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Initial Values in Estimation Procedures for State
Space Models (SSMs)
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Abstract—In this paper, we will focus on State Space Models it to approximate the likelihood of a time series model
gSSMS)i egpe;ially the hSt?ChaStiG V_0|ati_|it){_ f|n0d'|3|, and tlﬁOK for count data. To overcome the complex likelihoods of
or a Standard approac or assigning Initial values In e : H ;

Ouasi-Likelihood (%)L) nd Asympto%ic (guasi-Likelhood ho) @ time series model with count data, Chan and Ledolter
estimation procedures. [10] proposed. the Monte Carlo_ EM .algorlthm that. uses
a Markov chain sampling technique in the calculation of
the expectation in the the E-step of the EM algorithm.
Davis and Rodriguez-Yam [12] proposed an alternative es-
timation procedure which is based on an approximation
| INTRODUCTION to thg _Iike_lihood function. Alzghool and L_in [2] proposed
' guasi-likelihood (QL) approach for estimation of state space
T HE class of state space models (SSM) provides models without full knowledge on the probability structure
flexible framework for describing a wide range of timeyf relevant state-space system. The QL method relaxes the
series in a variety of disciplines. For extensive discussion @fstributional assumptions and only assumes the knowledge
SSM and their applications see Harvey [16] and Durbin angh the first two conditional moments ¢f and«; associated
Koopman [13]. A state-space model can be written as  past information. This weaker assumption makes the QL
e = f1(an, 0) + by (g1, Oer, t=1,2,---.T (1) metho_d widely applicable an_d becpme a popular method
of estimation. A comprehensive review on the QL method
whereyy, ..., yr represent the time series of observationss available in Heyde [21]. A limitation of the QL is that
¢ is an unknown parameter that needs to be estimaigd; in practice, the conditional second moments ofypfand
is a known function of state variabte; andd; and{¢;} are o, might not available. The AQL approach provides an
uncorrelated disturbances wiffy ;(¢;) = 0, Var;—1(e;) = alternative method of parameter estimation when unknown
oZ; in which E,_,, and Var,_, denote conditional mean form of heteroscedasticity is presented.
and conditional variance associated with past informationThe estimation procedure for SSMs consists of two parts.
updated to time — 1 respectively. State variables,...,ar  The first part is, given observatiofs, . .., yr}, to estimate
are unobserved and satisfy the following model state variablesy,. The second part is to combine the infor-
. . mation of {y;} and {&;} to estimate unknown parametér

o = folar1,0) +ha(eu—y, O)m, =12 T, () R0 moélel.}The {Kalsnan filter and the smoother methods
where f3(.) is a function of past state variables afigd are widely used to estimate an unobservable series, state
{n:} are uncorrelated disturbances witti,_(1;) = 0, variables, in SSMs (Anderson and Moore [7], Harvey [17]).
Vary_1(n:) = op. hi(.) andhy(.) are unknown functions. In summary, the QL and AQL estimating procedures

One special application that we will consider in detail igliscussed in Alzghool and Lin ([2],[3], [5]), Alzghool [4],
the Stochastic Volatility Model (SVM), a frequently usedand Alzghool, et al [6]. consist of the following steps:
model for returns of financial assets. Applications, together (i) Assign initial values tang, 6y and Xy = L.
with estimation for SVM, can be found in Jacquier, et al (ii) Obtain the QL/AQL estimatesy; of a; for ¢t =
[22]; Briedt and Carriquiry [8]; Harvey and Streible [19];1,2,...,T.

Sandmann and Koopman [27]; Pitt and Shepard [25]. (iii) For the AQL estimating procedure, obtaﬁm by

There are several approaches in the literature for esiising the kernel method.
mating the parameters in SSMs by using the maximum (iv) Obtain the QL/AQL estimaté of 6.
likelihood method when the probability structure of under- (v) Steps (ii), (i) and (iv) will be alternatively repeated
lying model is normal or conditional normal. Durbin andintil estimates converge.

