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Abstract—We analyze a technique for obtaining piecewise
separable-variables conductivity functions, employing standard
cubic polynomial interpolation. Our goal is to start making
possible the practical use of the Pseudoanalytic Function Theory
in medical imaging, by allowing the construction of numerical
solutions, in terms of Taylor series in formal powers, of the two-
dimensional Electrical Impedance Equation.
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I. INTRODUCTION

The analysis of the two-dimensional Electrical Impedance
Equation

∇ · (σ∇u) = 0, (1)

is the departure point for any proper study of the Electrical
Impedance Tomography problem.

As a matter of fact, we will find that the complexity of
this governing equation, appears just at the very beginning,
when the selection of the mathematical representation for the
conductivity σ takes place.

There exists a wide collection of interesting methods for
approaching the electric potential u once σ has been chosen.
Many of them are based upon variations of the well known
Finite Element Method (see e.g. [9]), which effectiveness has
been well proved in many classes of boundary value problems
belonging to the Electromagnetic Theory.

Still, most of the known variations of the Finite Element
Method present instability when approaching solutions for the
inverse problem of (1), and it is not clear yet how to overpass
this situation.

An interesting alternative for solving (1) appeared when
K. Astala and L. Païvarïnta [1] first noticed that the two-
dimensional case of (1) was directly related with a special
class of Vekua equation [11], and V. Kravchenko et al. [6]
posed the structure of its general solution in analytic form by
means of Taylor series in formal powers, employing elements
of the Pseudoanalytic Function Theory developed by L. Bers
[2].

We may also remark that the use of this new mathematical
tools allowed to approach the solution of the direct boundary
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value problem for (1), with high accuracy, once σ was posed
as a separable-variables function [4].

These new results are, with no doubt, relevant for better
understanding the dynamics of the Electrical Impedance Equa-
tion. Thus, a natural path to follow, is to search for the
interpolating methods that will allow us to apply these novel
techniques, when studying cases situated nearer to the medical
imaging engineering.

This work is dedicated to analyze one interpolating method
posed in [7], that allows to obtain separable-variables functions
σ when a finite set of conductivity values is properly defined
within a bounded domain.

Specifically, after reviewing a collection of statments cor-
responding to the Pseudoanalytic Function Theory, we will
discuss how to construct a piecewise polynomial separable-
variables function by using standard interpolation methods.

Starting with the case used in [4], for approaching solutions
of the boundary value problem for (1), we present the results
of performing a basic numerical analysis, in order to test
the convergence of the interpolation method. We illustrate
the behavior of a certain class of maxima errors, taking into
account the number of subregions in which we divided a
unitary circle, and the number of points considered within
every subregion.

We close with a brief discussion about the validity and
use of these preliminary results, emphasizing the necessary
work before we can use effectively this interpolation method
in medical imaging.

II. PRELIMINARIES

Following [2], let the pair of complex-valued functions
(F,G) fulfil the condition

Im
(
FG
)
> 0, (2)

where F denotes the complex conjugation of F . Thus any
complex function W can be expressed by means of the linear
combination of F and G:

W = φF + ψG.

Here φ and ψ are real functions. A pair of functions satis-
fying (2) is named a Bers generating pair. Indeed, L. Bers
introduced a derivative based upon the generating pair (F,G).
It has the form

∂(F,G)W = (∂zφ)F + (∂zψ)G, (3)
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where ∂z = ∂
∂x− i

∂
∂y , and i represents the standard imaginary

unit i2 = −1. But this derivative will exist iff

(∂zφ)F + (∂zψ)G = 0 (4)

holds, where ∂z = ∂
∂x + i ∂∂y (the reader should notice that

traditionally the differential operators ∂z and ∂z are introduced
with the factor 1

2 , but in our study it will result somehow more
convenient to work without it). Introducing the notations

A(F,G) =
F∂zG−G∂zF
FG− FG

,B(F,G) =
F∂zG−G∂zF
FG− FG

, (5)

a(F,G) =
G∂zF − F∂zG
FG− FG

, b(F,G) =
F∂zG−G∂zF
FG− FG

;

the equation (3) becomes

∂(F,G)W = ∂zW −A(F,G)W −B(F,G)W, (6)

whereas (4) reaches

∂zW − a(F,G)W − b(F,G)W = 0. (7)

Specifically, the expressions (5) are called the characteristic
coefficients of the generating pair (F,G); the relation (6)
is referred as the derivative in the sense of Bers of W , or
simply the (F,G)-derivative of W ; and (7) is in fact the Vekua
equation [11], which will play a central role in our further
discussions.

We will define a complex valued function W fulfilling (7)
as an (F,G)-pseudoanalytic function. The next statements
were all originally posed in [2], and extended to the Applied
Sciences in [5].

