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Gradient-based Sharpness Function

Maria Rudnaya, Robert Mattheij, Joseph Maubach, and Hennie ter Morsche

Abstract—Most autofocus methods are based on a sharpnesslt has been shown analytically for the 1-D setting that for
function which delivers a real-valued estimate of an image the noise-free image formation thB,—norm derivative-
quality. In this paper we study an L,—norm gradient-based 5564 sharpness function reaches its unique optimum for

sharpness function for two-dimensional images (2-D setting). the in-f . M d tai i
Within this setting we are able to take into account the € In-focus Image. Moreover under certain assumptons

asymmetry of the optical device objective lens (astigmatism the function can accurately be approximated by a quadratic
aberration). This study provides a useful extension of the polynomial [13]. In this paper the study is extended to
analytical observations for one-dimensional_images (1-D setting) the 2-D setting. Only within this setting we can take into
that have been done before. The gradient-based autofocusaecoynt the influence of the astigmatism on the sharpness

method is implemented and demonstrated for the real-world - .. . )
application running in the FEI scanning transmission electron function. The method is implemented in a FEI STEM and is

microscope prototype. demonstrated for a real-world microscopy application.
Index Terms—Defocus, autofocus, astigmatism, sharpness. The paper_is set up as follows: Section Il explains the
function, gradient ' ' ' image formation modelling. Section Il formulates the pro-

cess of automated correction. The theoretical observations
on the gradient-based sharpness function are given. Section
IV presents the results of the on-line autofocus correction
N image obtained with an optical device, such as method implemented and running on a FEI STEM prototype.
photocamera, a telescope or a microscope, depends on
a given object's geometry, known as tlobject function
and the optical deviceontrol variables(for instance defo-
cug. The method of automatic defocus determination, suchIn Subsection II-A of this section we describe notation and
that the recorded image is-focus is known asautofocus conventions used in this paper. The work principle of defocus
method. In this paper we use the low resolutissanning and stigmator control variables is explained in Subsection
transmission electron microscopy (STEM) a reference ap- II-B. Subsequently, Subsection II-C provides the model for
plication for our method. The magnetic lenses in the electréine point spread function and relates its characteristics to the
microscope usually suffer frorastigmatism aberratiorithe —control variables. Finally, the models for the image formation
objective lens is not rotationally symmetric). Astigmatism ignd the object geometry are explained in subsections II-D,
controlled by twostigmator control variables. The methodlI-E respectively.
of automatic determination of stigmator values is known
asautomated astigmatism correctioNowadays STEM still A Notation and conventions
requires an expert operator to trigger recording of in-focus
and astigmatism-free images using a visual feedback [1]. The 2-D spatial and frequencycoordinates are denoted
The existing autofocus methods used for different types 86 x := (z,y)",u = (u,v)T € R? respectively. For
optical devices are usually based ostarpness functigra a vector w := (w;)N, we definewP := (jw;[P)N,,
real-valued estimate of the image’s sharpness. For a througi} := (3, |w;|?)'/2. The Ly-norm of a function is defined
focus series an ideal sharpness function should reach a sirafle
optimum at the in-focus image. Existing sharpness functions .: //oo 2 /2
. - B ! Il = ([ 1fax)
are based on the image derivatives [2], variance [3], [4], 0

autocorrelation [5], histogram [6] or Fourier transform [7]. oy . P
An overview of these functions can be found in [8], [9]. and L(R*) is the space of functions with finité,-norm.

i ¢ ; 2
sharpness function can be also used for simultaneous defo, []S Fourier transformf of a function f € Lo(R”) plays a

and astigmatism correction if it is optimized in the three-undamental role in our analysis and modeling

parameter space [4], [10]. Also the sharpness functions are N o0 e
used for the study of hysteresis in electromagnetic lenses SIFl(u) = f(u) == //_ f(x)e dx,
[11]. -

In this paper we study a gradient-based sharpness fuMiere - denotes the vector inner product. The rotation
tion. The advantage of using this function is demonstrat@eratorRy : Lo(R?) — Ly(R?) is defined byRyf(x) :=
experimentally for different optical devices [6], [8], [9], [12]./ (ReX) whereRy is the rotation matrix

