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Abstract—Using the elements of Pseudoanalytic Function
Theory, we analyze a set of electrical current trajectories for
the two-dimensional Electrical Impedance Equation, obtained by
means of formal powers, when the conductivity is a cubic polyno-
mial separable-variables function. We show that the trajectories
keep a pattern when changes in the conductivity take place.
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I. INTRODUCTION

The study of the Electrical Impedance Equation

∇ · (σ∇u) = 0, (1)

where σ is the conductivity and u denotes the electric poten-
tial, is crucial for well understanding the Electrical Impedance
Tomography problem. Since the relation between the two-
dimensional case of (1) and a Vekua equation [11] was
first noticed in [1], a complete new theory for the Electrical
Impedance Equation is under construction.

One of the most important achievements was the possibility
of expressing the general solution of (1) in analytic form,
by means of Taylor series in formal powers, which is a
mathematical tool reached from the Classical Pseudoanalytic
Function Theory [3].

Since more powerful computational resources are now avail-
able, the numerical solutions of (1) can be virtually approached
with arbitrary accuracy, if we are able to express σ as a
separable-variables function [4], [5].

Following the idea of a numerical method posed for ob-
taining piecewise separable-variables functions, when a finite
set of conductivity values is given [9], this work employs
the electrical current traces provoked by a cubic polynomial
conductivity σ, within the unitary circle. We intend to show
that, at least from the point of view of the first formal powers,
a pattern is preserved when changes in the conductivity appear.

We introduce some elements of the Pseudoanalytic Function
Theory [3], [6], in order to construct in exact form the first
formal powers with real coefficients equal to 1. Then, we
trace a small set of electrical current paths, corresponding to
a constant conductivity, in order to establish a reference to
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explore the traces provoked by two cases of inhomogeneous
media.

We close discussing the existence of a pattern, remarking
the possible relevance of this fact, when applying elements of
Pseudoanalytic Function Theory to cases located, somehow,
nearer to real medical imaging.

II. PRELIMINARIES

Let (F,G) be a pair of complex-valued functions such that

Im
(
FG
)
> 0. (2)

Thus, any complex-valued function W can be expressed by
means of the linear combination of (F,G):

W = φF + ψG,

where φ and ψ are real. A pair of functions satisfying (2)
is called a Bers generating pair [3]. Indeed, it is possible to
introduce the derivative in the sense of Bers of W , or the
(F,G)-derivative, according to the following expression:

∂(F,G)W = (∂zφ)F + (∂zψ)G, (3)

where ∂z = ∂
∂x − i

∂
∂y , and i denotes the standard imaginary

unit i2 = −1. But (3) will exist if and only if

(∂zφ)F + (∂zψ)G = 0, (4)

where ∂z = ∂
∂x + i ∂∂y (notice the operators ∂z and ∂z are

traditionally introduced with the factor 1
2 , nevertheless it will

result somehow more comfortable not to work with it in this
paper).

By introducing the notations

A(F,G) =
F∂zG−G∂zF
FG− FG

, (5)

a(F,G) =
G∂zF − F∂zG
FG− FG

,

B(F,G) =
F∂zG−G∂zF
FG− FG

,

b(F,G) =
F∂zG−G∂zF
FG− FG

;

the equation (3) will turn into

∂(F,G)W = ∂zW −A(F,G)W −B(F,G)W,
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and (4) will become

∂zW − a(F,G)W − b(F,G)W = 0, (6)

where W denotes the complex conjugation of W .
The last expression is known as the Vekua equation [11], and

it will play a central role in our further analysis. The functions
defined in (5) are known as characteristic coefficients of the
generating pair (F,G), and the complex-valued functions W
fulfilling (6) are called (F,G)-pseudoanalytic.

The following concepts can be found in [3].
Definition 1: Let (F0, G0) and (F1, G1) be two generating

pairs, and let their characteristic coefficients fulfil

a(F0,G0) = a(F1,G1), (7)
B(F0,G0) = −b(F1,G1).

