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Abstract—Keerthi and Shevade (2007) proposed an efficient
algorithm for constructing an approximate LARS solution
path for logistic regression as a function of the regulariza-
tion parameter. In this paper we extend their approach to
multinomial regression. We show that a brute-force approach
leads to a multivariate approximation problem resulting in
an infeasible path tracking algorithm. Instead, we introduce
a non-canonical link function thereby a) repeatedly reusing
the univariate approximation of Keerthi and Shevade and
b) producing an optimization objective with a block-diagonal
Hessian. We carry out a simulation study that shows the
computational efficiency of the proposed technique. A Matlab
implementation is available from the author upon request.
We apply this technique to a web personalization problem in
corporate marketing.

Index Terms—Machine learning, supervised learning, gen-
eralized linear models (GLM), least angle regression and
LASSO (LARS), least absolute shrinkage and selection operator
(LASSO), large-scale regression, solution path tracking.

I. INTRODUCTION

WE consider a multinomial regression solution to a
K-class classification problem. Let {(xi, yi), 1 ≤

i ≤ N} denote the training data set. It is assumed to be an
independent, identically distributed sample of (X, Y ), a data
pair of a predictor vector X and a response Y that takes
values in the set {1, 2, · · · , K} of class labels. Furthermore,
the conditional distribution of Y is assumed to be

Y |X = x ∼ Multinomial(p1(x), · · · , pK(x)),

where pk(x) are unknown conditional class probabilities

pk(x) = P{Y = k|X = x}

for a predictor realization x. Our goal is to estimate the
pk(x).
We adopt a generalized linear model [1] with link function

ρ, so that

pk(x, β) = P{Y = k|x, β) = ρk

(
x

T β(1), · · · ,xT β(K)
)

.

The purpose of the link function in a generalized linear model
is to map the linear predictors, in this case x

T β(k), 1 ≤
k ≤ K , into the mean of the response distribution, in
this case pk(x, β), 1 ≤ k ≤ K . In particular, the pk are
now parameterized by β =

(
β(1), · · · , β(K)

)
, the unknown

parameter vector that determines the model, where β(k)

denotes the parameter vector corresponding to class k with
β(K) ≡ 0 by convention to remove ambiguity introduced by
the constraint

∑
k pk(x, β) = 1. A typical choice of ρ is the

canonical link [1]

pk(x, β) =
exp

(
x

T β(k)
)

∑K

l=1 exp
(
xT β(l)

) . (1)
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As a criterion of finding β, we pose the penalized likeli-
hood problem

min
β

fλ(β), (2)

where
fλ(β) = f0(β) + λ||β||1 (3)

and

f0(β) =
μ

2
βT Aβ −

N∑
i=1

log pyi
(xi, β) (4)

is the sum of an L2 regularization penalty and a negative
log-likelihood. The regularization penalty matrix A is any
positive semidefinite matrix, such as the identity or a kernel
penalty matrix [2]. Thus, our regularization introduces both
an L1 penalty in (3) and an L2 penalty in (4), a so-
called elastic net proposed in [3]. While μ is fixed at a
small value as in [3], our task is to compute the solution
β̂(λ) as a function of the L1 penalty weight λ known
as a regularization parameter as the latter varies over the
nonnegative numbers. We will refer to β̂(λ) as the solution
path.
When λ is very large, β̂(λ) = 0 as the L1 penalty

dominates. As λ decreases, more and more coordinates of
β become nonzero, typically one at a time leading to sparse
solutions for interesting values of λ. This is contrasted with
using a single L2 penalty where typically all coefficients
β̂(λ) become nonzero simultaneously [4], [5]. The latter
choice results in many small coefficients which are typi-
cally estimated with high variance. Therefore, L1 penalty
solutions are often superior in estimation accuracy [5]. A
sparse solution also offers important practical advantages as
a production system that uses one needs to concern itself
with generating only a subset of predictors in real time,
so that online model evaluations become faster. Finally, as
λ approaches zero, β̂(λ) approaches the minimizer of (4),
which is the maximum likelihood solution subject to the
small L2 penalty.
Spearheaded by seminal research [4], efficient algorithms

for constructing the entire solution path for all values of λ
were proposed in [2], [5], [6]. Advantages of solution path
tracking include a) sorting the predictors by their importance
based on the order in which they enter the model as λ de-
creases and b) choosing the best fit in the entire solution path
(e.g. by cross-validation) having yielded all the parameter
vectors, which are calculated in one pass by the procedure.
The computational complexity of path-tracking algorithms
is comparable to that of a single-λ optimization [5]. This
result is concurred in practice by [7] showing that running
times of path tracking are not much worse than those of
single-λ competitors. Since selecting the λ typically involves
running the latter with many trial values, path tracking offers
a significantly better quality/running-time tradeoff than a
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one-λ-at-a-time optimization heuristic. Our empirical study
in Section V verifies this property for the proposed path
tracking algorithm.
Inclusion of the L1 penalty into a fitting criterion was first

