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Abstract—In this paper, we will focus on State Space Models
(SSMs), especially the stochastic volatility model, and look
for a standard approach for assigning initial values in the
Quasi-Likelihood (QL) and Asymptotic Quasi-Likelhood (AQL)
estimation procedures.

Index Terms—State Space Models (SSMs), Quasi-Likelihood
(QL), Asymptotic Quasi-Likelhood (AQL), Kalman filter, Non-
linear and/or Non-Gaussian SSMs.

I. I NTRODUCTION

T HE class of state space models (SSM) provides a
flexible framework for describing a wide range of time

series in a variety of disciplines. For extensive discussion on
SSM and their applications see Harvey [16] and Durbin and
Koopman [13]. A state-space model can be written as

yt = f1(αt, θ) + h1(yt−1, θ)ǫt, t = 1, 2, · · · , T (1)

wherey1, . . . , yT represent the time series of observations;
θ is an unknown parameter that needs to be estimated;f1(.)
is a known function of state variableαt andθ; and{ǫt} are
uncorrelated disturbances withEt−1(ǫt) = 0, V art−1(ǫt) =
σ2
ǫ ; in which Et−1, and V art−1 denote conditional mean

and conditional variance associated with past information
updated to timet−1 respectively. State variablesα1, . . . , αT

are unobserved and satisfy the following model

αt = f2(αt−1, θ) + h2(αt−1, θ)ηt, t = 1, 2 · · · , T, (2)

where f2(.) is a function of past state variables andθ;
{ηt} are uncorrelated disturbances withEt−1(ηt) = 0,
V art−1(ηt) = σ2

η. h1(.) andh2(.) are unknown functions.
One special application that we will consider in detail is

the Stochastic Volatility Model (SVM), a frequently used
model for returns of financial assets. Applications, together
with estimation for SVM, can be found in Jacquier, et al
[22]; Briedt and Carriquiry [8]; Harvey and Streible [19];
Sandmann and Koopman [27]; Pitt and Shepard [25].

There are several approaches in the literature for esti-
mating the parameters in SSMs by using the maximum
likelihood method when the probability structure of under-
lying model is normal or conditional normal. Durbin and
Koopman ([14], [13]) obtained accurate approximation of
the log-likelihood for Non-Gaussian state space models by
using Monte Carlo simulation. The log-likelihood function
is maximised numerically to obtain estimates of unknown
parameters. Kuk [23] suggested an alternative class of esti-
mate models based on conjugate latent process and applied
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it to approximate the likelihood of a time series model
for count data. To overcome the complex likelihoods of
a time series model with count data, Chan and Ledolter
[10] proposed the Monte Carlo EM algorithm that uses
a Markov chain sampling technique in the calculation of
the expectation in the the E-step of the EM algorithm.
Davis and Rodriguez-Yam [12] proposed an alternative es-
timation procedure which is based on an approximation
to the likelihood function. Alzghool and Lin [2] proposed
quasi-likelihood (QL) approach for estimation of state space
models without full knowledge on the probability structure
of relevant state-space system. The QL method relaxes the
distributional assumptions and only assumes the knowledge
on the first two conditional moments ofyt andαt associated
past information. This weaker assumption makes the QL
method widely applicable and become a popular method
of estimation. A comprehensive review on the QL method
is available in Heyde [21]. A limitation of the QL is that
in practice, the conditional second moments of ofyt and
αt might not available. The AQL approach provides an
alternative method of parameter estimation when unknown
form of heteroscedasticity is presented.

The estimation procedure for SSMs consists of two parts.
The first part is, given observations{y1, . . . , yT }, to estimate
state variablesαt. The second part is to combine the infor-
mation of {yt} and {α̂t} to estimate unknown parameterθ
in the model. The Kalman filter and the smoother methods
are widely used to estimate an unobservable series, state
variables, in SSMs (Anderson and Moore [7], Harvey [17]).

In summary, the QL and AQL estimating procedures
discussed in Alzghool and Lin ([2],[3], [5]), Alzghool [4],
and Alzghool, et al [6]. consist of the following steps:

(i) Assign initial values toα0, θ0 andΣ0 = I.
(ii) Obtain the QL/AQL estimatesα̂t of αt for t =

1, 2, . . . , T .
(iii) For the AQL estimating procedure, obtain̂Σt,n by

using the kernel method.
(iv) Obtain the QL/AQL estimatêθ of θ.
(v) Steps (ii), (iii) and (iv) will be alternatively repeated

until estimates converge.
The final estimation results for SSMs might be jointly af-

fected by the initial valuesα0 andθ0 which initially assigned
to the underlying model during the inference procedure.