Then (F1, G1) will be called a successor pair of (F0,G0), as
well (F0,G0) will be the predecessor pair of (F1,G1) .

Definition 2: Let the set of generating pairs {(Fn,Gn)} ,
n = 0,±1,±2, ... be such that every pair (Fn+1, Gn+1) is a
successor of (Fn, Gn). Then the set {(Fn,Gn)} will be called
a Bers generating sequence. If (F,G) = (F0, G0), we say that
(F ,G) is embedded within {(Fn,Gn)}.

Definition 3: Let {(Fn,Gn)} , n = 0,±1,±2, ... be a Bers
generating sequence. If there exist a number k such that for
every n the equality (Fn, Gn) = (Fn+k, Gn+k) holds, we say
that {(Fn,Gn)} is a periodic sequence with period k.

Remark 1: It is very important to notice that if W is an
(Fn, Gn)-pseudoanalytic function, its (Fn, Gn)-derivative will
be (Fn+1, Gn+1)-pseudoanalytic. This implies that if we wish
to obtain the m-derivative in the sense of Bers of a (F0, G0)-
pseudoanalytic function, we need to posses in explicit form all
pairs belonging to the generating sequence {(Fn,Gn)}, going
from n = 0 until n = m.

L. Bers also defined the (F,G)-integral of a function W . We
refer the reader to [3] or [6] for examining the requirements
for its existence, since in this work we will use exclusively
(F,G)-integrable functions.

Definition 4: Let (F0, G0) be a generating pair. Its adjoint
pair (F ∗0 , G

∗
0) will be defined according to the formulas

F ∗0 = − 2F 0

F0G0 − F 0G0

, G∗0 =
2G0

F0G0 − F 0G0

.

Definition 5: The (F,G)-integral of W is defined as∫ z1

z0

W d(F,G)z =

= F (z1)Re
∫ z1

z0

G∗W dz +G (z1)Re
∫ z1

z0

F ∗W dz.

Particularly, if W = φF +ψG is (F,G)-pseudoanalytic, then∫ z

z0

∂
(F,G)

W d(F,G)z =

=W (z)− φ (z0)F (z)− ψ (z0)G (z) ,

and due to ∂
(F,G)

F = ∂
(F,G)

G = 0, this expression represents
the antiderivative in the sense of Bers of ∂

(F,G)
W.

A. Taylor series in formal powers

It is well known that any analytic function ϕ with respect
to the complex variable z = x − iy, can be expressed by
means of Taylor series ϕ =

∑∞
n=0 an (z − z0)

n, where an =
1
n!∂

n
z ϕ (z0), ∂nz = ∂n

∂zn , z = x+ iy, and z0 is a fixed point in
the complex plane.

L. Bers posed an analog representation for an (F0, G0)-
pseudoanalytic function W employing what he called formal
powers.

Definition 6: The formal power Z(0)
m (a0, z0; z) , with co-

efficient a0, center at z0, and depending upon z is defined
as

Z(0)
m (a0, z0; z) = λmFm + µmFm,

where the complex constants λm and µm fulfil

λmF (z0) + µmG (z0) = a0.

The formal powers with higher exponents are obtained accord-
ing to the recursive formulas

Z(n)
m (an, z0; z) = n

∫ z

z0

Z
(n−1)
m−1 (an, z0; z) d(Fm,Gm)z.

Notice these integral operators are integrals in the sense of
Bers.

Remark 2: The formal powers Z(n)
m (an, z0; z) posses the

following properties:
1) Z(n)

m (an, z0; z) are (Fm, Gm)-pseudoanalytic.
2) If a1 and a2 are real constants, we have

Z(n)
m (a1 + ia2, z0; z) =

= a1Z
(n)
m (1, z0; z) + a2Z

(n)
m (i, z0; z) .

3) Z(n)
m (an, z0; z)→ an (z − z0)n when z → z0.