Koopman ([14], [13]) obtained accurate approximation of The final estimation results for SSMs might be jointly af-
the log-likelihood for Non-Gaussian state space models Bycted by the initial valuesy andé, which initially assigned
using Monte Carlo simulation. The log-likelihood functiornto the underlying model during the inference procedure.
is maximised numerically to obtain estimates of unknown In this paper, following two issues are investigated.
parameters. Kuk [23] suggested an alternative class of esti{1) How sensitive are the final estimates to the initial
mate models based on conjugate latent process and appligiies assigned to the state variablgeand 6,?

_ _ _ (2) If the estimation results are sensitive to the choice
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. . . . . . TABLE |
via simulation studies. In Section Ill, a new suggestion fo&_ anp AQL EsTIMATES, BASED ON 1,000REPLICATIONS. THE ROOT

choosing the initialisation of the state variahlg is given. = MEAN SQUARE ERROR OF EACH ESTIMATE IS REPORTED BELOW THAT
In Section IV, the impact of the starting values of SystemESTIMATE, BASED ON DIFFERENT INITIAL VALUES FORayg (T = 500).

parameterd), in the estimation results is investigated vig
simulation studies. In Section V, a standard procedure [to
improve the grid search procedure for obtaining a bette
estimation off) is established. In Section VI applications of
the QL and AQL methods to real data modelled by SSMs
are given. In Section VII, a conclusion is provided.

on = 0.675 oy = 0.260 o = 0.061
¢ ap Y ¢ v oé Y ¢

true 0 -0.821 0.90 || -0.368 0.95 || -0.141 0.98
4ao=1 || AQL || -0.873 0.915|| -0.411 0.924|| -0.349 0.954
0.138 0.020|| 0.234 0.047 || 0.255 0.036
QL || -0.843 0.931|| -0.431 0.927|| -0.228 0.964
0.141 0.033|| 0.098 0.025| 0.091 0.017

Il. EFFECT OFINITIALISATION OF ag &0=2 || AQL || -0.860 0.916| -0.328 0.934|| -0.230 0.970

The impact of the initial value of the state variallg on 0.136 0.022| 0.210 0.046 || 0.157 0.021
the final inference result is illustrated via simulation studies QL || -0.893 0.927|| -0.482 0.920|| -0.250 0.970
in this section. Simulation study based on stochastic volatility 0.159 0.029 || 0.134 0.032| 0.120 0.022
model (SVM) is presented below. &o0=3 || AQL || -0.817 0.916|| -0.255 0.933|| -0.157 0.982

0.169 0.032|| 0.307 0.076| 0.112 0.021

A. Stochastic Volatility Models (SVM) QL || -0.935 0.923) -0.527 0.913) -0.286 0.954
i ] b 0.179 0.026| 0.175 0.039 | 0.149 0.027
Consider the stochastic volatility model, ao=4 || AQL || -0.770 0.912|| -0.144 0.921| -0.089 0.982

2 . . . . . .
In(y?) =y +In&2, t=1,2,---,T, 3) 0.240 0.045| 0.442 0.084 || 0.237 0.042

QL -0.965 0.921|| -0.574 0.905|| -0.318 0.949
0.198 0.024|| 0.219 0.049| 0.178 0.032

at:7+¢04t—1+77t7 t:1a2a"'aTa (4)

where both¢, and 7, are i.i.d. r.v.s;n, has mean 0 and

varianceafz. series, which is not directly observable, ands observable.