In this paper, following two issues are investigated.
(1) How sensitive are the final estimates to the initial

values assigned to the state variableα0 andθ0?
(2) If the estimation results are sensitive to the choice

of the initial values, what should initial value of the state
variableα0 be and how is the final estimate ofθ determined?

This paper is structured as follows. In Section II, the
sensitivity of the QL and AQL estimation procedures to the
initial values assigned to state variableα0 is investigated
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via simulation studies. In Section III, a new suggestion for
choosing the initialisation of the state variableα0 is given.
In Section IV, the impact of the starting values of system
parametersθ0 in the estimation results is investigated via
simulation studies. In Section V, a standard procedure to
improve the grid search procedure for obtaining a better
estimation ofθ is established. In Section VI applications of
the QL and AQL methods to real data modelled by SSMs
are given. In Section VII, a conclusion is provided.

II. EFFECT OFINITIALISATION OF α0

The impact of the initial value of the state variableα0 on
the final inference result is illustrated via simulation studies
in this section. Simulation study based on stochastic volatility
model (SVM) is presented below.

A. Stochastic Volatility Models (SVM)

Consider the stochastic volatility model,

ln(y2t ) = αt + ln ξt
2, t = 1, 2, · · · , T, (3)

αt = γ + φαt−1 + ηt, t = 1, 2, · · · , T, (4)

where bothξt and ηt are i.i.d. r.v.’s; ηt has mean 0 and
varianceσ2

η.
In order to show how the initial valueα0 effects the final

estimation in the SVM when the QL and AQL approaches are
applied, we carried out a simulation study on SVM Model
defined by (3) and (4). The simulation was conducted as
follows. First, 1,000 independent samples of size 500 are
generated from (3) and (4) based on a true parameterθ =
(γ, φ), whereηt ∼ N(0, σ2

η), ξt ∼ N(0, 1), and the initial
value for α0 in the true model isα0 = 0. Once{yt} and
{αt} are generated, pretend that{αt} is unobserved andγ,
andφ are unknown. Then apply the QL and AQL estimation
procedures to{yt} only to obtain the estimate ofαt, γ, and
φ. Different parameter settings for(γ, φ, σ2

η) are considered
in the simulation. The mean and root mean squared errors for
γ̂ and φ̂ based on 1,000 independent samples are calculated.

Let α̂0 be the initial state used in the inference procedure.
In Table I, different values of̂α0, mean and root mean
squared errors for̂γ, and φ̂ given by the QL and AQL
methods are reported.

We can see from Table I that the RMSE of QL and AQL
estimates are increased whenα̂0 is chosen farther from the
true valueα0. Since the increase in the RMSE for QL is
less than for AQL, this indicates that the QL approach is
less sensitive to the initial value of state variable than the
AQL approach.

III. D ETERMINATION OF α̂0

Consider the univariate time seriesyt satisfying

yt = αt + ǫt, t = 1, 2, · · · , T (5)

αt = αt−1 + ηt, t = 1, 2, · · · , T (6)

whereǫt ∼ N(0, σ2
ǫ ), ηt ∼ N(0, σ2

η), andα0 ∼ N(a0, P0).
{ǫt} and {ηt} are two independent Gaussian white noise
series. The initial valueα0 is independent of{ǫt} and{ηt}
for t > 0. In literature,αt is referred to as thetrend of the

TABLE I
QL AND AQL ESTIMATES, BASED ON 1,000REPLICATIONS. THE ROOT

MEAN SQUARE ERROR OF EACH ESTIMATE IS REPORTED BELOW THAT

ESTIMATE, BASED ON DIFFERENT INITIAL VALUES FORα0 (T = 500).