Definition 1: Let (F0, G0) and (F1, G1) be two generating
pairs, and let their characteristic coefficients (5) satisfy the
relations

a(F0,G0) = a(F1,G1),

B(F0,G0) = −b(F1,G1).

Then, (F1, G1) will be called a successor pair of (F0, G0),
as well as (F0, G0) will be named the predecessor pair of
(F1, G1).

Definition 2: Let the set of generating pairs {(Fn, Gn)} ,
n = 0,±1,±2, ... posses the following property: Every
(Fn+1, Gn+1) is a successor of (Fn, Gn). The set {(Fn, Gn)}
is then called a generating sequence. If the generating pair
(F,G) = (F0, G0), we say that (F ,G) is embedded
into {(Fn, Gn)}. Beside, if a number k exists such that
(Fn+k, Gn+k) = (Fn, Gn), the generating sequence is classi-
fied as periodic, with period equal to k.

Remark 1: Notice the (F0, G0)-derivative of an (F0, G0) -
pseudoanalytic function will be (F1, G1) -pseudoanalytic. This
implies if one is to know the m-derivative in the sense of
Bers of an (F0, G0)-pseudoanalytic function, it is a requisite to
posses in exact form all generating pairs, from n = 0 till n =
m, belonging to the generating sequence in which (F0, G0) is
embedded.

L. Bers also introduced the notion of an (F0, G0)-integral.
We refer the reader to the specialized literature for examine the
details of the existence of such integral [2], since in the current
pages we will use exclusively (F 0, G0)-integrable functions.

Definition 3: The adjoint generating pair (F ∗0 , G
∗
0) corre-

sponding to (F0, G0) is introduced as

F ∗0 = − 2F 0

F0G0 − F 0G0

, G∗ =
2G0

F0G0 − F 0G0

.

Definition 4: When it exists, the (F0, G0)-integral of a
complex valued function W is defined as∫ z

z0

Wd(F0,G0)z = F0Re
∫ z

z0

G∗0Wdz +G0Re
∫ z

z0

F ∗0Wdz.

Particularly, the (F0, G0)-integral of the derivative in the
sense of Bers of an (F0, G0)-pseudoanalytic function W :
∂(F0,G0)W , reaches∫ z

z0

∂(F0,G0)Wd(F0,G0)z =W − φ (z0)F − ψ (z0)G,

and since the (F0, G0)-derivatives of (F0, G0) vanish identi-
cally:

∂(F0,G0)F0 ≡ ∂(F0,G0)G0 ≡ 0,

the last integral expression represents the (F0, G0)-
antiderivative of the function ∂(F0,G0)W .

A. Formal powers
The classical Complex Analysis shows that any analytic

function ϕ with respect to a complex variable z = x − iy:
∂zϕ = 0; can be expanded in Taylor series

ϕ =

∞∑
n=0

∂nz ϕ (z0)

n!
(z − z0)n ,

where ∂nz = ∂n

∂zn , z = x + iy and z0 is a fixed point in the
plain, called the center of the series.

L. Bers generalized this classical result for the set of
pseudoanalytic functions, employing what he called formal
powers.

Definition 5: The formal power Z(0)
m (a0, z0; z) with formal

exponent 0, complex constant coefficient a0, center at z0 and
depending upon z; is defined by the expression

Z(0)
m (a0, z0; z) = λmFm + µmGm,

where
λmF (z0) + µmG (z0) = a0.

The formal powers with higher exponents are defined by the
recursive formulas

Z(n)
m (an, z0; z) = n

∫ z

z0

Z
(n−1)
m−1 (a0, z0; z) d(Fm,Gm)z.

Notice the integral operators are indeed antiderivatives in the
sense of Bers.

In the light of the last statements, L. Bers proved that any
(Fm, Gm)-pseudoanalytic function can be expressed by means
of Taylor series in formal powers:

W =
∞∑
n=0

Z(n)
m (an, z0; z) , (8)

where

an =
∂n(Fm,Gm)W (z0)

n!
.

In this sense, the expansion (8) is an analytical representation
of the general solution for the Vekua equation (7).
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III. THE TWO-DIMENSIONAL ELECTRICAL IMPEDANCE
EQUATION

As it was mentioned before, K. Astala and L. Paï-
varïnta proved in [1] the biunique relation between the two-
dimensional (1) and a special Vekua equation, which was
rediscovered and employed in a variety of works (see e.g. [5],
[10]). This represents a very important advance since the study
of the solutions for the direct problem of (1), is a critical matter
when approaching solutions for its inverse problem, which is
indeed the Electrical Impedance Tomography problem.

