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Abstract—First-order differentials of a (simple) eigenvalue
and the associated eigenvector in an undamped discrete system
are investigated. We provide closed-form expressions under
three alternative normalizations, namely the customary mass
normalization, unit-length normalization and the normalization
obtained setting an element equal to 1. The proposed formulas
have no pretension to be computationally efficient in large
systems, but may be useful for the interpretation of the results.

Index Terms—undamped systems, generalized eigenvalue
problem, matrix differential.

I. INTRODUCTION

In the analysis of free undamped vibration and structural
stability, the following generalized eigenvalue problem is
often considered:

(K− λM)u = 0.

K is called stiffness matrix, while M is called mass matrix.
An interesting problem that has received attention in the lit-
erature (see e.g. [1], [2], [3], [4], [5], [6]) is the computation
of the derivatives of the eigenvalues and of the eigenvectors
of the problem. The aim of this paper is to propose new
formulas for the differentials of the eigenvalues and of
the eigenvectors of this generalized eigenvalue problem. A
complication of this problem is that the eigenvector is usually
normalized through the mass normalization

√
u?Mu = 1

(see [7], for the impact of alternative normalizations on the
computation of the derivatives).

Most references obtain formulas for the derivatives of
eigenvalues and eigenvectors using an approach that seems to
be due to Nelson ([2]). When it was proposed, this method
was a significant advance and spawned a large literature.
All of the previous methods required calculation of a large
number of eigenvectors, while Nelson method was the first
to reduce the burden to the computation of only the selected
eigenvalue and eigenvector. Moreover, the method preserves
the structure (bandedness, symmetry, etc.) of the matrices
involved in the computation, thus reducing notably the
computational complexity. In practice, the method is based
on taking the derivative of the generalized eigenequality
(K− λM)u = 0 and on supplementing this (singular)
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system of equalities with an additional equation allowing for
removing this singularity. The method is very clever and has
been extended to cover second-order derivatives ([4]), other
kinds of normalization (see e.g. [7]), damped systems (see
e.g. [5]). An earlier review paying particular attention to the
pre-Nelson methods is [3].

There are two main differences of the present approach
with respect to the existing ones. First of all, we use
differentials of matrices and vectors instead of derivatives.
Even if differentials can be easily obtained from derivatives
using e.g. the technique in Section 5 in [8], the book [9]
provides in our opinion a thorough defence of the approach
using differentials. Moreover, obtaining derivatives from dif-
ferentials using the classical definition of the derivative as
ratio of differentials is very simple.

The second, and probably more profound, difference is that
we obtain explicit expressions for differentials in terms of the
original quantities of the problem. These formulas involve
generalized inverses, in particular Moore-Penrose inverses.
This constitutes a drawback from the computational point of
view. For general matrices, the computation of the inverse of
a n× n general matrix has complexity of O

(
n2.376

)
opera-

tions (the procedure attaining this rate, called Coppersmith-
Winograd algorithm, is rarely used in practice: more common
algorithms are the Strassen algorithm, with O

(
nlog2 7

)
oper-

ations, and Gauss-Jordan elimination, with O
(
n3
)
) while the

computation of the Moore-Penrose inverse through the SVD
requires O

(
n3
)

operations. On the other hand, if the matrices
involved in the computations have a special structure, Nelson
procedure can have a definite advantage on our formulas.
However, even when computationally inefficient, a closed
form expression can retain a certain appeal from the point
of view of interpretation (see e.g. [5] for an example of a
quadratic eigenvalue problem in which interpretation is more
important than computational efficiency).

As an illustration of the use of the method, we provide a
comparison of the formulas for the first-order differentials
of a (simple) eigenvalue and the associated eigenvector
under three alternative normalizations, namely the customary
mass normalization, the unit-length normalization and the
normalization obtained setting an element equal to 1. Further
topics, such as the derivation of second-order differentials
and the treatment of damped linear discrete systems through
quadratic eigenvalue problems, will be dealt with in a forth-
coming paper.

II. GENERAL RESULTS

The following result, whose proof is contained in [10],
will be the starting point on which we will base our analysis.
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Theorem. Consider the eigenvalue problems A0·u0 = λ0·u0

and A ·u = λ ·u where A ' A0 + dA and dA is a matrix
differential in the sense of [9]. λ0 is a simple eigenvalue
of A0 with right eigenvector u0 and left eigenvector v0.
Suppose that the right eigenvectors u0 and u take their
values in the complex plane Cn. Denote as u0 and u the
eigenvectors normalized as n (u0) = 1 and n (u) = 1, where
n : Cn → R is a function infinitely differentiable in the
interior of its domain with Taylor expansion:

n (u) ' n (u0) + n?
0 · du + dη (u0)

with n?
0u0 6= 0 and dη (u0) positively homogeneous of

degree 1. The following expansions hold:

λ (A) ' λ0 + dλ,
u (A) ' u0 + du,

where:

dλ =
v?

0 · dA · u0

v?
0u0

du = (In − u0n?
0) · (λ0In −A0)

+

(
In −

u0v?
0

v?
0u0

)
·dA · u0 − u0 · dη (u0) .

III. DIFFERENTIALS UNDER ALTERNATIVE
NORMALIZATIONS

Consider the previous generalized eigenvalue problem.
The unperturbed problem is:

(K0 − λ0M0)u0 = 0.

