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Abstract—Precise identification of the time when a change
in a hospital outcome has occurred enables clinical experts to
search for a potential special cause more effectively. In this
paper, we develop change point estimation methods for survival
time of a clinical procedure in a Bayesian framework in the
presence of patient mix. We apply Bayesian hierarchical models
to formulate the change point where there exists a drop in the
mean of survival time of patients who underwent a cardiac
surgery. The data are right censored since the monitoring is
conducted over a limited follow-up period. We capture the effect
of risk factors prior to the surgery using a Weibull accelerated
failure time regression model. Markov Chain Monte Carlo
is used to obtain posterior distributions of the change point
parameters including location and magnitude of drops and
also corresponding probabilistic intervals and inferences. The
performance of the Bayesian estimator is investigated through
simulations and the result shows that precise estimates can
be obtained when they are used in conjunction with the risk-
adjusted survival time CUSUM control charts for different
magnitude scenarios. This advantage enhances when probability
quantification, flexibility and generalizability of the Bayesian
change point detection model are also considered.

Index Terms—Bayesian Hierarchical Model, Cardiac
Surgery, Change Point, Markov Chain Monte Carlo, Risk-
Adjusted Survival Time Control Charts.

I. INTRODUCTION

A control chart monitors behavior of a process over time
by taking into account the stability and dispersion of the
process. The chart signals when a significant change has
occurred. This signal can then be investigated to identify
potential causes of the change and corrective or preventive
actions can then be conducted. Following this cycle leads to
variation reduction and process stabilization [1].

Risk adjustment has been considered in the development
of control charts in the healthcare context due to the impact
of the human element in process outcomes. Steiner et al. [2]
developed Risk-adjusted Cumulative Sum charts to monitor
surgical outcomes, death and survival, which are influenced
by the state of a patient’s health, age and other factors. This
approach has been extended to Exponential Moving Average
control charts [3], [4]. Monitoring patient survival time
instead of binary outcomes of a process in presence of patient
mix has recently been proposed in the healthcare context.
In this setting a continuous time-to-event variable within a
follow-up period is considered. The variable may be right
censored due to a finite follow-up. Biswas and Kalbfleisch
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[5] developed a risk-adjusted CUSUM based on Cox model
for failure time outcomes. Sego et al. [6] used accelerated
failure time regression model to capture the heterogeneity
among patients prior to the surgery and developed risk-
adjusted survival time CUSUM (RAST CUSUM) scheme.
Steiner and Jones [7] extended this approach by proposing
an EWMA procedure based on the same survival time model
discussed by Sego et al. [6] that can also be updated.

The need to know the time at which a process began to
vary, the so-called change point, has recently been raised and
discussed in the context of quality control. Accurate detection
of the time of change can help in the search for a potential
cause more efficiently as a tighter time-frame prior to the
signal in the control charts is investigated. An interesting
approach which has recently been considered in the SPC
context is Bayesian hierarchical modelling (BHM) using,
where necessary, computational methods such as Markov
Chain Monte Carlo (MCMC). Application of these theoreti-
cal and computational frameworks to change point estimation
facilitates modelling the process where heterogeneity exists
and also provides a way of making a set of inferences based
on posterior distributions for the time and the magnitude
of a change [8]. In this paper we model and detect the
change point in a Bayesian framework. The change points
are estimated assuming that the underlying change is a
sudden drop in survival time which can be interpreted as an
increase in odds of mortality following a surgical process.
In this scenario, we model the step change in the mean of
survival time of a clinical process. We analyze and discuss
the performance of the Bayesian change point model through
posterior estimates and probability based intervals. Risk-
adjusted survival time CUSUM charts is reviewed in Section
2. The change point model is demonstrated and evaluated in
Sections 3-5. We then summarize the study and obtained
results in Section 6.

II. RISK-ADJUSTED SURVIVAL TIME CONTROL CHARTS

Risk-adjusted control charts for time-to-event are moni-
toring procedures designed to detect changes in a process
parameter of interest, such as survival time, where the
process outcomes are affected by covariates, such as risk
factors. In these procedures, regression models for time are
used to adjust control charts in a way that the effects of
covariates for each input, patient say, would be eliminated.