I. INTRODUCTION
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Y ke C. Point spread function

The PSF can accurately be approximated kyéai stable
densityfunction for a wide class of optical devices [16], [17].
The Lévi stable density function is implicitly defined via its
Fourier transform in 1-D as follows

do(w) = e 72 o<, (6)
@ (®) The parametep3 in (6) depends on the optical device. If
Fig. 1. 1(a) Ray diagram for astigmatism-free situation; 1(b) ray diagraf = 1 in (6), the PSF is a Gaussian function. The parameter
for a lens with astigmatism, the lens has two focal points. o in (8) is known as thavidth of the PSF. In 1-D setting it

is simply related to the defocus control varialkle

B. Optical device control variables o=d—do,

Figure 1(a) shows the ray diagram, where the objectiyé'€redo is unknown. In real-world applications# do due

lens has one focal point F. The only adjustable paramef@_rthe physical limitations of the objective lens, thus the PSF

is the current through the magnetic lens; it changes the 1ef¢lth is never equal to zero.

focal length and focuses the magnetic beam on the imagedPU€ to the presence of astigmatism the PSF in 2-D setting
plane [14]. The current is adjusted with tiefocuscon- 1S not alwaysrotationally symmetric To find a 2-D PSF

trol variable d. Astigmatism implies that the rays traveling€ consider a tensor product of 1-D functions inand

through a horizontal plane and the rays traveling throughvadirections taking into account the possibility of system
vertical plane will meet in different focal points (rand F,  "otation with the angle
in Figure 1(b)). Thus, the image cannot be totally sharp. b0 (u) = 67%|(R9Jc,u)5|2’ )
For astigmatism correction in electron microscopy, electro-
static or electromagnetistigmatorsare used (Figure 2(a)). o= (0 —c o+, Tgi= < o—g 0 ) (8)
They produce the electromagnetic field for the correction of = ° ’ T 0 o+g
the ellipticity of the electron beam [15]. Currents of the same
magnitude go through coild;, while currents of a different
magnitude go through coil®; (¢ = 1,...,4). The field ° ux
generated byA; influences the stretching of the electron Slo(Rx)](u) == /[m o(Rx)e™"dx y—Rx
beam along two orthogonal axek (I = 1,2). Similarly, the -
field generated byB;, influences the stretching along axgs 1 // oly)e— Wy gy 1 5(R-T).
see also [14]. The angle betweeh andB; is alwaysZ.  |detR[// | det R
The magnitude and direction of the current through cdils
are controlled by the stigmator control variaklg through
By, - control variabledy.
We will deal with the vector of three control variables S[Roo] = Ryo.

For the Fourier transform it trivially follows that

Therefore the rotation angl of the PSF in Fourier space
is equal to the rotation angle of the PSF in the real space

d := (d, dy dy)T 3) _Figure 2(b) shows_a schematic_repre_sent_ation of such an
B elliptic PSF. If¢ = 0 in (8) the astigmatism is not present,
d the PSF is rotationally symmetric. If astigmatism is
r;{esent( #0), and at the same time = 0 (i.e. the image
is in-focus), the PSF is symmetric with the widthwhich

The vector of the ideal control variables values (the setti
when the output image has the highest possible quality)

defined as . .
. means that the image is not totally sharp.
do := (do, dx,, dy, )" - (4) For the suggested model we can easily find the relation
between PSF parameters and control variables
Let o € Ly(R?) be thepoint spread function (PSF)he d—d
function that describes the shape of electron beam. By o= — %0 X
adjusting the machine controls we obtain \/Z(dy —dy, +1)% + m
0= Co(Tax), (5) dyv — d 1 1
(X Xo+ +dx_dx0+1)’
1
Tq := mde—dxo+1R7r/4Qdy—dy0+1R77r/4- c= d — do X

\/Z(dy —dy, +1)* + (dy—diﬁl)?
In (5) C' is the normalization constant such that after the

transformation the PSF still satisfigg™ s(x)dx = 1. In (dx S 41— 1 ),

(5) defocusd is proportional to the PSWidth, Q,—q,,+1 dx — dx, +1

controls the stretching in the horizontal and vertical direc- (dy—dy +1)2+1

tions, R;/4Qa,—d,,+1R_/4 controls the stretching in the 0 = arccos ———20 _

diagonal directions. V2(dy —dy, + )T +2
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Fig. 2. 2(a): typical configuration of electrostatic stigmators [14]; 2(b): asymmetric PSF in Fourier space, schematic representation; 2(c): The image
formation model; 2(d): Sharpness functiSireaches its optimum at the in-focus image. The goal of the autofocus procedure is to find the value of defocus
do.