Supposing, as we will do in the following, that M0 is a full
rank matrix, this can be cast as a classical eigenvalue problem
(A0 − λ0In)u0 = 0, with A0 = M−1

0 K0, premultiplying
the previous equation by M−1

0 . Consider now two matrices
M and K that are obtained as perturbations of the matrices
M0 and K0, say M = M0 + dM and K = K0 + dK
where dM and dK are matrix differentials. This means that
the classical eigenvalue problem becomes (A− λIn)u = 0,
where A = A0 + dA and (see [9] for the differentials):

dA = dM−1K0 + M−1
0 dK

= −M−1
0 · dM ·M

−1
0 K0 + M−1

0 dK.

On the other hand, the mass normalization admits the expan-
sion:

n (u) = n (u0) +
u?

0 (M0 + M?
0) du

2
√

u?
0M0u0

+
u?

0dMu0

2
√

u?
0M0u0

+o (‖du‖) + o (‖dM‖) .

Therefore, n0 = (M0+M?
0)u0

2
√

u?
0M0u0

and dη = u?
0dMu0

2
√

u?
0M0u0

.

As concerns the eigenvalue, we get:

dλ =
v?

0 ·M−1
0 · (dK− λ0 · dM) · u0

v?
0u0

where we have used the fact that M−1
0 K0u0 = λ0u0.

Remark that this formula coincides with the formula of the
derivative given e.g. in [7]. Moreover, the differential of the

eigenvalue is independent of the normalization. As concerns
the eigenvector:

du =
(
In − u0u?

0

(M0 + M?
0)

2

)
·
(
λ0In −M−1

0 K0

)+
·
(
In −

u0v?
0

v?
0u0

)
·M−1

0 · (dK− λ0 · dM) · u0

−u?
0dMu0

2
· u0.

If v?
0u0 = 1, as is often supposed, then the formulas simplify

accordingly.
The previous formulas can be simplified if the matrices

M, K, M0 and K0 are real symmetric. In this case, if u
and u0 are the right eigenvectors, the relations v ∝ Mu
and v0 ∝M0u0 hold for the left ones, independently of the
normalization chosen for them. Then, we get:

dλ = uT
0 · (dK− λ0 · dM) · u0

du =
(
In − u0uT

0M0

)
·
(
λ0In −M−1

0 K0

)+
·
(
M−1

0 − u0uT
0

)
· (dK− λ0 · dM) · u0

−uT
0 dMu0

2
· u0.

Now, we consider the unit-length normalization, obtained
setting n (u) =

√
u?u. Then n0 = u0√

u?
0u0

and dη = 0.

Therefore, using the formula M−1
0 K0u0 = λ0u0 we get:

du =
(
λ0In −M−1

0 K0

)+(
In −

u0v?
0

v?
0u0

)
·M−1

0 · (dK− λ0 · dM) · u0.

If the matrices M, K, M0 and K0 are real symmetric:

du =
(
λ0In −M−1

0 K0

)+ · (M−1
0 −

u0uT
0

uT
0M0u0

)
· (dK− λ0 · dM) · u0.

A last kind of normalization is obtained setting an element
of the vector, say the j−th, to a fixed value, say 1. Let ej

be the vector with the j−th element equal to 1 and all other
elements equal to 0. Then n0 = ej and dη = 0:

du =
(
In − u0eT

j

)
·
(
λ0In −M−1

0 K0

)+ · (In −
u0v?

0

v?
0u0

)
·M−1

0 · (dK− λ0 · dM) · u0.

Under real symmetry:

du =
(
In − u0eT

j

)
·
(
λ0In −M−1

0 K0

)+
·
(
M−1

0 −
u0uT

0

uT
0M0u0

)
· (dK− λ0 · dM) · u0.

REFERENCES

[1] R. L. Fox and M. P. Kapoor, “Rates of change of eigenvalues and
eigenvectors.” AIAA Journal, vol. 6, no. 12, pp. 2426–2429, 1968.

[2] R. B. Nelson, “Simplified calculation of eigenvector derivatives,” AIAA
Journal, vol. 14, no. 9, pp. 1201–1205, 1976.

[3] H. M. Adelman and R. T. Haftka, “Sensitivity analysis of discrete
structural systems,” AIAA Journal, vol. 24, no. 5, pp. 823–832, 1986.

[4] M. I. Friswell, “Calculation of 2nd-order and higher-order eigenvector
derivatives,” Journal of guidance, control, and dynamics, vol. 18, no. 4,
pp. 919–921, 1995.

[5] S. Adhikari, “Rates of change of eigenvalues and eigenvectors in
damped dynamic system,” AIAA Journal, vol. 39, no. 11, 1999.

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



[6] ——, “Derivative of eigensolutions of non-viscously damped linear
systems,” AIAA Journal, vol. 40, no. 10, pp. 2061–2069, October 2002.

[7] V. Siddhi, “A generalized approach for calculation of the eigenvector
sensitivity for various eigenvector normalizations,” Master’s thesis,
University of Missouri - Columbia, 2005.

[8] C. D. Meyer and G. W. Stewart, “Derivatives and perturbations of
eigenvectors,” SIAM J. Numer. Anal., vol. 25, no. 3, pp. 679–691,
1988.

[9] J. R. Magnus and H. Neudecker, Matrix differential calculus with
applications in statistics and econometrics, ser. Wiley Series in Prob-
ability and Statistics. Chichester: John Wiley & Sons Ltd., 1999,
revised reprint of the 1988 original.

[10] M. Bernasconi, C. Choirat, and R. Seri, “Differentials of eigenvalues
and eigenvectors under nonstandard normalizations,” Tech. Rep., 2011.

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011