The RAST CUSUM proposed by Sego et al. [6] continu-
ously evaluates a hypothesis of an unchanged and in-control
survival time distribution, f(xi, θi0), against an alternative
hypothesis of changed, out-of-control, distribution, f(xi, θi1)
for the ith patient. In this setting the density function f(.)
explains the observed survival time, xi, and are adjusted
corresponds to the observed patient’s covariates, ui.
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For the ith patient, i = 1, 2, ... corresponds to the order
in which patient undergoes the surgery, we observe (ti, δi)
where

ti = min(xi, c) and δi =

 1 if xi ≤ c

0 if xi > c.
(1)

c is a fixed censoring time, equal to the follow-up period.
We assume that the survival time, xi, for the ith patient
and consequently (ti, δi), are not updated after the follow-
up period. This leads to a dataset of right censored time,
ti.

An accelerated failure time (AFT) regression model is used
to predict survival time functions, f(.), for each patient in
presence of covariates, ui. However other models such as a
Cox model that allows to capture covariates can also be of
interest.

In an AFT model the survival function for the ith patient
with covariates of ui, S(xi, θi | ui), is equivalent to the
baseline survival function S0(xiexp(β

Tui)), where β is a
vector of covariate coefficients.

Several distributions can be used to model survival time
with an AFT, among those we here focus on the Weibull
distribution and outline relevant RAST CUSUM statistics,
see Klein & Moeschberger [9] for more details. For a
Weibull distribution the baseline survival function is S0(x) =
exp[−(x/λ)α] where α > 0 and λ > 0 are shape and scale
parameters, respectively. For the RAST CUSUM procedure,
all parameters of the Weibull survival function, β, α and λ,
are estimated using training data, so-called phase I, assuming
that the process is in-control.

It has been discussed that any shifts in the quality of the
process of the interest can be interpreted in terms of shifts
in the scale parameters, λ, see Sego et al. [6].

Hence the RAST CUSUM procedure can be constructed
and calibrated to detect a drop in the average or median
survival time (MST) since any shift in λ is equivalent to an
identical shift in size in the average or median survival time.
Thus the CUSUM score, Wi, is given by

Wi(ti, δi | ui) = (1− (ρ)−α)

(
tiexp(β

Tui)

λ0

)
− δiαlogρ,

(2)
where it is designed to detect a decrease from λ0 to
λ1 = ρλ0. Upper CUSUM statistic is obtained through
Zi = max{0, Zi−1 +Wi}, and then plotted over i. Often
the CUSUM statistic initialized at 0.

Therefore a reduction in the the MST is detected when a
plotted Zi exceeds a specified decision threshold h. Although
this interpretation of chart’s signal is in contrast with the
common expression used for standard risk-adjusted control
charts for binary outcomes, it seems reasonable to take into
account that any drop in the MST can be characterized as an
increase in the odds of mortality. However in Weibull distri-
bution scenario for a specific drop in the MST, the equivalent
magnitude of the increase in odds is not obtainable, see Sego
at al. [6] for more details.

The magnitude of the decision thresholds in RAST
CUSUM, h, is determined in a way that the charts have a
specified performance in terms of false alarm and detection

of shifts in the MST. In this regard, Markov chain and
simulation approaches can be applied; see Sego [10] for more
details.

III. CHANGE POINT MODEL

Statistical inferences for a quantity of interest in a
Bayesian framework are described as the modification of
the uncertainty about their value in the light of evidence,
and Bayes’ theorem precisely specifies how this modification
should be made as below:

Posterior ∝ Likelihood× Prior, (3)

where “Prior” is the state of knowledge about the quantity
of interest in terms of a probability distribution before
data are observed; “Likelihood” is a model underlying the
observations, and “Posterior” is the state of knowledge about
the quantity after data are observed, which also is in the form
of a probability distribution.

As discussed in Section I, in RAST CUSUM procedures,
we let the survival function vary over patients and we control
the observed survival time, which may be right censored,
against the corresponding predicted survival function ob-
tained through the survival time model. In this setting, a
process is in the in-control state when observations can
be statistically expressed by the underlying survival time
model, taking into account their individual covariates. The
RAST CUSUM signals when observations tend to violate
the underlying model.