treated in detail in [8], where it was dubbed LASSO. [4], [5]
proposed a path-tracking method called least angle regres-
sion and LASSO (LARS) for squared-error loglikelihood (as
in linear regression solved by ordinary least squares) whose
simple modification in particular yields the entire LASSO
solution path. [6] extended the technique to generalized
regression models with piecewise-quadratic loglikelihood.
[2] proposed an efficient approximation method that reduces
the logistic regression problem to the setting in [6].
Path tracking is based on the following observation. When-

ever the function f0 in (4) is piecewise quadratic in β, the
solution path β̂(λ) is piecewise linear. At each step, [6]
calculates the direction of a new segment and the extent to
which the solution path follows the segment. [2] specializes
to logistic regression, which is a special case of multinomial
regression with the number of classes K = 2. In order to use
the path tracking algorithm in [6], [2] proposes a particular
piecewise quadratic approximation to the loglikelihood in
(4). Additionally, [2] proposes a pseudo-Newton correction
process applied after the original path construction to reduce
the impact of the approximation and move closer to the true
path.
In this paper we propose an approximate path tracking

method for multinomial regression. To the best of our
knowledge, this is the first multinomial least angle regression
method. We now outline the specifics of our contribution.
To find a piecewise quadratic approximation to f0(β) in (4),
it is sufficient to approximate the summands log pyi

(xi, β).
Using the canonical link (1), the latter is equivalent to
approximating

log
[
exp

(
x

T β(1)
)

+ · · · + exp
(
x

T β(K−1)
)

+ 1
]

(5)

since the logarithm of the numerator of (1) is already linear
in β and β(K) ≡ 0. In the logistic case of K = 2, [2] finds
a tight piecewise quadratic approximant l̂(r) to a univariate
function

l(r) = log
(
1 + e−r

)
(6)

depicted in Figure I. Since r = −x
T β(1) is linear in β,

this not only offers the sought-after approximation, but also
leads to an efficient step for determining the approximation
segment for any particular ri = x

T
i β(1). This efficiency is

critical for computational feasibility because the direction of
the solution path is recomputed every time any of the ri hits a
segment endpoint along with the magnitude of the extension
of the path in the new direction. Therefore, the extension
computation is frequent and has to be performed for every
data point every time. For medium-size datasets in Section
V, a typical number of such computations is 100 million for
constructing the entire solution path.
Let us now examine an analogous approach in the case of

K > 2. With rk = x
T β(k) in (5) we would have to introduce

an approximation to a (K − 1)-variate function

lK(r1, · · · , rK−1) = log(1 + e−r1 + · · · + e−rK−1). (7)

Dealing with complex (K − 1)-dimensional approximation
regions in place of one-dimensional segments would lead to

Fig. 1. l(r) (black solid) and its piecewise quadratic approximant l̂(r)
(dashed red). Reproduced from [2].

TABLE I
APPROXIMATION SEGMENTS USED TO DEFINE l̂(r) IN (8) ALONG WITH

THE CORRESPONDING VALUES OF THE PIECEWISE CONSTANT
COEFFICIENT a(r).

r (−∞,−4] (−4,−1.65] (−1.65, 1.65] (1.65, 4] (4,∞)
a(r) 0 0.0618 .215 0.0618 0

an infeasible algorithm for data sets of moderate sizes as
discussed in Section IV.
We solve this problem by proposing a particular non-

canonical link function in place of (1). This allows us to
continue using a univariate approximation to (6) applied up
to K − 1 times for each data point. This link function also
produces an optimization objective with a block-diagonal
Hessian with K − 1 blocks. These two benefits lead to
algorithmic efficiency similar to that of [2] in the multinomial
setting.
In Section II we give details of the proposed link function

and the ensuing piecewise-quadratic approximation to the
loglikelihood. The path tracking algorithm is described in
Section III. In Section IV we further contrast our algorithm
with a brute-force approach leading to the (K − 1)-variate
approximation outlined above. In Section V we carry out a
brief simulation study that illustrates the computational effi-
ciency of the proposed algorithm as discussed above across
various numbers N , P , and K of observations, predictor
variables, and class labels respectively. In Section VI we
apply the techinique to a web personalization problem in
corporate marketing. We conclude in Section VII.