Then, any (F0, G0)-pseudoanalytic function W can be
represented through these formal powers

W =

∞∑
n=0

Z(n)
m (an, z0; z) , (8)

where
an =

1

n!
∂n(Fm,Gm)W (z0) .

From this point of view, it is possible to assert that the
expansion (8) is an analytical representation for the general
solution of the Vekua equation (6).

III. PSEUDOANALYTIC FUNCTION THEORY AND THE
TWO-DIMENSIONAL ELECTRICAL IMPEDANCE EQUATION

K. Astala and L. Païvarïnta showed in [1] that the two-
dimensional Electrical Impedance Equation (1) was fully
equivalent to a special kind of Vekua equation, and this was the
departure point for giving a positive answer to the Electrical
Impedance Tomography problem in the plane.

Using this relation, Kravchenko et al. [7] published what
could well be considered one of the first general solutions of
(1) in exact form, for a certain class of conductivity functions
σ.
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After that, the relation between (1) and a the Vekua equation
was rediscovered in a variety of works (see e.g. [6] and
[10]). In order to achieve our purposes, we will employ the
techniques described in [9]. Basically, when σ is a separable-
variables function

σ = σ1 (x1)σ2 (x2) ,

introducing the notations

W = −
√
σ
∂

∂x2
u− i

√
σ
∂

∂x1
u, (9)

∂z =
∂

∂x2
+ i

∂

∂x1
,

p =

√
σ1 (x1)√
σ2 (x2)

;

the two-dimensional Electrical Impedance Equation (1) will
turn into the Vekua Equation

∂zW −
∂zp

p
W = 0. (10)

Very interesting works have been dedicated to the numerical
construction of the formal powers for this equation [5], specif-
ically for the case when σ = ek1x1+k2x2 , where k1, k2 are real
constants. Moreover, based upon the analytic approach of its
first formal powers, with coefficients 1 and i, [9] posed an
analysis of current paths, intending to show that a pattern
is kept when comparing qualitatively the electrical current
trajectories of inhomogeneous media, with those traced in the
homogeneous case.

Indeed, trying to make wider the bridge between this new
branch of the mathematical theory for the Electrical Impedance
Equation, and its applications for the Electrical Impedance To-
mography, also in [9] was posed a technique for approaching
separable-variables conductivity functions, given a matrix of
conductivity values associated with a two-dimensional domain,
a very natural case in medical imaging.

The proposal is based onto the construction of a piecewise
function, obtained by applying standard cubic polynomial
interpolation. The preliminary trials [8] indicate that it can
be useful as a departure point for more specific experimental
designs.

The goal is, of course, the numerical approach of the formal
powers using piecewise functions, in order to approach the
solutions of boundary value problems, a critical matter in
the procedure for approaching the solution of a tomography
problem.

Moreover, already in [4] was shown that by applying the
well known Gram-Scmidt method to the formal powers, it
is possible to obtain a complete orthonormal system for the
electric potentials at the boundary.

Among all these interesting facts, the qualitative behavior
of the electrical current paths, can be a useful tool to prevent
unstable behaviors of the numerical calculations, a major
challenge always present in Electrical Impedance Tomography.

A. Formal powers in analytic form and electrical current
trajectories

The interpolation method posed in [9] considers, for every
subsection of the domain of interest, a conductivity function
of the form

σ (x1, x2) = (αx1 + β)
(
ax32 + bx22 + cx2 + d

)
. (11)

According to the notations introduced in the section of Pre-
liminaries, we will have that

p =

√
αx1 + β√

ax32 + bx22 + cx2 + d
,

F0 =

√
αx1 + β√

ax32 + bx22 + cx2 + d
,

G0 = i

√
ax32 + bx22 + cx2 + d√

αx1 + β
;

and that

F ∗0 = −i
√
αx1 + β√

ax32 + bx22 + cx2 + d
,

G∗0 =

√
ax32 + bx22 + cx2 + d√

αx1 + β
.

