3)  

 
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11








 







 be

V

V

S

S b

*

*

*

*
 for 0     (3.4)     

(since, otherwise, the above disease – free equilibrium point 
would be being considered). 0*S  since, otherwise, the 

following contradiction would follow: 

  010  
c

*b* VNeIb                                (3.5)    

                                     
0*V  if and only if 0cV , since otherwise for 0cV and 

0*V , it would follow that 0c
* VN  which is only 

possible in the disease-free equilibrium point if the total 
population is extinguished what is a contradiction at the 
endemic point. 

   
0

111 








b

Ie

b

IeV
R

*b*b*
*

 
 (3.6) 

for 0                                               

Remark 2. Note that if 0 then it follows from (1.3) and 

(2.3) that   0 *EtE ;  0Rt so that the SVEIRS 

model (1.1)-(1.5) becomes a simpler SVIRS one without 
specification of the infected population dynamics.           □    
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Remark 3. Note that, under the constraints in Proposition 3 
(ii) for  , if there is no reachable endemic equilibrium point 

because    then the solution trajectory of (1.1)-(1.5) 

can only either converge to the disease-free equilibrium point 
provided that it is at least locally asymptotically stable or to 
be bounded converging or not to an oscillatory solution or to 
diverge to an  unbounded total population depending on the 
values of the parameterization of the model (1.1)-(1.5). Note 
that the endemic free transmission constant upper-bound 

 increases as  ,  and    b  increase and also as 

 decreases.                                                                      □ 
    If 0cV then it follows from Proposition 3 that there exist 

positive constants S , V , E , I  and R  satisfying 

111111  
RIEVS  such that the endemic 

equilibrium points, if any,  satisfy the constraints: 
*

R
*

I
*

E
*

V
*

S
* RIEVSN        (3.7) 

 
so that, one gets from (3.2)- (3.6) that 
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                                                                                         (3.9) 

if   1** V,Smin , otherwise if 0 , then only the 

lower-bounding constraint holds in (3.9);  
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                                                                                       (3.10) 
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            (3.11) 

   Eq. (3.8) is equivalent, since 0*R at the endemic 

equilibrium point, to 

 
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 
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b
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b

e


 

                            (3.12) 

   Eq. (3.10) is equivalent to  

    2
1 *

IS
b

cIS SbeV      

           *
IcI

b
S SbVe 11     + 

     0 Ib                                                                  (3.13) 

   Eq. (3.13) is an algebraic equation of real coefficients of the 

form 02  cSdSa **  with 0c . Such an equation 

has two positive real roots if 00  d,a and acd 42   and 

one positive real root if 0a and 0d . Thus, since there is 
a nonzero susceptible population at an endemic equilibrium 
point then either (3.14)-(3.16) below hold: 

    
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b
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       11 IcI
b

S dVe                  (3.15) 

provided that  1          
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                                                                                       (3.16) 
or, alternatively,   
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                                                                                       (3.18) 
with 1 hold.   On the other hand, Eq. (3.11) is equivalent 

to 
       *

VS
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***

V VVVVVV   11 00

                                                                                       (3.19) 

where 
 

  


be b
:0  so that (3.19) is of the form 

02  cVdVa ** specifically as follows 

   2

01 *
V V  +      *

SV V 00   0 S   

                                                                                       (3.20) 
   Now, the same reasoning as that used for the susceptible 
endemic equilibrium component is applied to (3.20) to yield 
that since there is a nonzero vaccinated population at two 
endemic equilibrium points then  
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which is obtained from (3.1), and either 
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                                                                                       (3.22) 
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                                                                                       (3.24) 
or, 00  d,a in (3.20). The above discussion concerning 

the endemic equilibrium point is summarized as follows: 
 
Proposition 4. Assume that  1,0cV and that 
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(the upper-bounding condition  does not hold if 

  1** R,Smin ) so that  
*

R
*

I
*

E
*

V
*

S
* RIEVSN   for 

some positive constants S , V , E , I and R . Then, 

it exists at least one endemic equilibrium point, and at most 
two endemic equilibrium points, with all the corresponding  
partial populations being positive and the following 
parametrical constraints hold: 

111111  
RIEVS    
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    The constants S , I  and V  satisfy either 

(3.14)-(3.16), or (3.18), and (3.22)-(3.24).                       □                              
 

IV.INFECTION PROPAGATION AND POSITIVITY 
   This section discuses briefly the monotone increase of the 
infected population and the boundedness of the total 
population as well as the positivity of the model 
 
Proposition 5. If the infection propagates through  t,t   

with the infected population being monotone increasing then 
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Proof:  Note from (1.4) that for  *t,*tt 2  
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   Now, rewrite (1.3) in differential equivalent form by using 
Leibniz´s rule as follows: 
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                                                                                        (4.1) 
Proposition 6. Assume that b . Then, the  following 

properties hold: 
 (i) The total population is uniformly bounded for all time, 
irrespective of the susceptible and vaccinated populations, 
for any bounded initial conditions with  
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(ii) Assume that 
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 and   . Then, 0R:N is 

monotone decreasing and exponentially vanishing.  
 
Proof: Consider the SVEIRS model in differential form 
described by (1.1), (1.2), (1.4)-(1.5) and (4.1). Summing up 
the five equations, one gets directly: 
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  This yields directly Property (i). On  the other hand,   note 
from (4.2) that: 
a) If      1tV,tSmin  then 
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so that , since 
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                 tItNb                                            (4.4) 

b) If      1tV,tSmax  then the same conclusion as for 

Case a arises so that Property (ii) is proven.                    □   
   A brief discussion about positivity is summarized in the 
next result: 
 
Proposition 7. Assume that  10 ,Vc  . Then , the SVEIRS 

epidemic model (1.1)-(1.5) is positive in the sense that no 
partial population is negative at any time if  its initial 
conditions are non-negative and  the vaccinated population  
exceeds a certain minimum measurable threshold in the event 
that the recovered population is zero as follows: 
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 if   0tR . The 

susceptible, vaccinated, exposed and infected populations are 
nonnegative for all time irrespective of the above constraint. 
If, in addition,  Proposition 6(i) holds then all the partial 
populations of the SVEIRS model are uniformly bounded for 
all time. 
 
Proof:  First note that all the partial populations are defined 
by continuous- time differentiable functions from (1.1)-(1.5). 
Then , if any partial population is negative, it is zero at some 
previous time instant. Assume that S( ) 0  for t and  

S(t)=0 at some time instant t , Then from (1.1): 
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V (t) cannot reach negative values at any time.     0tE   for 

any time instant t from (1.3). Assume that  I( ) 0  for 

t and   0tI   at some time instant t. Then,    

  0tI from (1.4). As a result, I(t) cannot reach negative 

values at any time. Finally, assume that  R( ) 0  for t  

and R(t)=0  at  some time instant t .  Thus, 
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  . Thus, if 
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 when R(t)=0 then 

all the partial populations are uniformly bounded, since they 
are nonnegative and the total population N(t) is uniformly 
bounded from Proposition 6 (i).                                         □    
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V. CONCLUSION 
This paper discusses the disease-free and endemic 
equilibrium points of a SVEIRS propagation disease model 
which potentially involves a regular constant vaccination. 
The positivity of such a model is also discussed as well as the 
boundedness of the total and partial populations. The model 
takes  into consideration the natural population growing and 
the mortality associate to the disease as well as the lost of 
immunity of newborns. It is assumed that there are two finite 
delays, being associated with latent and immune periods, 
affecting to the susceptible, recovered, exposed and infected 
population dynamics. 
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