To model a change point in the presence of covariates,
consider a process that results a survival time of ti, i =
1, ..., T , that is initially in-control. The observations can
be explained by a survival function S(ti, ui)), where the
underlying distribution (f(.)) is a Weibull distribution with
(α0, λ0), and ui is a vectors of covariates. At an unknown
point in time, τ , the Weibull scale parameter changes from
its in-control state of λ0 to λ1, λ1 = k×λ0, 0 < k < 1. The
right censored survival time step change model can thus be
parameterized using survival function as follows:

S(ti, ui) =


exp

[
−
(
tiexp(β

T
0 ui)

λ0

)α0
]

if i = 1, 2, ..., τ

exp
[
−
(
tiexp(β

T
0 ui)

λ1

)α0
]

if i = τ + 1, ..., T

(4)

where β0 is the vector of covariate coefficients.
If desired, an overall estimation of change size in odds of

mortality equivalent to a specific shift in the MST or λ can
be obtained through simulation and averaging over different
values of covariate, ui.

Relating this to Equation (3), the likelihood that underlies
the observations is obtained through f(.)δS(.)1−δ; see Sego
et al. [6]. The time and the magnitude of a drop in the MST
are the unknown parameters of interest; and the posterior
distributions of these parameters will be investigated in
the change point analysis. Assume that the process ti is
monitored by a control chart that signals at time T .

We assign a truncated normal distribution (µ, σ)I(.) for
k as prior distribution where all parameters are set study-
specific. For a decrease in k which is detected by the upper
RAST CUSUM, exceeding the upper threshold h, we set
N(µ = 0.255, σ = 0.6)I(0.01, 0.99). This setting leads to
relatively an informed prior for the magnitude of the fall.
Mean of the prior was set corresponds to the shift that the
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(1) (2) (3)

Fig. 1. (1) Risk-adjusted survival time CUSUM chart (h = 4.88) and obtained posterior distributions of (2) time τ and (3) magnitude k of a decrease
of size k = 0.25 in λ (mean survival time) where λ0 = 42133.6 and τ = 500.

chart was calibrated to detect, see Section IV. The prior let
to be sensitive in detection of low to nearly large falls in k.

We place a uniform distribution on the range of (1, T −1)
as prior for τ where T is set to the time of the signal of
control charts. See the Appendix for the step change model
code in WinBUGS.

IV. EVALUATION

We used Monte Carlo simulation to study the performance
of the constructed BHM in step change detection following
a signal from a RAST CUSUM control chart when a fall
in mean survival time is simulated to occur at τ = 500.
However, to extend to the results that would be obtained
in practice, we considered the same cardiac surgery dataset
that were used by Steiner et al. [2] and then Sego et al.
[6] to construct risk-adjusted control charts for Bernoulli
and time-to event variables, respectively. It was reported
that this dataset contains 6449 operations information that
were performed between 1992-1998 at a single surgical
center in U.K. The Parsonnet score [11] was recorded to
quantify the patient’s risk prior to the cardiac surgery. A
follow-up period of 30 days after the surgery was set as the
censoring time. A Weibull AFT model with parameters of
α̂0 = 0.4909, λ̂0 = 42133.6 and β̂0 = 0.1307 was reported
by Sego et al. [6] when the first two years of the data set
were used as training data to fit the model and construct
in-control state of the process and RAST CUSWUM. They
also found that the recorded Parsonnet scores of the training
data can be well approximated by an exponential distribution
with a mean of 8.9.

To generate right censored survival time observations
of a process in the in-control state ti, i = 1, ..., τ ,
we first randomly generated the Parsonnet score, ui,
i = 1, ..., τ , from an exponential distribution with a
mean of 8.9 and then drew associated survival time,
xi, i = 1, ..., τ , from the Weibull AFT model with
α0 = 0.4909, λ0 = 42133.6, and β0 = 0.1307. Finally, ti
and δi were obtained considering a censoring time of c = 30
through Equation 1. Plotting the obtained observations when
the associated covariates are considered results a RAST
CUSUM chart that is in-control. To generate the drops
in λ0, or MST, we then induced changes of sizes k =
{0.05, 0.066, 0.1, 0.143, 0.20, 0.25, 0.33, 0.50, 0.66, 0.75}
and generated observations until the control charts signalled.
These changes led to different change sizes in in-control
estimated survival probability over days for a patient
with ui as well as survival curves between patients with

different Parsonnet scores. Note that other distributions such
as uniform distributions with proper parameters or even
sampling randomly from the baseline Parsonnet scores can
be applied to generate covariates directly.