In order to show how the initial value, effects the final The model is called docal level modelin Durbin and
estimation in the SVM when the QL and AQL approaches al®opman ([13], Chapter 2), which is a simple case of the
applied, we carried out a simulation study on SVM Modegtructural time series modeif Harvey [17].
defined by (3) and (4). The simulation was conducted asWhen nothing is known about the initial valag, the ini-
follows. First, 1,000 independent samples of size 500 dliglisation ofay is usually given by a diffuse prior approach
generated from (3) and (4) based on a true paranteter that fixesa, at an arbitrary value and lé — oo (Zivot et
(v, ), wheren, ~ N(O7U727), & ~ N(0,1), and the initial al. [30], Durbin and Koopman [13], Harvey [16]). However,
value for oy in the true model isog = 0. Once{y;} and some researchers consider that the diffuse approach is not
{a;} are generated, pretend that,} is unobserved ang, realistic because they regard that the assumption of infinite
and¢ are unknown. Then apply the QL and AQL estimatioariance is unnatural, given that all observed time series have
procedures tdy; } only to obtain the estimate af;, v, and finite values. From this point of view an alternative approach
¢. Different parameter settings fr, ¢, o2) are considered is suggested, which assumes thatis an unknown constant
in the simulation. The mean and root mean squared errors &sid needs to be estimated from the data. In Harvey [18],
4 and¢ based on 1,000 independent samples are calculatiéds suggested that the initial value of, can be taken as

Let 4 be the initial state used in the inference procedurgi. This is the same value as that obtained by assuming
In Table |, different values ofiy,, mean and root meanthat oy is diffuse. More details about the intitialisation of
squared errors fofy, and ¢ given by the QL and AQL the Kalman filter under the normality assumption for SSM
methods are reported. are provided in Durbin and Koopman ([13], Chapter 5 and

We can see from Table | that the RMSE of QL and AQleferences therein). Several other suggestions on initialisation
estimates are increased whép is chosen farther from the for the state variable in SSM under normality assumption
true valueay. Since the increase in the RMSE for QL isare given in a recent survey by Casals and Sotoca [9]. They
less than for AQL, this indicates that the QL approach ®erived an exact expression for the conditional mean and

less sensitive to the initial value of state variable than tiariance of the initial state of SSM.
AQL approach. In this paper, we follow the QL method to derive a simple
method for determining,, without assigning any probability

[1l. DETERMINATION OF é distribution toay.

. . . . L Consider the following state-space model:
Consider the univariate time serigs satisfying
= 30+ s t:1527"'5T7 7
yt:at+€t7 t:172a"'7T (5) v f(at ) “ ()
o =glag—1,0)+n, t=1,2---T. (8)

Fort =1, we have

at:at_1+77t, t:1,2,"',T (6)
wheree; ~ N(0,02), 7 ~ N(0,07), andag ~ N(ao, Fy).

{e;} and {n;} are two independent Gaussian white noise y1 = fla,0) + e, (9)

series. The initial valuey, is independent ofe;} and {n;}

for ¢ > 0. In literature,o; is referred to as thé&rend of the a1 = g(ap,0) + n1. (10)
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TABLE Il
In models (9), and (10)x1, v, €1, andn, are unobserved. gL anp AQL ESTIMATES BASED ON1,000REPLICATION. THE ROOT

Assumed is known or determined by empirical knowledge. MEAN SQUARE ERROR OF EACH ESTIMATE IS REPORTED BELOW THAT
The rule used to determing, should meet the condition ESTIMATE. G IS DIFFERENT FROM SAMPLE TO SAMPLE(T = 500).
that given observation,, &, is able to ensure that(a,, 0)
is an optimal estimation oF(y;).