We should remark that positive results were obtained by
assuming the electrical conductivity function σ as a separable-
variables function

σ (x1, x2) = σ1 (x1)σ2 (x2) .

More precisely, the example σ = ek1x1+k2x2 played the
main role in many works (see [4], [6]). Still, the majority
of the novel results can apply when a wide class of different
separable-variables function is considered.

Our proposal then, is to consider a piecewise separable-
variables function, obtained by applying a polynomial inter-
polation method to a set of conductivity values [7], that could
have well been acquired from a medical image. In order to
prove the validity of this suggestion, we will now briefly
review the requirements that the interpolation method must
fulfil, for working as part of the base on which the method of
Taylor series in formal powers can be applied.

According to the notations of [10], by introducing the
functions

W = −
√
σ
∂

∂x1
u+ i

√
σ
∂

∂x2
u, (9)

∂z =
∂

∂x1
+ i

∂

∂x2
,

p =

√
σ2 (x2)√
σ1 (x1)

,

the two-dimensional Electrical Impedance Equation will turn
into the Vekua equation

∂zW −
∂zp

p
W = 0. (10)

The reader can verify that, for this case, a generating pair
(F0, G0) is

F0 = p,G0 = ip−1,

and that this generating pair is embedded into a periodic
generating sequence with period 2 [2], [5], for which

Fm =

√
σ2 (x2)√
σ1 (x1)

,

Gm = i

√
σ1 (x1)√
σ2 (x2)

;

when m is an even number, and

Fm =
√
σ1 (x1)σ2 (x2),

Gm = i
1√

σ1 (x1)σ2 (x2)
;

when m is odd.
It becomes evident that once the piecewise interpolating

polynomial function have approached a separable-variables
conductivity function σ, the construction of the generating
pairs (F0, G0) and (F1, G1) must be achieved by simple
arithmetical operations.

It is easy to see that (F1, G1) can be obtained immediately,
taking the squared root of σ. The main challenge lies on
the construction of (F0, G0), since according to the notations
(9), this pair should rise through the algebraic division of the
function depending upon x2 over such depending upon x1.

Intending to give a positive answer to this question, we
follow the method posed in [7] (also analized in [8]).

A. A piecewise separable-variable conductivity function

Let us consider a circular bounded domain with radius equal
to 1, and let us separate such domain into a finite set of
subregions created through the trace of parallel lines to the
x2-axis.

For simplicity, we will assume that the parallel lines have
identical distance between them, and they are symmetrically
distributed inside the circular domain.

After this sectioning procedure, we will observe q subre-
gions created by the trace of q − 1 parallel lines. Now trace
a new set of parallel lines to the x2-axis, crossing precisely
at the middle distance of the first set of lines. Select on every
new parallel line a finite set of a points equally distributed
on the line and inside the domain, assigning to every point a
constant conductivity value.

We will have then a finite set of a× q conductivity values
distributed across the parallel lines, each of them located on
one subregion of the circle. Following the ideas posed in [7],
the piecewise separable-variables function will have the form:

σ (x1, x2) = σ1 (x1)σ2 (x2) =

=



(x1+A)
(ξ1+A) f1 (x2) ; 1 ≥ x1 > 1− 2

q ;
(x1+A)
(ξ2+A) f2 (x2) ; 1−

2
q ≥ x1 > 1− 4

q ;
(x1+A)
(ξ3+A) f3 (x2) ; 1−

4
q ≥ x1 > 1− 6

q ;
(x1+A)
(ξ4+A) f4 (x2) ; 1−

6
q ≥ x1 > 1− 8

q ;

...
(x1+A)
(ξq+A) fq (x2) ;−1 +

2
q ≥ x1 ≥ −1.

(11)

Here, ξ1, ξ2, ..., ξq represent the common x1 coordinate to
every set of points located on the line crossing every subregion,
and A is a real constant such that x1+A 6= 0 within the circle.

Other hand, every fk (x2) , k = 1, 2, ..., q are simply in-
terpolating functions created by using standard cubic splines
algorithms, each one corresponding to the collection of points
selected on the parallel lines.

For simplicity, let us construct the piecewise function

p2 = F 2
0 =

σ (x2)

σ (x1)
,

according to the expression

F 2
0 =

σ (x2)

σ (x1)
=
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=



(ξ1+A)
(x1+A)f1 (x2) ; 1 ≥ x1 > 1− 2

q ;
(ξ2+A)
(x1+A)f2 (x2) ; 1−

2
q ≥ x1 > 1− 4

q ;
(ξ3+A)
(x1+A)f3 (x2) ; 1−

4
q ≥ x1 > 1− 6

q ;
(ξ4+A)
(x1+A)f4 (x2) ; 1−

6
q ≥ x1 > 1− 8

q ;

...
(ξq+A)
(x1+A)fq (x2) ;−1 +

2
q ≥ x1 ≥ −1.