ση = 0.675 ση = 0.260 ση = 0.061

α0 γ φ γ φ γ φ

true 0 -0.821 0.90 -0.368 0.95 -0.141 0.98

α̂0=1 AQL -0.873 0.915 -0.411 0.924 -0.349 0.954

0.138 0.020 0.234 0.047 0.255 0.036

QL -0.843 0.931 -0.431 0.927 -0.228 0.964

0.141 0.033 0.098 0.025 0.091 0.017

α̂0=2 AQL -0.860 0.916 -0.328 0.934 -0.230 0.970

0.136 0.022 0.210 0.046 0.157 0.021

QL -0.893 0.927 -0.482 0.920 -0.250 0.970

0.159 0.029 0.134 0.032 0.120 0.022

α̂0=3 AQL -0.817 0.916 -0.255 0.933 -0.157 0.982

0.169 0.032 0.307 0.076 0.112 0.021

QL -0.935 0.923 -0.527 0.913 -0.286 0.954

0.179 0.026 0.175 0.039 0.149 0.027

α̂0=4 AQL -0.770 0.912 -0.144 0.921 -0.089 0.982

0.240 0.045 0.442 0.084 0.237 0.042

QL -0.965 0.921 -0.574 0.905 -0.318 0.949

0.198 0.024 0.219 0.049 0.178 0.032

series, which is not directly observable, andyt is observable.
The model is called alocal level modelin Durbin and
Koopman ([13], Chapter 2), which is a simple case of the
structural time series modelof Harvey [17].

When nothing is known about the initial valueα0, the ini-
tialisation ofα0 is usually given by a diffuse prior approach
that fixesa0 at an arbitrary value and letP0 → ∞ (Zivot et
al. [30], Durbin and Koopman [13], Harvey [16]). However,
some researchers consider that the diffuse approach is not
realistic because they regard that the assumption of infinite
variance is unnatural, given that all observed time series have
finite values. From this point of view an alternative approach
is suggested, which assumes thatα0 is an unknown constant
and needs to be estimated from the data. In Harvey [18],
it is suggested that the initial value ofα0 can be taken as
y1. This is the same value as that obtained by assuming
that α0 is diffuse. More details about the intitialisation of
the Kalman filter under the normality assumption for SSM
are provided in Durbin and Koopman ([13], Chapter 5 and
references therein). Several other suggestions on initialisation
for the state variable in SSM under normality assumption
are given in a recent survey by Casals and Sotoca [9]. They
derived an exact expression for the conditional mean and
variance of the initial state of SSM.

In this paper, we follow the QL method to derive a simple
method for determininĝα0 without assigning any probability
distribution toα0.

Consider the following state-space model:

yt = f(αt, θ) + ǫt, t = 1, 2, · · · , T, (7)

αt = g(αt−1, θ) + ηt, t = 1, 2 · · · , T. (8)

For t = 1, we have

y1 = f(α1, θ) + ǫ1, (9)

α1 = g(α0, θ) + η1. (10)
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In models (9), and (10),α1, α0, ǫ1, andη1 are unobserved.
Assumeθ is known or determined by empirical knowledge.

The rule used to determinêα0 should meet the condition
that given observationy1, α̂0 is able to ensure thatf(α̂1, θ)
is an optimal estimation ofE(y1).

From (9), consider

ǫ1 = y1 − f1(α1, θ)

Let α1 be an unknown parameter and consider estimating
function space

G
(1)
T = {a1(y1 − f1(α1, θ)) | a1 ∈ R}.

A standardised optimal estimating function inG(1)
T is

G∗

(1)(α1) = −E(
∂f

∂α1
)[V ar(ǫ1)]

−1(y1 − f(α1, θ)).

If E( ∂f
∂α1

) 6= 0, andf−1 exists, the optimal estimator of
α1 will be given byG∗

(1)(α1) = 0, that is,

α̂1 = f−1(y1, θ). (11)

Using (10), consider

η1 = α1 − g(α0, θ).

Let α0 be an unknown parameter and consider estimating
function space

G
(0)
T = {a0(α1 − g(α0, θ)) | a0 ∈ R}.

A standardised optimal estimating function inG(0)
T is

G∗

(0)(α0) = −E(
∂g

∂α0
)[V ar(η1)]

−1(α1 − f(α0, θ)).

If E( ∂g
∂α0

) 6= 0, andg−1 exists, the optimal estimator ofα0

will given by G∗

(0)(α0) = 0, that is,

α̂0 = g−1(α1, θ). (12)

Therefore, we make the following suggestion for determining
the initial stateα̂0 in inference process.

Suggestion:For a SSM

yt = f(αt, θ) + ǫt, t = 1, 2, · · · , T

αt = g(αt−1, θ) + ηt, t = 1, 2 · · · , T.