To construct RAST CUSUM, we applied the procedures
discussed in Section II. We calibrated RAST CUSUM to
detect a decrease in the MST that correspond to a doubling
of the odds ratio within the follow-up period and has an in-
control average run length ( ˆARL0) of approximately 10000
observations. As mentioned in Section II, for the Weibull
AFT model the corresponding odds ratio formula, discussed
by Sego et al. [6], is not reduced to a close form of λ0 and
ρ since the covariate term is not simplified. in

OR =
Oi1
Oi0

, and Oi =
1− S(c | ui)
S(c | ui)

(5)

where S(c | ui) is the probability of survival at the end of
follow-up period, c.

Therefore we used Monte Carlo simulation to estimate
corresponding ρ. To do so, we set ρ such over 100,000
replications of generating Parsonet scores from the fitted
exponential distribution with a mean of 8.9 and calculating
the odds in Equation 5, the desired odds ratio of size OR = 2
was obtained. A decrease of ρ̂ = 0.255 in the MST was found
correspond to the desired jump in odds ratio.

We also used Monte Carlo simulation to determine the
decision interval, h. However other approaches may be of
interest; see Steiner et al. [2] and Sego et al. [6]. This
setting led to a decision interval of h = 4.88. The associated
CUSUM scores were also obtained through Equation (2)
considering the generated ti, δi and ui.

The step change and control charts were simulated in
the R package (http://www.r-project.org). To obtain posterior
distributions of the time and the magnitude of the changes
we used the R2WinBUGS interface [12] to generate 100,000
samples through MCMC iterations in WinBUGS [13] for all
change point scenarios with the first 20000 samples ignored
as burn-in. We then analyzed the results using the CODA
package in R [14]. See the Appendix for the step change
model code in WinBUGS.

V. PERFORMANCE ANALYSIS

To demonstrate the achievable results of Bayesian change
point detection in risk-adjusted control charts, we induced
a drop of size = 0.25 at time τ = 500 in an in-control
process with an overall survival time of λ0 = 42133.6.
RAST CUSUM detected the drop and sinalled at the 651st
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TABLE I
POSTERIOR ESTIMATES (MODE, SD.) OF STEP CHANGE POINT MODEL

PARAMETERS (τ AND k) FOLLOWING SIGNALS (RL) FROM RAST
CUSUM (h = 4.88) WHERE λ0 = 42133.6 AND τ = 500.

k RL τ̂ σ̂τ̂ k̂ σ̂k̂
0.25 651 499.8 96.0 0.226 0.18
0.33 722 494.8 160.6 0.27 0.19

TABLE II
CREDIBLE INTERVALS FOR STEP CHANGE POINT MODEL PARAMETERS

(τ AND k) FOLLOWING SIGNALS (RL) FROM RAST CUSUM (h = 4.88)
WHERE λ0 = 42133.6 AND τ = 500.

k
CI 50% CI 80%

τ̂ k̂ τ̂ k̂
0.25 (488, 551) (0.14, 0.33) (453, 581) (0.09, 0.48)
0.33 (487, 648) (0.15, 0.40) (359, 709) (0.09, 0.57)

observation, corresponding to a delay of 151 observations
as shown in Figure 1-1. The posterior distributions of time
and magnitude of the change were then obtained using
MCMC discussed in Section IV. The distribution of the time
of the change, τ , concentrates on the 500th observation,
approximately, as seen in Figure 1-2. The posterior for the
magnitude of the change, k, also reasonably identified the
exact change size as it highly concentrates on values of
around 0.25 shown in Figure 1-3.

This investigation was replicated using a smaller shift
of size k = 0.33 in λ. Table I summarizes the posterior
estimates for both change sizes. If the posterior was asym-
metric and skewed, the mode of the posterior was used as
an estimator for the change point model parameters (τ and
k).

The RAST CUSUM signalled after 222 observations when
the mean survival time became a third whereas the posterior
distribution reported a drop at the 491st observation. This
result implies that although the obtained posterior estimates
underestimated the change point, they still performed signif-
icantly better than the RAST CUSUM charts.

Bayesian estimates of the magnitude of the change tend
to be relatively accurate following signals of the control
chart, see Figure 1-3 and Table I. The slight bias, here
underestimation, observed in the figures must be considered
in the context of their corresponding standard deviations.

Comparison of estimates obtained across change sizes
reveals that although a shorter run of observations from the
out-of control state of the process is used when a larger
shift size occurred, less dispersed posteriors are obtained,
particularly for posteriors of time.