(12)

B. Basic trials of convergence

A basic numerical analysis for the proposal is now in order.
We will consider first the example of the conductivity function

F 2
−1 = σ = ek1x1+k2x2 ,

adopting k1 = k2 = 3, and A = 10. We will establish the
maximum number of subregions q = 100, and the maximum
points on every line inside the circle a = 100.

We employ the criteria of locating the maximum error emax
inside the region for every q and a combination, according to
the rule

emax =

√
(σo − σint)2,

where σo represents the original conductivity and σint the
piecewise interpolated function.

Figure 1 displays the behavior of the maximum error, when
sampling the interpolated function σ at 99% of the limits of
every region. We intend to be as close as possible of the places
where the interpolating technique evidently has the biggest
difference when compared to the original function.

Fig. 1. Example 1A

As expected, the maximum error does not decrease sig-
nificantly when increasing a, due to the smoothness of the
function e3x1+3x2 , but it does when incrementing the number
of subregions q. Te computational procedure reported the
minimum error emax at q = a = 100, being of 1.2%.

Yet, by virtue of the graphical appreciation, we displayed
the values corresponding to q = a = 60. Basically, they are
not significant variations on the remaining values to be shown
in the graphic. This restriction was also applied for the rest of
the figures.

More interesting trial is the one performed considering

F 2
0 = e−3x1+3x2 ,

the function defined according to (12). Following the same
steps, the minimum emax was registered at q = a = 100, being
of 1.9%. The behavior of the maximum error is illustrated in
Figure 2.

Fig. 2. Example 1B

Trying to understand better the dynamics of the posed inter-
polation technique, we performed a new experiment proposing

F 2
−1 = σ1 (x1)σ2 (x2) =

= (10 + sin (2πx2) + sin (4πx2) + sin (6πx2) + sin (8πx2)) ·
· (10 + cos (2πx2) + cos (4πx2) + cos (6πx2) + cos (8πx2)) .

For this example we considered a maximum number of points
a = 200 and a maximum number of regions q = 200. The
minimum error was located at the maxima of q and a, being
0.06%. Figure 3 shows the dynamics of the maximum error
emax.

Finally, it was considered the case

F 2
0 =

σ2 (x2)

σ1 (x1)
,

and the interpolating function (12). Once more, we posed the
maxima at q = a = 200. The minimum emax was located at
the maxima values of a and q, being of 0.05%. The experiment
is illustrated in Figure 4.
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Fig. 3. Example 2A

Fig. 4. Example 2B

IV. CONCLUSIONS

The possibility of applying the elements of Pseudoanalytic
Function Theory to the Electrical Impedance Equation, con-
sidering conductivity functions obtained from real medical
images, is an interesting tool that opens the path for posing
new and important questions.

We believe it is very important to remark in this last section
some of the main areas to which we may direct our efforts, in
order to make the novel rising theory of Electrical Impedance
Tomography, fully applicable to practical cases.

In many senses, the results presented above are, indeed,
preliminaries, since we have only considered conductivity
functions which smoothness is well known, even the math-
ematical expressions employed could suggest a higher degree

of complexity.
It is evident that the technique has to be tested when

considering a wide range of geometrical figures with different
classes of conductivities, within domains that does not share
with the unitary circle. Beside, such tests must include strong
changes in the values of the conductivity, through very small
sections of the plane, as it would correspond to any clinical
application.

Moreover, the very nature of the suggested interpolating
function has indeed provoked the existence of discontinuities
into the bounded domain, providing the precise condition for
the uprising of anisotropic effects. A. P. Calderon did not
consider such a case when he posed the Electrical Impedance
Tomography problem, since the biunique correspondence be-
tween a boundary electric potential function u and the elec-
trical conductivity inside the domain can not be warranted
anymore.

Of course, the case is very interesting, but overpasses
the controlled conditions that may be established in order
to better understand the dynamics of a problem that has
been historically classified as very unstable. This implies the
interpolating procedure posed before, should be modified to
avoid this undesirable situation as soon as possible.

It is also important to remark that we have arbitrarily taken
an equal number of points located at every line traced among
the subregions. Evidently, this will not be convenient, even
possible, when dealing with a wide class of medical images,
very often required in clinical monitoring.

Taking into account this matters, the reader might consider
this work as a basic proposal that intends to start a discussion
in order to identify better techniques for the engineering work
in medical instrumentation, based upon novel mathematical
tools into the field of the Electrical Impedance Tomography.
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