If E( ∂f
∂α1

) 6= 0, E( ∂g
∂α0

) 6= 0, f−1 andg−1 exist, the optimal
decision onα̂0 is

α̂0 = g−1(f−1(y1)). (13)

For convenience, denote thiŝα0 as α̂∗

0.
As an example for (5) and (6), the optimal value forα̂0

is y1, which is the same as the one given under diffuse
conditions.

In the following, we apply the Suggestion to stochastic
volatility model, and use simulation to investigate whether
the Suggestion is practicable or not.

TABLE II
QL AND AQL ESTIMATES BASED ON1,000REPLICATION. THE ROOT

MEAN SQUARE ERROR OF EACH ESTIMATE IS REPORTED BELOW THAT

ESTIMATE. α̂∗

0
IS DIFFERENT FROM SAMPLE TO SAMPLE. (T = 500).

ση = 0.675 ση = 0.260 ση = 0.061

α0 γ φ γ φ γ φ

true 0 -0.821 0.90 -0.368 0.95 -0.141 0.98

α0=0 AQL -0.878 0.92 -0.499 0.91 -0.437 0.94

0.136 0.019 0.229 0.049 0.354 0.052

QL -0.788 0.94 -0.391 0.94 -0.198 0.97

0.140 0.037 0.071 0.019 0.063 0.013

α0=α̂∗

0
AQL -0.857 0.92 -0.499 0.91 -0.440 0.94

0.163 0.024 0.243 0.051 0.402 0.060

QL -0.830 0.93 -0.378 0.94 -0.194 0.97

0.142 0.034 0.082 .019 0.071 .014

A. Stochastic Volatility Model

Consider stochastic volatility process defined by (3) and
(4), i.e.

ln(y2t ) = αt + ln ξt
2, t = 1, 2, · · · , T.

αt = γ + φαt−1 + ηt, t = 1, 2, · · · , T,

where bothξt and ηt are i.i.d. r.v.’s; ηt has mean 0 and
varianceσ2

η, φ 6= 0.
Let

ǫ1 = ln ξ1
2 − E(ln ξ1

2).

Using (3) and (4), it follows that

ǫ1 = ln(y21)− α1 − E(ln ξ1
2)

= ln(y21)− f(α1, θ),

and

η1 = α1 − (γ + φα0)

= α1 − g(α0, θ),

where θ = (γ, φ)′, f(α1, θ) = α1 + E(ln ξ1
2), and

g(α0, θ) = γ + φα0.
SinceE( ∂f

∂α1

) = 1 6= 0, E( ∂g
∂α0

) = φ 6= 0, andf−1, g−1

exist, therefore,

α̂∗

0 = g−1(f−1(y1)) =
ln(y21)− E(ln ξ1

2)− γ

φ
. (14)

If ξt has standard normal distribution, thenE(ln ξ2t ) =
−1.2704 and V ar(ln ξ2t ) = π2/2 (see Abramowitz and
Stegun [1], p. 943). Then, substituting in (14)

α̂∗

0 = g−1(f−1(y1)) =
ln(y21) + 1.2704− γ

φ
. (15)

To show how the optimal initial valuêα∗

0 effects the final
estimation when the QL and AQL approaches are applied,
we carried out a simulation study on SVM model defined by
(3) and (4). We camper the estimation of (,φ) given by the
trueα0 and α̂∗

0. Results are presented by Table II.
Table II shows that, compared to results in Table I, the

estimation given bŷα∗

0 are close related to those given by
the trueα0 = 0.
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Fig. 1. Histogram of QL estimation ofγ in SVM, based on 2,000 different
starting values.

IV. T HE STARTING VALUES FORSYSTEM PARAMETER θ0

In this section, we consider the starting value for system
parametersθ0. As described in literature, the outputs of non-
linear inference procedures rely strongly on the appropriate
value of the initial parameterθ0. It is usually suggested
that θ0 should be chosen from a close neighbourhood of
its true value (Zivotet al. [30]). Since the true value of
θ0 is unknown, it is an issue how to identify the close
neighbourhood ofθ0.

The impact of the starting values of system parametersθ0
is illustrated via simulation studies below.