D. Linear image formation model Property 1. The power spectrum of the object function (11)

Images for which our sharpness function will be compute(ain be expressed as
are the output imageg € L(R?) of the so-calledmage D= pnme™", n:=mnm)", (12
formation modelrepresented by Figure 2(c). The object’s n,m
geometry (or theobject functiofis denoted byp. The filter \yhere
0o describes the PSF of an optical device. Prm = Z Wt Oon s ke 41 (13)
The output of theg, filter is denoted byf, and is P

often post-processed by a PC. We assume that in such PR the autocorrelatioroéfficients of the pixel values.

x|2
processing a Gaussian filtey, (x) := ﬁe*$ is applied
to the imagefy. Filtering with a Gaussian kernel is often
used for denoising purposes, which is an easy alternative t

more advanced techniques [18], [19], [20]. It has been shown )2 =Ce M >0, y>o0. (14)

that the control variablev is useful not only for denoising . . .
: o . L7 Such images, fory > 0, often occur in real-world appli-
the imagefy; it also influences the approximation error when __. . . . P
o : cations from single particles. Fey = 0 in (14), ||* is
the sharpness function is replaced by a quadratic polynomia . L .
L ; constant, which corresponds to the situation when the object
[13]. The value ofx is fixed during the autofocus process..

) ; ; .. 'is nearlyamorphoud3].
We apply thelinear image formation modehhich is Y phous3]
often used for different optical devices [2], in particular for I1l. GRADIENT-BASED SHARPNESS FUNCTION

elect_ron micro_s_cop_es [3]. In this paper we consider IOW'_tO' The existing autofocus methods used for different types
n"_nedlum magnification of the electror_1 microscope _(resoluthﬂ optical devices are usually based oskarpness function
higher or equal to 1 nm), thus the image formation can . L,(R?) — R, a real-valued estimate of the image’s

approgimat_ed with th_is model [21]. Th?s im_plies that th uality. For a through-focus series of images the sharpness
occurring filters are linear and space invariant which cyl

v be d ibed b ainvoluti q nction is computed for different values dfgiven a fixed
easily be described by means ainvolutionproducts value of a. A general behaviour of a sharpness function is

Proof: The proof is analogue to the 1-D case [13m
dAs a special example of an object function consider

o o hown in Figure 2(d). The image at the defoalis= dy
=0y fi= o 9) 3 _ : _
Joi=wxe fi=Joxg ® is sharp orin-focusand the sharpness function reaches its
If no post-processing is applied,= 0, and f = f. optimum. The image far away frody is calledout-of-focus

For simultaneous defocus and astigmatism correction stig-
mator controls are ajusted as well, and the goal is to estimate
E. Object function dy from the values of the sharpness function computed at
different points.
In this section we provide the general properties of the

//"o l0b(30) b < 00 (10) gradient-based sharpness function

S = v
In practice this will easily be satisfied because the function H ‘

 has a finite domain, i.e., the image has a finite size. Ad4OPerty 2. If f is given by (9) with the PSF (7) then the
consequencé; is bounded and continuous. sharpness function (15) can be written as follows

In classical signal analysis a discrete sigias modelled S(o) = - // |u|2|,¢}(u)|26—\(R9Jau)ﬁ‘26_|u|2a2du.
—0o0

We assume that the object function satisfies

2
R (15)

as a finite linear combination of delta functions

p (16)
P(x) =Y arb(x—7k), k:=(k1)T, 7>0. (11)
k=1 Proof: Because of Parseval’s identity we have
We consider the image with a finite number fikels ay;, S(0) = 1 //oo a2 [0 (w)[2]60 (0)[2 |9 (u)[2du.
i.e. K < oo. In this casey is a tri-geometric polynomial 21 JJ) s
which again is bounded and smooth. [ ]
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A. Rotationally symmetric PSF

In the corollaries, the property and the theorem below we

first consider the sharpness function (15) for the rotationa
symmetric PSF,((= 0 in (8)).