II. NEW LINK FUNCTION AND A PIECEWISE QUADRATIC
APPROXIMATION TO LOGLIKELIHOOD

[2] proposes a particular nonnegative, convex, contin-
uously differentiable, and piecewise quadratic approximant
l̂(r) to l(r) in (6). These properties meet the requirements
of the path tracking algorithm in [6]. Figure I illustrates its
tightness achieved with just 5 approximation segments that
make up the horizontal axis and are given in the first row in
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Table I. l̂(r) is given by

l̂(r) = (1/2)a(r)r2 + b(r)r + c(r) (8)

with a(r), b(r), and c(r) being constant within each segment.
In particular, l̂(r) is linear over (−∞,−4] with the slope of
−1 and is zero over [4, +∞). Only the values of a(r) given
in Table I are used in the path tracking algorithm in Section
3. Other details are available in [2].
We now introduce the new link function that allows us to

approximate the multinomial loglikelihood by only involving
this univariate l̂(r) and not its multivariate counterparts as
outlined above and detailed in Section IV. It is defined by∑k

l=1 pl(x, β)∑k+1
l=1 pl(x, β)

=
1

1 + exp
(
−xT β(k)

) , k = 1, · · · , K − 1

(9)
or equivalently,

pk+1(x, β)∑k+1
l=1 pl(x, β)

=
1

1 + exp
(
xT β(k)

) , k = 1, · · · , K − 1.

Thus, the linear predictor ηk = x
T β(k) determines the

fraction of P{Y = k+1|x, β} in P{Y ≤ k+1|x, β}. This is
known as stick-breaking construction often used in conjunc-
tion with Dirichlet processes1. In particular, any distribution
{p1(x, β), · · · , pK(x, β)} can be represented by (9) for the
appropriate choice of linear predictors {η1, · · · , ηK} and,
conversely, any choice of the linear predictors corresponds
to a valid distribution {p1(x, β), · · · , pK(x, β)} obtained
through (9).
Below we use the convention that an empty product is one

and an empty sum is zero. The pk can be recovered by

p1(x, β) =

K−1∏
m=1

1

1 + exp
(
−xT β(m)

) ,

and for k ≥ 2,

pk(x, β) =

k∑
l=1

pl(x, β) −

k−1∑
l=1

pl(x, β) =

K−1∏
m=k

1

1 + exp
(
−xT β(m)

) −

K−1∏
m=k−1

1

1 + exp
(
−xT β(m)

) =

=

K−1∏
m=k

1

1 + exp
(
−xT β(m)

)
[
1 −

1

1 + exp
(
−xT β(k−1)

)
]

=

=

K−1∏
m=k

1

1 + exp
(
−xT β(m)

)
[

1

1 + exp
(
xT β(k−1)

)
]

.

These factorizations enable us to express the loglikelihood
summands in (4) in terms of l in (6) by

log p1(x, β) = −
K−1∑
m=1

l
(
x

T β(m)
)

,

log pk(x, β) = −

K−1∑
m=k

l
(
x

T β(m)
)
−l

(
−x

T β(k−1)
)

, k ≥ 2

(10)

1http://en.wikipedia.org/wiki/Dirichlet process#The stick-
breaking process

Thus, a piecewise quadratic approximation to the univariate
l(r) induces that to the penalized loglikelihood in (4). This
allows for a computationally efficient path tracking algorithm
that we describe next.

III. PATH TRACKING ALGORITHM
The hat quantities in the new minimization objective

min
β

f̂λ(β), (11)

with
f̂λ(β) = f̂0(β) + λ||β||1 (12)

are obtained from (2)-(4) by using the approximation l̂(r) in
place of l(r) in (10) and substituting these into (4):

f̂0(β) =
μ

2
βT Aβ +

N∑
i=1

K−1∑
k=max(1,yi−1)

l̂(rik), (13)

where rik = sikxiβ
(k) with sik = 1 if yi ≤ k and sik = −1

if yi = k + 1. The gradient ĝ and the Hessian Ĥ of f̂0 are
given by

ĝ
(
β(k)

)
= μAkβ(k)+

N∑
i=1

1{yi≤k+1}sikxi[a(rik)rik+b(rik)]

(14)
and

Ĥ
(
β(k), β(k)

)
= μAk +

N∑
i=1

1{yi≤k+1}xix
T
i a(rik)

Ĥ
(
β(k), β(l)

)
= 0, k �= l, (15)

where ĝ
(
β(k)