A. Stochastic Volatility Models

Consider SVM as given in (3) and (4) whereηt ∼
N(0, 0.6752), ξt ∼ N(0, 1), and the initial value forα0 in
the true model is given byα0 = 0. In this example, the state
space model is involved with the parameterθ = (γ, φ). Let
θ = (−0.368, 0.95), a sequence of observationsy1, · · · , y1000
from the state space model were generated. Then we pre-
tend θ is unknown. Consider a two-dimensional range (-
0.868,0.132; 0.80,0.99) forθ = (γ, φ), which covers the true
parameter (-0.368,0.95). Then we apply a two-dimensional
grid search to (-0.868,0.132; 0.80,0.99) with increasment of
0.01. For each starting value ofθ from the grid area, we apply
the QL and AQL estimating procedures to the realisation
y1, · · · , y1000 and obtain the QL and AQL estimation ofθ
where α̂0 = α0 are used. In Figure 1 - 4, we show the
histograms of QL and AQL estimation ofγ andφ based on
2000 different starting values.

Like others estimation procedures described in literature,
the QL and AQL estimations ofθ rely strongly on the value
of the initial parameterθ0.

We note an interesting phenomenon in the histograms
illustrated in Figures 1 - 4. The true value of a parameter is
not always allocated in the low frequency area. Obviously,
the size of the low frequency area relies on the nature
of the true model. This suggests that, although it is not
appropriate to quantitatively identify an optimal estimation
on system parameters utilising the information provided
by a histogram diagram indirectly through the grid search
approach, it is possible to narrow down and obtain a potential

Fig. 2. Histogram of QL estimation ofφ in SVM, based on 2,000 different
starting values.

Fig. 3. Histogram of AQL estimation ofγ in SVM, based on 2,000 different
starting values.

Fig. 4. Histogram of AQL estimations ofφ in SVM, based on 2,000
different starting values.

range covering the true value of parameters in underlying
model by using the information provided by the histogram
diagrams.
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V. DETERMINATION OF THE ESTIMATION OF THE

SYSTEM PARAMETER θ

In their survey article, Zivotet al. [30] suggested choosing
a starting valueθ0 close to the true value ofθ. The estimation
of θ using a Monte Carlo approximation for count data
given by Kuk [23] is only good when the initial value of
θ is assigned around the true value ofθ. Other approaches
to decideθ0 are also suggested in literatuer. For example,
Durbin and Koopman [14] numerically maximised the ap-
proximate likelihood for non-Gaussian SSMs to obtain the
starting value forθ0; Sandmann and Koopman [27] used a
two-dimensional grid search procedure which searches for
an appropriate starting value forθ0 across the surface of a
Gaussian log-likelihood function; Geweke and Tanizaki [15]
and Tanizaki and Mariano ([28], [29]) used a simple grid
search forθ0 where the expected log-likelihood function is
maximised.

The ML method is a popular method for estimating the
parameters of SSMs. The ML method works if the probabil-
ity structure of the underlying state space system is known.
In practice, it is not realistic to assume that the system’s
probability structure is known. Then, the maximum likeli-
hood method becomes impracticable. Therefore, searchingθ0
based on maximising the log-likelihood function cannot be
applied. Without knowledge of the log-likelihood, a distribu-
tion free procedure can be considered. It is implemented by a
grid search over a feasible region of the parameter space, and
the parameter estimation will be the one giving the minimum
residual sum of squares (RSS)( see Coakleyet al. [11] and
Naik-nimbalkar and Rajarshi [24]).

In this paper, we adapt grid search procedure but with
some improvements. It is sensible to obtain the estimate
of θ by utilising a the grid search, and the residual sum
of squares. However, if the grid search area is relatively
large, the smallest sum of residuals might not lead to the
best estimation ofθ. One example can be fond from the
simulation study discussed below. To improve the outcomes
of the grid search procedure and sum of residuals, we need
to reduce the area of the grid search into a reasonable size.

We suggest the following steps in determining the esti-
mation of θ for SSMs: (in the following, we used a two-
dimensional parameter as an example.)

Step 1. First determine a reasonable range. Based on
experience, this range should cover the true parameterθ. For
example, for PM and SVM, decide a two-dimensional area
[a,b; c,d], covering the true parameterθ.

Step 2. Following the two-dimensional grid search proce-
dure, we assignθ0 with a different starting value, and obtain
the QL or AQL estimation of the parameter.

Step 3. Draw the histogram of the QL or AQL estimates
obtained from step 2.

Step 4. Consider the region with the highest frequency
estimation values in the histogram as a potential region to
cover the true value of the parameter. Obviously this potential
region tends to be smaller than the range in Step 1.