Applying the Bayesian framework enables us to construct
probability based intervals around estimated parameters. A
credible interval (CI) is a posterior probability based interval
which involves those values of highest probability in the pos-
terior density of the parameter of interest. Table II presents
50% and 80% credible intervals for the estimated time and
the magnitude of changes in λ0 for the RAST CUSUM

chart. As expected, the CIs are affected by the dispersion
and higher order behaviour of the posterior distributions.
Under the same probability of 0.5, the CI for the time of
the change of size k = 0.25 covers 63 obsrevations around
the 500th observation whereas it increases and reaches to
161 observations for k = 0.33 due to the larger standard
deviation, see Table I. This investigation can be extended to
other shift sizes for the time estimates. As shown in Table
I and discussed above, the magnitude of the changes are
also estimated reasonably well and Table II shows that in all
cases the real sizes of changes are contained in the respective
posterior 50% and 80% CIs.

Having a distribution for the time of the change enables
us to make other probabilistic inferences. As an example,
Table III shows the probability of the occurrence of the
change point in the last {25, 50, 100, 200, 300, 400, 500}
observations prior to signalling in the control charts. For a
step change of size k = 0.33 in the mean survival time, since
the RAST CUSUM signals late (see Table I), it is unlikely
that the change point occurred in the last 100 observations. A
considerable growth in the probability is seen when the next
200 observations are included, reaching to 0.77, whereas for
a larger drop of size k = 0.25, it is more certain that the
change point has occured in the last 200 observations with
a probability of 0.89.

The above studies were based on a single sample drawn
from the underlying distribution. To investigate the behavior
of the Bayesian estimator over different sample datasets,
for different reduction in λ0, we replicated the simulation
method explained in Section IV 100 times. Table IV shows
the average of the estimated parameters obtained from the
replicated datasets where there exists a drop in λ0 of size k.

As seen, the RAST CUSUM control chart tends to detect
larger shifts in the MST with less delays. For a large drop, a
k of size 0.143 and less, the chart signals with a delay of at
most 95 observations. This delay increases over moderates
reductions in λ0, reaching to 279 observations for k = 0.33.
However, the chart is failed in detection of small drops since
signals with a long delay of more than 639 observations
obtained when the MST halved, k = 0.50.

For large drops in the MST, a k of size 0.143 and less, the
average values of the modes, Ê(τ̂), tends to underestimate
the time of the change since it reports at best the 490th

observation for k = 0.066. However, the Bayesian estimator
still outperforms the chart signal with a less bias over large
reductions. This superiority persists for moderate shifts in the
MST, where a less bias is still associated with the Bayesian
estimates of the time, τ , at best three observations obtained
for k = 0.20. Although the RAST CUSUM chart was
designed to detect a moderate drop of 0.255 in the MST, it is
outperformed by the posterior mode that detects the change
point with a delay of 27 observations.

Table IV shows that the bias of the Bayesian estimator,
Ê(τ̂), did not exceed 55 observations over moderate re-

TABLE III
PROBABILITY OF THE OCCURRENCE OF THE CHANGE POINT IN THE LAST {25, 50, 100, 200, 300, 400, 500} OBSERVATIONS PRIOR TO SIGNALLING

FOR RAST CUSUM (h = 4.88) WHERE λ0 = 42133.6 AND τ = 500.

k 25 50 100 200 300 400 500
0.25 0.03 0.07 0.20 0.89 0.94 0.96 0.97
0.33 0.01 0.05 0.20 0.59 0.77 0.82 0.90
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TABLE IV
AVERAGE OF POSTERIOR ESTIMATES (MODE, SD.) OF STEP CHANGE POINT MODEL PARAMETERS (τ AND k) FOR A CHANGE IN THE MEAN SURVIVAL

TIME FOLLOWING SIGNALS (RL) FROM RAST CUSUM (h = 4.88) WHERE λ0 = 42133.6 AND τ = 500. STANDARD DEVIATIONS ARE SHOWN IN
PARENTHESES.

k Ê(RL)
Change point Change size
Ê(τ̂) Ê(σ̂τ̂ ) Ê(k̂) Ê(σ̂k̂)

0.05 542.4 486.0 91.2 0.077 0.173
(16.2) (57.3) (34.7) (0.086) (0.022)

0.066 554.8 490.5 92.9 0.083 0.177
(26.6) (62.5) (36.7) (0.075) (0.025)