)
refers to the vector of partial derivatives with

respect to β(k), Ĥ
(
β(k), β(l)

)
is the block of Ĥ with rows

(columns) corresponding to β(k) (β(l)), and we assume that
the L2 penalty matrix A is block-diagonal with the rows and
columns of block Ak corresponding to β(k). We also used
the fact that l̂ is piecewise quadratic with coefficients a, b,
and c (the latter is not used) as given by (8).
Given the gradient and the Hessian, we can apply the path

tracking algorithm of [2], [6]. We now outline its justification
and main steps. The Karush-Kuhn-Tucker conditions [6]
imply that for any parameter βj , either it is inactive with
βj = 0 and |ĝj | ≤ λ or it is active (βj �= 0) with

ĝj = −λsgn(βj), (16)

where sgn(βj) is the sign of βj . Let A be the set of active
parameters and use notation xA and BA to denote the vector
xj , j ∈ A and the block of matrix B with rows and columns
from A respectively.
Since f̂0 is piecewise quadratic (or from (14) and (15)), a

change in β and ĝ are related by δĝ = Ĥδβ. Setting δλ =
−1, (16) implies that

δβA = Ĥ−1
A δĝA = Ĥ−1

A sgn(βA) = −Ĥ−1
A sgn(ĝA).

Thus, as λ decreases, the solution path extends in the
direction above implying in particular its piecewise
linearity. The linear extension continues until either a)
a new parameter j becomes active with |ĝj| = λ; b) a
parameter reaches zero; or c) the path reaches a piecewise
quadratic approximation segment endpoint for any of the
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rik in (13). When either of these events happens, the
direction of the path is recalculated. The complete algorithm
whose description closely parallels that in [2] is given below.

Path Tracking Algorithm

Initialize: β = 0, rik = 0, ai = a(0) ∀i,
ĝ

(
β(k) = 0

)
= −(1/2)

∑N

i=1 1{yi≤k+1}sikxi,

A = argmaxj |ĝj |, λ = maxj |ĝj|, δβA = −Ĥ−1
A sgn(ĝA),

δβAc = 0, δrik = sikxiδβ
(k) for i : yi ≤ k + 1, and

δĝ = Ĥδβ.

While (λ > 0)
a) d1 = min{d > 0 : |ĝj + dδĝj | = λ − d, j ∈ Ac};
b) d2 = min{d > 0 : βj + dδβj = 0, j ∈ A};
c) d3 = min{d > 0 : rik+dδrik reaches an approximation

segment endpoint for some i, k};
d) d = min{d1, d2, d3}, λ ← λ − d, β ← β + δβ, r ←

r + δr, ĝ ← dδĝ;
e) if d = d1, add the parameter attaining equality at d to

A;
f) if d = d2, remove the coefficient attaining 0 at d from

A;
g) if d = d3 at (i∗, k∗), set a(ri∗k∗) to the value in the

new segment;
h) set δβA = −Ĥ−1

A sgn(ĝA), δβAc = 0,
δrik = sikxiδβ

(k) for i : yi ≤ k + 1, and δĝ = Ĥδβ.

At each iteration, most of the time is spent updating
the inverse of the Hessian in h). This is typically done
by maintaining and updating the Cholesky decomposition
of the Hessian. Because of the block-diagonal form of the
Hessian in (15), one only needs to manipulate and invert the
individual blocks Ĥ

(
β(k), β(k)

)
. Also, a single parameter

addition and removal in steps e) and f) as well as a single
change for a (i∗, k∗) pair in g) entails an update of only
a single block of the Hessian since only a single k∗ is
affected. By contrast, if the canonical link (1) were to be
used, it could be seen that differentiating (5) with respect to
∂β(k)∂β(l), k �= l would not produce zero. Therefore, one
does not obtain a block-diagonal Hessian in the canonical
link case.
Finding the d in c) for each (i∗, k∗) pair is a simple closed-

form computation. This is thanks to using the univariate
approximation whose approximation regions are segments.
In the next section we contrast this simplicity with the
complexity of using (K − 1)-variate approximation regions
which would ensue if the canonical link (1) were to be
employed.