Step 5. Let̂yt(θ̂) be the predicted value ofyt based on the
observation equation. Find̂θ, which minimisesRSSy(θ) =
∑T

t=1(yt − yt(θ̂))
2 in the potential region.

The above steps used to determine the estimate ofθ for
SSMs are illustrated by the following example.

TABLE III
QL, AQL, QL∗ , AND AQL∗ ESTIMATES, AND RSSy ARE REPORTED

BELOW EACH ESTIMATE.

SVM

ση = 0.675

γ φ

true 0 -0.363 0.95

AQL -0.30 0.95

RSSy 323.53

QL -0.45 0.93

RSSy 660.62

AQL∗ -0.31 0.94

RSSy 457.65

QL∗ -0.32 0.95

RSSy 725.03

Example : Consider SVM as given in (??) and (??),
where ηt ∼ N(0, 0.6752), ξt ∼ N(0, 1), and the initial
value for α0 in the true model is given byα0 = 0. In
this example, the state space model is involved with the
parameterθ = (γ, φ). Let θ = (−0.368, 0.95), a sequence of
observationsy1, · · · , y1000 andα1, · · · , α1000 from the SVM
were generated. Then we pretend{αt} andθ are unknown.

Step 1. Consider a two-dimensional range (-0.868,0.122;
0.80,0.99) forθ = (γ, φ), which covers the true parameter
(-0.368,0.95).

Step 2. Apply a two-dimensional grid search to (-
0.868,0.122; 0.80,0.99) with increases of 0.01. For each
starting value ofθ from the grid area, we apply the QL/AQL
estimating procedures and obtain the QL/AQL estimate ofθ.

Step 3. In Figures 1-4, we show the histograms of the
QL and AQL estimates ofγ andφ, based on 2,000 different
starting values.

Step 4. From the histograms of the QL estimates ofγ
and φ given in Figures 1 and 2, the potential region for
parameter(γ, φ) is chosen as [-0.36,-0.12; 0.91,0.95]. By
using the histogram of the AQL estimates of andφ given
in Figures 3 and 4, the potential region for parameter(γ, φ)
is chosen as [-1.0,-0.30; 0.80,0.95].

Step 5. Find the estimate ofγ and φ by minimising the
residual sum of squares (RSSy(θ)) in the potential region
and give the QL estimate ofθ (-0.32,0.95), and the AQL
estimate ofθ (-0.31,0.94).

In Table III, the QL and AQL denote the estimation ofθ,
which gives the smallestRSSy based on the region given
in Step1, and theQL∗ andAQL∗ denote the estimates of
θ, which gives the smallestRSSy based on the potential
region determined in Step 4. We can see from Table III,
that the estimate ofθ has improved in all cases after using
the potential region determined by the information provided
by histogram diagram. The above examples indicate that
using the potential region is able to significantly improve
the performance ofRSSy.

VI. REAL DATA APPLICATION

In this section, we consider log returns of Pound/Dollar
exchange rates. The data are the daily observation of
weekdays’ closing pound to dollar exchange ratesxt

from 1/10/81 to 28/6/85 and have been taken from the
site:www//staff.feweb.vu.nl/ koopman/sv/. This data set has
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been studied and analysed by Harveyet al. [20], Davis
and Rodriguez-Yam [12]; Rodriguez-Yam [26]; Durbin and
Koopman [13] and Alzghool and Lin [2].

Let yt = log(xt/xt−1), t = 1, 2, · · · , 945. To model yt,
we adopt the same SVM used by Davis and Rodriguez-Yam
[12].

yt = σtξt = eαt/2ξt, t = 1, 2, · · · , 945, (16)

αt = γ + φαt−1 + ηt, t = 1, 2, · · · , T, (17)

where bothξt and ηt are i.i.d. r.v.’s; ηt has mean 0 and
varianceσ2

η. Therefore,

ln(y2t ) = αt + ln ξt
2, t = 1, 2, · · · , T. (18)

If ξt were standard normal, thenE(ln ξ2t ) = −1.2704 and
V ar(ln ξ2t ) = π2/2 (see Abramowitz and Stegun [1], p. 943).
Let ǫt = ln ξ2t + 1.2704, andδt = (ǫt, ηt)

′.
We apply the QL method to the data model under the

assumption that the conditional covariance matrix is known
as follows:

V art−1(δt) = Σt =

(

π2

2 0
0 σ2

η

)

.