From (9), consider

on = 0.675 oy = 0.260 o = 0.061
ap Y $ Y ¢ Y ¢

true 0 -0.821 0.90| -0.368 0.95| -0.141 0.98
ap=0 || AQL || -0.878 0.92]| -0.499 0.91| -0.437 0.94
0.136 0.019| 0.229 0.049|| 0.354 0.052

e1=y1 — fi(a1,0)

Let oy be an unknown parameter and consider estimating QL || -0.788 094) -0.391 0.94) -0.198 0.97
function space 0.140 0.037| 0.071 0.019|| 0.063 0.013
ao=&f || AQL || -0.857 0.92] -0.499 0.91] -0.440 0.94
g(Tl) = {a1(y1 — fi(a1,0)) | a1 € R}. 0.163 0.024| 0.243 0.051|| 0.402 0.060
' QL || -0.830 093 -0.378 0.94| -0.194 0.97
A standardised optimal estimating functiong@j is 0.142 0.034)] 0.082 .019 || 0.071 .014
Giry(a) = ~B(SL)WVar(en]™ (o — Floa.6)
M day o A. Stochastic Volatility Model
If E( ) +£0, and f~! exists, the optimal estimator of Consider stochastic volatility process defined by (3) and
o will be’ given by G, (a1) = 0, that is, (4). i.e.
In(y?) = Ing?, t=1,2,---,T.
dl — f_l(:lh,@). (11) n(yt) o7 + ngt ) y &y )
USing (10), consider ap =7y + ¢at71 + Mt t= ]-7 27 e 7T7

where both¢; and n, are i.i.d. r.v's;n, has mean 0 and
varianceay, ¢ # 0.

Let g be an unknown parameter and consider estimating'-et

m = a1 — g(a, 0).

function space e =In&? — E(lng?).
g(O) = {ao(ay — g(ap,0)) | ao € R}. Using (3) and (4), it follows that
_ 2 2
A standardised optimal estimating functiong”’ is € = ln(y;) —a1— E(lng&")
(9 ln(yl) - f(ala 9)7
Gzo) (o) = <6 0)[Var(n1)]_1(a1 — f(ao,0)). and
If E( ) #0, andg~! exists, the optimal estimator af, m = oa1—(y+ o)
will glven by G{ ( 0) =0, that is, = a1 — g(ap,0),
6[0 = gil(al,ﬁ). (12) where 0 = (77¢))Il f(alvg) = o1 + E(h’l§12), and

g(a,0) = v + dao. {
Therefore, we make the following suggestion for determining SinceE(a%) =1#£0, E(a%go) =¢#0,andf1, g7t
the initial stated, in inference process. exist, therefore,

Suggestion:For a SSM
In(y?) — E(né&*) —v

&F = —1/r-1 — 14
yt:f(at19)+6t7 t:1727"'7T 0 g (f (yl)) ¢ ( )
If & has standard normal distribution, thefi(ln&?) =
ar = g(a-1,0) +np, t=1,2---.T. —1.2704 and Var(Iné?) = =%/2 (see Abramowitz and
It E( ) 20, E(d%) 20, -1 andg—" exist, the optimal Stegun [1], p. 943). Then, substituting in (14)
deC|S|on ondyg is - o In(y?) + 1.2704 —
R R R
ao =g~ () (13)
To show how the optimal initial valué, effects the final
For convenience, denote thig asdg. estimation when the QL and AQL approaches are applied,

As an example for (5) and (6), the optimal value fay we carried out a simulation study on SVM model defined by
is y1, which is the same as the one given under diffug8) and (4). We camper the estimation of#), given by the
conditions. true ap and &j. Results are presented by Table 1.

In the following, we apply the Suggestion to stochastic Table Il shows that, compared to results in Table I, the
volatility model, and use simulation to investigate whethe¥stimation given byag are close related to those given by
the Suggestion is practicable or not. the trueaq = 0.
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Fig. 1. Histogram of QL estimation of in SVM, based on 2,000 different Fig. 2. Histogram of QL estimation @f in SVM, based on 2,000 different
starting values. starting values.

IV. THE STARTING VALUES FORSYSTEM PARAMETER 6

In this section, we consider the starting value for system
parameterg,. As described in literature, the outputs of non-
linear inference procedures rely strongly on the appropriate
value of the initial parametef,. It is usually suggested
that 8, should be chosen from a close neighbourhood of
its true value (Zivotet al. [30]). Since the true value of
0o is unknown, it is an issue how to identify the close
neighbourhood o#f.