0.10 568.3 485.7 99.4 0.127 0.183
(39.7) (70.9) (33.9) (0.094) (0.017)

0.143 594.2 487.3 110.9 0.154 0.185
(49.2) (72.5) (34.5) (0.090) (0.016)

0.20 624.7 503.7 119.5 0.182 0.183
(71.3) (87.1) (36.6) (0.103) (0.018)

0.25 692.3 527.3 132.9 0.211 0.183
(150.4) (146.2) (53.4) (0.111) (0.018)

0.33 779.6 554.3 153.9 0.25 0.176
(187.7) (162.3) (58.9) (0.118) (0.023)

0.50 1139.0 661.8 258.9 0.43 0.178
(605.0) (287.7) (173.0) (0.16) (0.028)

0.66 2469.4 1270.3 562.1 0.51 0.183
(2169.8) (783.2) (456.6) (0.22) (0.047)

0.75 2773.4 1748.0 697.9 0.53 0.195
(2195.4) (1304.4) (720.8) (0.25) (0.047)

ductions. This bias increased when the MST halved, reach-
ing to 162 observations, yet significantly outperformed the
chart’s signal. For smaller reductions, k = (0.66, 0.75), the
posterior modes significantly overestimate the change point
since the RAST CUSUM signals very late. The variation of
the Bayesian estimates for time tends to reduce when the
magnitude of shift in the MST increases. The mean of the
standard deviation of the posterior estimates of time, Ê(στ̂ ),
also decreases when shift sizes increase.

Table IV indicates that the average of the Bayesian estima-
tor of the magnitude of the change, Ê(δ̂), identifies change
sizes with some biases. This estimator tends to overestimate
and underestimate the sizes where there exist large drops
and moderate to small drops, respectively. Having said that,
Bayesian estimates of the magnitude of the change must
be studied in conjunction with their corresponding standard
deviations. In this manner, analysis of credible intervals is
effective.

VI. CONCLUSION

Knowing when a change occurred in the process enhances
efficiency of root causes analysis efforts by restricting the
search to a tighter window of observations and related
variables.

In this paper, using a Bayesian framework, we modeled
change point detection in time-to-event data for a clinical
process with dichotomous outcomes, death and survival,
where patient mix was present. We considered a drop in
the mean of survival time of an in-control process. We con-
structed Bayesian hierarchical models and derived posterior
distributions for change point estimates using MCMC. The
performance of the Bayesian estimators were investigated
through simulation when they were used in conjunction with
risk-adjusted survival time CUSUM control charts monitor-
ing right censored survival time of patients who underwent
cardiac surgery procedures within a follow-up period of
30 days where the severity of risk factors prior to the
surgery was evaluated by the Parsonnet score. The results

showed that the Bayesian estimates significantly outperform
the RAST CUSUM control charts in change detection over
different magnitude of drops in the mean survival time.

Apart from accuracy and precision criteria used for the
comparison study, the posterior distributions for the time and
the magnitude of a change enable us to construct probabilistic
intervals around estimates and probabilistic inferences about
the location of the change point. This is a significant ad-
vantage of the proposed Bayesian approach. Furthermore,
flexibility of Bayesian hierarchical models, ease of extension
to more complicated change scenarios such as linear and non-
linear trends in survival time, relief of analytic calculation of
likelihood function, particularly for non-tractable likelihood
functions and ease of coding with available packages should
be considered as additional benefits of the proposed Bayesian
change point model for monitoring purposes.

The investigation conducted in this study was based on a
specific in-control rate of mortality observed in the pilot hos-
pital. Although it is expected that superiority of the proposed
Bayesian estimator persists over other processes in which the
in-control rate and the distribution of baseline risk may differ,
the results obtained for estimators and control charts over
various change scenarios motivates replication of the study
using other patient mix profiles. Moreover modification of
change point model elements such as replacing priors with
more informative alternatives may be of interest.

APPENDIX A
CHANGE POINT MODEL CODE IN WINBUGS

model {
for(i in 1 : RLcusum)
{
y[i] ∼ dweib(alpha0, gamma[i])I(yc[i],)
gamma[i] = pow(exp(beta0 * riskscore[i])/
(lambda0+step(i-tau) * lambda0 * (k-1)), alpha)
}

RL=RLcusum-1
k ∼ dnorm(0.255, 2.77)I(0.01, 0.99)
tau ∼ dunif(1, RL) }
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