Notice the generating pair (F0, G0) is embedded into a
periodic generating sequence with period 2 [6]. Thus, we
can approach in exact form the first and the second formal
powers with coefficients 1, centers at z0 = 0, depending upon
z = x2 + ix1.

We will have

Z
(0)
0 (1, 0; z) =

√
αx1 + β√

ax32 + bx22 + cx2 + d
,

and

Z
(0)
0 (1, 0; z) =

√
αx1 + β√

ax32 + bx22 + cx2 + d
· (12)

·
(
a

4
x42 +

b

3
x32 +

c

2
x22 + dx2

)
+

+i

√
ax32 + bx22 + cx2 + d√

αx1 + β
·

·
(α
2
x21 + βx1

)
.

B. Electrical current trajectories

In order to establish a comparison point, let us suppose
the conductivity σ is constant. The Vekua equation (10) will
reduce to the Cauchy-Riemann equation ∂zW = 0.

Let us consider the second power of the Taylor series z =
x2+ix1 (the first term does not reach any interesting trajectory,
since only possesses one spatial component).

According to the differential Ohm’s Law −→j = −σ∇u and
to the notations (9), we have that

−→
j =

(√
σRez,

√
σImz

)
.

In Figure 1, we pose the example of eight current traces that
intersect the radius of the unitary circle at the angles 0, π2 , π
and 3

2π. The reader should keep in mind that this illustration,
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Fig. 1. Electrical current traces for the homogeneous case.

as the rest will, only remarks the electrical current trajectories,
without taking into account their magnitudes.

We can identify four groups of current paths, and this pattern
is the one we might take as our main reference.

Let us consider now the formal power (12). The electrical
current vector will be

−→
j =

( √
σReZ(0)

0 (1, 0; z)
√
σImZ(0)

0 (1, 0; z)

)
=

=

(
(αx1 + β)

(
a
4x

4
2 +

b
3x

3
2 +

c
2x

2
2 + dx2

)(
α
2 x

2
1 + βx1

) (
ax32 + bx22 + cx2 + d

) ) .
Figure (2) contains the traces corresponding to the

coefficients α = 1, β = 3, a = 1, b = 11, c = 1, d = 25.
The set of values were selected only to ensure the absence of
zero-valued points within the unitary circle. As the reader can
appreciate, remarking again the illustration does not contain
information concerning to the electrical current magnitudes,
the pattern of the traces is very similar to the homogeneous
case.

Of course, when medical imaging is considered, the
difference between the conductivities of the human tissues,
will be very significant (see e.g. [2]). Thus, at least from the
numerical point of view, we may have the possibility of finding
values very close to zero.

In order to test the proposal, let us select the set of values
α = 1, β = 3, a = 1, b = 11, c = 1, d = 10−6. This will
force the appearance of an axis, parallel and very close to x1,
on which the conductivity will almost vanish numerically. The
reader will appreciate in Figure (3) that the current trajectories
are indeed altered when crossing upon the mentioned axis, but
we might say that the pattern does not experiment considerable
changes.

IV. CONCLUSIONS

The study of patterns found when observing the electrical
current trajectories, traced within an inhomogeneous media,

Fig. 2. Electrical current traces for the first inhomogeneous case.

Fig. 3. Electrical current traces for the second inhomogeneous case.

could well reach useful information for preventing undesirable
numerical behavior, when applying Pseudoanalytic Function
Theory to the study of the Electrical Impedance Equation.

Specifically, when considering cubic polynomial separable-
variables conductivity functions, the analysis shows the current
patterns keep a stable behavior when changes occur to the
conductivity σ, at least from the point of view of the electrical
current paths.

Since this case is precisely the one corresponding to
the numerical method that approaches piecewise separable-
variables conductivity functions, the results presented in this
work indicate that this approach can work as a good depar-
ture point for the construction of more detailed experimental
methods.
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On the light of this information, we may remark the
Pseudoanalytic Function Theory is becoming a useful tool for
engineering cases.
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