The impact of the starting values of system parametgrs
is illustrated via simulation studies below.

200

Count

A Stochastlc Volatlllty Models 4180 -150 -120 -0.90 -060 -0.30 000 030 060 0.90

amma_AQL

Consider SVM as given in (3) and (4) wherg ~ s
N(0,0.675%), & ~ N(0,1), and the initial value fory in _ o _ _
the true model is given by, = 0. In this example, the State;'gﬁ?ﬁg U;Loeggam of AQL estimation of in SVM, based on 2,000 different
space model is involved with the paramefer (v, ¢). Let
6 = (—0.368,0.95), a sequence of observations - - - , ¥1000
from the state space model were generated. Then we pre-
tend @ is unknown. Consider a two-dimensional range (-
0.868,0.132; 0.80,0.99) f& = (~, ¢), which covers the true
parameter (-0.368,0.95). Then we apply a two-dimensional
grid search to (-0.868,0.132; 0.80,0.99) with increasment of
0.01. For each starting value &from the grid area, we apply
the QL and AQL estimating procedures to the realisation
Y1, -+, Y1000 and obtain the QL and AQL estimation 6f
where ¢y = «( are used. In Figure 1 - 4, we show the
histograms of QL and AQL estimation af and ¢ based on
2000 different starting values.

Like others estimation procedures described in literature,
the QL and AQL estimations df rely strongly on the value e e A . A A A
of the initial parametet,. o bphi 'AQL' ' '

We note an interesting phenomenon in the histograms -
illustrated in Figures 1 - 4. The true value of a parameter is
not always allocated in the low frequency area. Obviously';% . 't‘”rstFogra”? of AQL estimations ab in SVM, based on 2,000
the size of the low frequency area relies on the nature o oo Vaes.
of the true model. This suggests that, although it is not
appropriate to quantitatively identify an optimal estimation
on system parameters utilising the information providecnge covering the true value of parameters in underlying
by a histogram diagram indirectly through the grid searahodel by using the information provided by the histogram
approach, it is possible to narrow down and obtain a potent@dihgrams.

100 =

Count
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TABLE Ill
V. DETERMINATION OF THE ESTIMATION OF THE QL, AQL, QL*, AND AQL* ESTIMATES, AND RSS,, ARE REPORTED
SYSTEM PARAMETER 6 BELOW EACH ESTIMATE.
In their survey article, Zivoet al. [30] suggested choosing SVM
a starting valué, close to the true value @t The estimation oy = 0.675
of 6 using a Monte Carlo approximation for count data v ¢
given by Kuk [23] is only good when the initial value of true 0 -0.363 0.95
0 is assigned around the true value &bfOther approaches AQL -0.30 0.95
to decided, are also suggested in literatuer. For example, RSS, 323.53
Durbin and Koopman [14] numerically maximised the ap- QL -0.45 0.93
proximate likelihood for non-Gaussian SSMs to obtain the RSS, 660.62
starting value fordy; Sandmann and Koopman [27] used a AQL* || -0.31 0.94
two-dimensional grid search procedure which searches for RSS, 457.65
an appropriate starting value fép across the surface of a QL* -0.32 0.95
Gaussian log-likelihood function; Geweke and Tanizaki [15] RSSy 725.03

and Tanizaki and Mariano ([28], [29]) used a simple grid
search forfy where the expected log-likelihood function is
maximised. Example : Consider SVM as given in (??) and (??),