Tn-u

forn = and consequently

iTn-u

Ity ‘ an,m(e VaZio? — 1)‘ S
n,m

-
Corollary 1. The sharpness function can be expressed as < 7(u n|pn.m + |v m nm). 23
y P P oz (o 03 S mlonn) (29

1 o0 ~ 2 2 2 2
S(o) = %// |u|2|w(u)|26_” P2 = lul?e® gy a7)

Corollary 2. The sharpness function is smooth, and is

strictly increasing forc < 0 and strictly decreasing for
o> 0.

Corollary 3. The sharpness function has a finite maximu
at o = 0 for a > 0; in particular max, S(c) = S(0).

It follows that the basic properties of the gradient-based

sharpness function in 2-D are similar to the properties
1-D [13], if we consider a rotationally symmetric PSF: fo

It follows

o0
2
] mpe Y e
- n,m
- 3T T

2 Va2 + o2
m
Then the statement of the theorem is straightforward with

_ 3 Zn,m(|n| + |m|)pn,m
Qﬁ Zn,m Pn,m '

iTn-u

Va2+o2

— 1)du‘ <

> (Il +ml)pnm.

n,m

Ky

in

r ]

the noise free image formation the function has a unique|t follows from (19) that the functionS—'/2(c) can be

Gaussian PSF5(= 1 in (7)).

Property 3. The sharpness functiofi can be expressed by
means of the autocorrelation ééiciénts (13) as follows

1 S iTn-u 2
o [ i

27(02 + a?)?
n,m
(18)

Proof: After we rewrite the sharpness function (17)

S(o) =

)|267‘“‘2du.

1 g u
90 = ey /|
and substitute the expression for the power spectrum (1
we achieve (18). [ ]

Theorem 1. The sharpness function can be expressed as

C
S(o) = m(l + Ry (0)), (19)
where -
|Ri(o)] < Kl\/ﬁ’ (20)

and Cy, K; depend only on the pixel valueg ;.

Proof: Splittinge\/;%r2 into (e Vazta? —1)+1in (18),
one obtains

_ 1 o 2 —|ul?
S(o) = 27(02 + a?)? (/[oo [ul"e du;:npn,m *

C1
o0 2 5
/ / e S g (e

n,m

iTn-u

Veiid —l)du). (21)

It trivially follows that

o0
a2
Ci1 = // |u|26 v duzpn,m = szn,m-
- n,m n,m
To estimateR; observe that

|einf1|:2|Sng|§|77|v n€R, (22)
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by increasing the value of the control varialie This also
corresponds to the findings made for the 1-D setting before.
The only difference is the power of the sharpness function to
be taken for a quadratic approximation. Below we examine
a more general case of a non-symmetric PSF.

B. Non-symmetric PSF

Property 4. Image rotation does not influence the sharpness
function, i.e.

SRy f] = S[f].

2),
Proof: Rotation transformation is just a linear trans-

formation of the coordinates, which satisfies the properties

detRyp =1, R,” =Ry, thus

0

I35

fHLz'

o 0
SRof) = ll g Rof . = |1 Ro fllz. = gope-

Corollary 4. For the linear image formation model, the
rotation of the PSF does not influence the sharpness function

S[w*RGQJ*ga] S[w*ga*ga]-

For further simplification of our analysis we make there-
fore a general assumptigh= 0 in (16). In these case the
adjustment of stigmatody, is not necessary. Neglecting the
PSF rotation angle does not limit the theoretical observations.
However, in real-world applications defocus and astigmatism
correction still remain a three-parameter problem. It has not
been possible so far to implement PSF rotation directly in
the hardware; thus its elliptic form can be adjusted only by
a combination of the two stigmator control variables.

Property 5. For the object function (14) and the Gaussian
PSF the sharpness function (15) is given by

C(§2+0'2+042+’)/2)

S(0) = (24)

3/2°
2((§2 + 0-2 + 042 + 72)2 _ 4§20-2)

WCE 2011
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PNV

Sharpness function

(a) s = 0 (astigmatism-free) (b) ¢ = 1 (with astigmatism)
Fig. 3. Sharpness functions shapes.
Fig. 4. Sharpness functions shape in a two-parameter space.
Proof: By definition
o0
||ﬂf|‘% — i/ w2e— (=) +a?+y*)u? g o m
Oz’ "™ 2m J_o Figure 4 shows the sharpness function shape in a two-
S parameter space computed for= 0.1 anda = 2. In both