The AQL method is applied to the data by assuming no
knowledge of the conditional covariance matrix. In the QL
approach,ση will estimate from the residuals, but in AQL
approach it is estimated by the Kernel estimator.

Following steps are for obtaining the estimate ofθ =
(φ, γ) for the Pound/ Dollar exchange rate data:

Step 1. Decide a grid search area, based on previous
studies: (-0.813,0.177; 0.80,0.99).

Step 2. Apply a two-dimensional grid search to (-
0.813,0.177; 0.80,0.99) with increases of 0.01. For each
starting value ofθ from the grid area, we apply the QL/AQL
estimating procedures and obtain the QL/AQL estimate ofθ.

Step 3. In Figures 5-8, we show the histograms of the
QL and AQL estimates ofγ andφ, based on 2,000 different
starting values.

Step 4. From the histograms of the QL estimates ofγ
and φ given in Figures 5 and 6, the potential region for
parameter(γ, φ) is chosen as (-0.17,-0.04; 0.86,0.95). By
using the histogram of the AQL estimates ofγ andφ given
in Figures 7 and 8, the potential region for parameter(γ, φ)
is chosen as (-0.45,0.1; 0.825,0.99).

Step 5. Find the estimate ofγ and φ by minimising the
residual sum of squares (RSSy(θ)) in the potential region
and the QL estimate ofθ is (-0.048,0.949), and the AQL
estimate ofθ is (-0.082,0.971).

Table IV shows estimations ofθ = (φ, γ) obtained by dif-
ferent methods. AQL denotes the asymptotic quasi-likelihood
estimate, QL the estimate obtained by quasi-likelihood ap-
proach, AL the estimate obtained by maximising the approx-
imate likelihood proposed by Davis and Rodriguez-Yam [12]
and MCL the estimate obtained by maximising the estimate
of the likelihood proposed by Durbin and Koopman [14]. AL
and MCL outputs are taken from Rodriguez-Yam [26].

In Table IV, the estimate ofγ and φ by QL, AL and
MCL are close to each other. These three methods are
carried out under the same assumption whereξt and ηt
are independent. This might indicate that the performance
of QL, AL and MCL will be similar. However, the AQL

Fig. 5. Histogram of QL estimates ofγ in SVM, based on 2,000 different
starting values.

Fig. 6. Histogram of QL estimates ofφ in SVM, based on 2,000 different
starting values.

Fig. 7. Histogram of AQL estimates ofγ in SVM, based on 2,000 different
starting values.

estimates are slightly different from those of QL, as well as
the estimates of AL and MCL.

The estimates of AQL and QL are obtained based on
different model settings. The main difference between their
models is that one assumes thatcov(ηt, ξt) = 0 and the other
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Fig. 8. Histogram of AQL estimates ofφ in SVM, based on 2,000 different
starting values.

TABLE IV
ESTIMATES OFγ , φ AND σ2

η
FOR POUND/DOLLAR EXCHANGE RATE

DATA .

γ̂ φ̂ σ̂2
η

AQL -0.082 0.971 0.239

QL -0.048 0.949 0.025

AL -0.023 0.957 0.026

MCL -0.023 0.975 0.027

does not. To understand which model setting is appropriate,
it requires checking whether we can acceptcov(ηt, ξt) = 0.
We consider̂ǫt andη̂t given by QL and find that̂ǫt andη̂t are
highly correlated withr = 0.91 and significant at level 0.01.
So, the assumption ofǫt and ηt uncorrelated is not valid.
Therefore, it is not appropriate to apply the QL method to
the data. Thus, we rather accept the estimations given by the
AQL method than those given by the QL method.

VII. C ONCLUSION

In this paper, we investigated the sensitivity of the QL
and AQL estimation procedures to initial values assigned to
state variableα0 andθ0 via simulation studies. A suggestion
on choosing the initial value of state variableα0, without
knowing the system’s probability structure has been given.
Simulation studies indicate that it is relatively reliable to
follow the suggestion in determining the initialisation of the
state variableα0 during inference procedure. Apart from the
impact ofα0, the QL and AQL estimates ofθ also sensitive to
the value of the starting parameterθ0. In literature, it always
suggestes thatθ0 has to be chosen from a neighbourhood
close to the true value ofθ. But, it dose not mention how to
determine the close neighbourhood given the location of the
true θ is unknown. In this paper, we established a standard
procedure for determing the ”close neighbourhood” and the
estimation ofθ in terms of minimizingRSSy.
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