The ML method is a popular method for estimating theheren, ~ N(0,0.675%), & ~ N(0,1), and the initial
parameters of SSMs. The ML method works if the probabitalue for ag in the true model is given byy, = 0. In
ity structure of the underlying state space system is knowthis example, the state space model is involved with the
In practice, it is not realistic to assume that the systermf@rametes = (v, ¢). Letd = (—0.368,0.95), a sequence of
probability structure is known. Then, the maximum likeliobservationsy;, - - -, 41000 @anday, - - -, a0 from the SVM
hood method becomes impracticable. Therefore, searéhingvere generated. Then we pretefid; } and¢ are unknown.
based on maximising the log-likelihood function cannot be Step 1. Consider a two-dimensional range (-0.868,0.122;
applied. Without knowledge of the log-likelihood, a distribu0.80,0.99) foré = (v, ¢), which covers the true parameter
tion free procedure can be considered. It is implemented by-8.368,0.95).
grid search over a feasible region of the parameter space, andtep 2. Apply a two-dimensional grid search to (-
the parameter estimation will be the one giving the minimu®.868,0.122; 0.80,0.99) with increases of 0.01. For each
residual sum of squares (RSS)( see Coalkdeypl. [11] and starting value of from the grid area, we apply the QL/AQL
Naik-nimbalkar and Rajarshi [24]). estimating procedures and obtain the QL/AQL estimaté. of

In this paper, we adapt grid search procedure but with Step 3. In Figures 1-4, we show the histograms of the
some improvements. It is sensible to obtain the estimd®- and AQL estimates of and ¢, based on 2,000 different
of 6 by utilising a the grid search, and the residual sutarting values.
of squares. However, if the grid search area is relatively Step 4. From the histograms of the QL estimatesyof
large, the smallest sum of residuals might not lead to tld ¢ given in Figures 1 and 2, the potential region for
best estimation of). One example can be fond from theparameter(, ) is chosen as [-0.36,-0.12; 0.91,0.95]. By
simulation study discussed below. To improve the outcomesing the histogram of the AQL estimates of apdjiven
of the grid search procedure and sum of residuals, we ndéadrigures 3 and 4, the potential region for parameter))
to reduce the area of the grid search into a reasonable siigechosen as [-1.0,-0.30; 0.80,0.95].

We suggest the following steps in determining the esti- Step 5. Find the estimate of and ¢ by minimising the
mation of § for SSMs: (in the following, we used a two-residual sum of squares (R§@)) in the potential region
dimensional parameter as an example.) and give the QL estimate af (-0.32,0.95), and the AQL

Step 1. First determine a reasonable range. Based &iimate off (-0.31,0.94).
experience, this range should cover the true parandefeor I Table Ill, the QL and AQL denote the estimation tf
example, for PM and SVM, decide a two-dimensional aredhich gives the smalleskSS, based on the region given
[a,b; c,d], covering the true parameter in Stepl, and th&)L* and AQL* denote the estimates of

Step 2. Following the two-dimensional grid search procé: Which gives the smallesSS, based on the potential
dure, we assig#l, with a different starting value, and obtain€gion determined in Step 4. We can see from Table I,

the QL or AQL estimation of the parameter. that the estimate of has improved in all cases after using
Step 3. Draw the histogram of the QL or AQL estimatee potential region determined by the information provided
obtained from step 2. by histogram diagram. The above examples indicate that

Step 4. Consider the region with the highest frequen
estimation values in the histogram as a potential region
cover the true value of the parameter. Obviously this potential

ing the potential region is able to significantly improve
%ge performance oRSS,,.

region tends to be smaller than the range in Step 1. VI. REAL DATA APPLICATION
Step 5. Letj:(0) be the predicted value @f based onthe |n this section, we consider log returns of Pound/Dollar
observation equation. Finé} which minimiseskSS,(¢) = exchange rates. The data are the daily observation of
Zthl(yt —y:(0))? in the potential region. weekdays’ closing pound to dollar exchange rates
The above steps used to determine the estimate fof from 1/10/81 to 28/6/85 and have been taken from the
SSMs are illustrated by the following example. site:www//staff.feweb.vu.nl/ koopman/sv/. This data set has
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been studied and analysed by Harvetyal. [20], Davis
and Rodriguez-Yam [12]; Rodriguez-Yam [26]; Durbin and
Koopman [13] and Alzghool and Lin [2].