/ e~ (o rad ety cases the sharpness function has a maximum as(0,0)”

e and does not have any other optima. This is convenient
¢ 2 2 2\—3/2 2 2 2\—1/2 for simultaneous defocus and astigmatism correction, which
—((s—0o)"+a”+ +0)* +a’+ . U A
4 (6=0)"+a+77) (f40)"+a%+77) could be done by optimizing the sharpness function in two-

Similarly we compute]| 2 |2, then the statement of theParameter space [4], [10]: the local optima that the sharpness
property is straightforwa‘tfd. m function obtains in 1-D are not optima anymore in higher

By analysing the derivative of the sharpness function (24jmensions. This funding coincide with the results of the
sharpness function behaviour obtained via simulations of the
200((042 +72 —0?) +*(2* + 0% —a®* —?) ) variance-based sharpness function [4]. Still, tuning the artifi-
= 3/2 » cial blur & make the shaper of the sharpness function closer
<(§2 +o2+a?+792)? - 4§202) to convex, which might increase the speed of optimization.
Corollary below directly follows from Property 2.

(o)

we find that for\/a2 +~+2 < v/2¢ the sharpness function
has three optima: a minimum at = 0 and a maximum at Corollary 5. For the Gaussian object function and the
o1 and oo, where symmetric Gaussian PSk (= 0) the sharpness function
1 (15) is given by
01,2 :iﬁ\/§\/8a2+872+9§2—2a2 — 292 —¢2 C
S(o) = .

(25) (o) 2(02 + a2 ++2)?
Figure 3 shows functions (24) computed fmr:.o’7 =0 In this case the sharpness function to the powey?2 is
for different values ofc. For ¢ = 0 the function has a a quadratic polynomial
unique optimum atr = 0. For ¢ > 0 the function has
a minimum instead of maximum at the in-focus position 1200 T 2 9 9
and two local maxima atr; ». This benchmark example S = do) = ((d = do)” + "+ 7).
is important, because it shows that due to the presence;of quadratic polynomial, which is coincides with the

astigmatism a standard autofocus procedure might fail. FOBBservations of Theorem 1. which are made for a more
larger value the distance between the optima decreases, 3@ eral case ’

their amplitudes are smaller (Figure 4).\Jfa2 + 2 > v/2¢
the sharpness function has a maximunmrat 0 and does
not have any other optima.

The sharpness function improvement with the helprof
adjustments has been shown before experimentally for arf® detailed description of the gradient-based fast autofocus
electron microscopy through-focus series with local optinf@ethod can be found in [13]. Here we just provide a short
due to the astigmatism presence ([13], page 13, Figure @yerview of theautofocus algorithm:

The benchmark case, which we studied in this subsectionl) Let dy> be the current defocus control value. Choose

gives a theoretical insight into this effect. Ad, thend; :=dy — Ad, d3 := d3 — Ad.

2) Obtain three images atl;,ds,ds and compute
Sl, 52,53. We set N= 3.

3) We fit N given points with a quadratic polynomial

(26)

IV. AN AUTOMATIC AUTOFOCUS ALGORITHM FOR A
REAL-WORLD APPLICATION

Property 6. For the object function (14) and the Gaussian
PSF the sharpness function in the two-parameter sggaee
S(o) has a maximum ar = (0,0)” and does not have any

other Optimum. P(d) = co+c1d+ CQdQ.
Proof: It is easy to find that partial derivatives of the For N > 3 we obtain the overdetermined system
function (24
( ) a a 1 d1 d% Co Sl
_5(070):_5(070):0. Cc1 =
do S 1 dy d3 2 SN
Further it is clear that for € R, £ 5(o,<) #0, k=1,2. p Y v
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Intermediat image 1 Original original Intermediate image 2 Resulting image
Defocus =—8 mm Defocus=—3 nm Drefocus=2 mm Defocus =03 nm o o Initial points
< 150 * L -Quadratic_interpolation
S ‘. K Improved image
151 .
c
21000 e
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Fig. 5. Image improvement by a test application implemented in a prototype FEI Tecnai F20 STEM. The plot on the right shows the fitting of the three
data points with a quadratic polynomial and thus obtaining of the in-focus image.
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