Let y; = log(xi/xi—1),t = 1,2,---,945. To modely,,
we adopt the same SVM used by Davis and Rodriguez-Yam
[12].

125 =

100 =

Yt = Utgt = eat/2§t7 t= 17 2) Ty 9457 (16)

Count

at:7+¢0¢t—1+77t, t:172a"'7Ta (17)

where both¢, and n, are i.i.d. r.v's;n, has mean 0 and
variancea,. Therefore,

030 -027 -024 -021 -0.18 -0.15 -0.12 -009 -0.06 -0.03

ll’l(y?):at—f—lnth, t:1a2a"'7T' (18)

If ¢ were standard normal, thefi(In¢?) = —1.2704 and

Var(In&f) = n* /2 (see Abramowitz and Stegun [1], p. 943)Fig. 5. Histogram of QL estimates afin SVM, based on 2,000 different

Let ¢, = In&? + 1.2704, andd; = (e, m:)’. starting values.
We apply the QL method to the data model under the

assumption that the conditional covariance matrix is known

as follows:

gamma_QL

2
5 0
VaTt,1(6t> = Et = < 8 2 > . 150

9y

The AQL method is applied to the data by assuming no
knowledge of the conditional covariance matrix. In the QL
approach, will estimate from the residuals, but in AQL
approach it is estimated by the Kernel estimator.

Following steps are for obtaining the estimate tbf= -
(¢,) for the Pound/ Dollar exchange rate data:

Step 1. Decide a grid search area, based on previous
studies: (-0.813,0.177; 0.80,0.99). o

Step 2. Apply a two-dimensional grid search to (- )
0.813,0.177; 0.80,0.99) with increases of 0.01. For each phi_at
starting value of from the grid area, we apply the QL/AQL
estimating procedures and obtain the QL/AQL estimaté. of Fig. 6. Histogram of QL estimates gfin SVM, based on 2,000 different

Step 3. In Figures 5-8, we show the histograms of tf&ting values.

QL and AQL estimates of and ¢, based on 2,000 different
starting values.

Step 4. From the histograms of the QL estimatesyof
and ¢ given in Figures 5 and 6, the potential region for
parameter(~, ¢) is chosen as (-0.17,-0.04; 0.86,0.95). By
using the histogram of the AQL estimatespfind ¢ given
in Figures 7 and 8, the potential region for paramétery)
is chosen as (-0.45,0.1; 0.825,0.99).

Step 5. Find the estimate of and ¢ by minimising the
residual sum of squares (R$®)) in the potential region
and the QL estimate of is (-0.048,0.949), and the AQL
estimate ofd is (-0.082,0.971).

Table IV shows estimations of= (¢,~y) obtained by dif-
ferent methods. AQL denotes the asymptotic quasi-likelihood
estimate, QL the estimate obtained by quasi-likelihood ap- gama_AQL
proach, AL the estimate obtained by maximising the approx-
imate likelihood p_roposed b}_/ Davis and Ro_drlguez-Yam [1?F]ig. 7. Histogram of AQL estimates afin SVM, based on 2,000 different
and MCL the estimate obtained by maximising the estimat@ting values.
of the likelihood proposed by Durbin and Koopman [14]. AL
and MCL outputs are taken from Rodriguez-Yam [26].

In Table IV, the estimate ofy and ¢ by QL, AL and estimates are slightly different from those of QL, as well as
MCL are close to each other. These three methods dhe estimates of AL and MCL.
carried out under the same assumption whgreand 7 The estimates of AQL and QL are obtained based on
are independent. This might indicate that the performanddferent model settings. The main difference between their
of QL, AL and MCL will be similar. However, the AQL models is that one assumes thai(7;, ;) = 0 and the other
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