IV. MULTIVARIATE APPROXIMATION WITH CANONICAL
LINK

To further emphasize the importance of choosing the pro-
posed link function, we pause here to review the difficulties
which would be caused by using the canonical link (1). As
discussed above, a parallel approach would be to approximate
lK in (7) with a piecewise quadratic function. In the case of
K = 3, Figure II depicts l3(r1, r2). l3 can be seen to be
highly non-additive. That is, there are no functions a1(r1)
and a2(r2) whose sum adequately approximates l3(r1, r2).
For if it were the case, the graphs of l3(−5, r2) and l3(5, r2)

Fig. 2. l3(r1, r2), a special case of (7) for K = 3

Fig. 3. Mixed partial derivative ∂l3(r1, r2)/∂r1∂r2

against r2 marked by arrows in Figure II would have approx-
imately the same shape, namely that of a2(r2), and would
only differ in their vertical positions. Therefore, an additive
expansion similar to (10) enjoyed in the proposed link case
which would allow for univariate approximations to a1(r1)
and a2(r2) is not possible.
Alternatively, one may attempt to develop a (K − 1)-

dimensional piecewise quadratic approximation, where the
“pieces” are proper (K − 1)-dimensional regions. A com-
putational infeasibility of this approach for large training
datasets lies in the step c) of the algorithm above, where
the distance d to reach the boundary of the current “piece”
has to be computed for every training data point. Since
tracking multivariate boundaries is tricky regardless of their
shapes, this is not a scalable proposition. Nevertheless, let
us examine the mixed second derivative ∂l3(r1, r2)/∂r1∂r2

depicted in Figure III. A piecewise quadratic approximation
has a piecewise constant second derivative. Therefore, the
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TABLE II
AVERAGE RUNNING TIMES FOR mnrfit (MAXIMUM LIKELIHOOD ONLY,
NO REGULARIZATION), TMPM (L1 REGULARIZATION FOR A SINGLE λ),

AND MULTINOMIAL LARS AS DESCRIBED IN THIS WORK ACROSS
SIMULATED DATASETS VARYING IN THE NUMBER OF OBSERVATIONSN ,

PREDICTOR VARIABLES P , AND CLASS LABELS K .

Datasets Running Times
N P K mnrfit TMPM LARS
100K 50 3 1,004.2 690.9 1,971.7
50K 20 6 174.9 640.4 1,600.8
10K 10 24 133.6 3433.3 1306.2
10K 20 12 104.6 369.9 630.1
10K 100 3 82.4 25.2 80.2
4K 10 12 15.5 216.1 35.6
10K 20 3 6.85 17.89 3.18
2K 10 6 1.87 5.61 1.43
1K 10 3 .421 .562 .090

boundaries of an accurate approximation should generally
follow the contour curves in Figure III. A convoluted shape
of these contour curves only adds to the boundary tracking
problem. These difficulties are expected to become even
more pronounced as K grows.

V. EMPIRICAL EVALUATION
In this section we report the results of a brief computa-

tional performance comparison study of our Matlab imple-
mentation of the path-tracking algorithm with the proposed
link function against two competitors: the standard Matlab
multinomial regression routine mnrfit and a publicly available
Matlab implementation2 of a two-metric projection method
(TMPM) with non-negative variables [7], [9]. Note that mnr-
fit aims at finding the maximum likelihood solution, but does
not carry out any L1 regularization. TMPM does carry out
L1 regularization, but only attempts to solve the regularized
problem (2) for a particular λ as opposed to finding the full
solution path as in our technique. Therefore, our primary
question in this study is how much more computationally
expensive it is to obtain the full regularized solution path.
We generate simulation datasets for various numbers N ,

P , and K of observations, predictor variables, and class
labels respectively. In order to run these simulations on a
commodity laptop with 2GB of RAM, we generate sparse
matrices X of size N × P with the 2.5% fraction of
nonzero entries sampled uniformly from [0, 1]. Furthermore,
upon generating the true coefficient vector β also sampled
uniformly from [0, 1], for each row xi of X we apply the link
function to the linear predictors x

T
i β(k), 1 ≤ k ≤ K − 1 to

calculate multinomial probabilities and then draw from the
latter to finally generate response yi. For each triple (N , P ,
K) we repeat this process m times, each time regenerating
X , β, and y, measure the m running times across the three
techniques, and then record the average for each technique
over the m runs. Note that the same m simulated datasets
are used for each of the three techniques.
Table II summarizes the results. When choosing the dataset

triples (N , P , K) we tried to balance the number of
observations N and the number of parameters P (K − 1).
This is typical of real-life applications where recording more
observations often affords an opportunity to add predictors to
the model in an effort to explain more subtle patterns in the
data. We used m = 30 repetitions for the upper 3 rows and

2http://www.cs.ubc.ca/ schmidtm/Software/code.html

m = 100 for the rest. The rows are sorted in the descending
average running time for both mnrfit and LARS.
We observe that for the small bottom three configurations

LARS is actually the most computationally efficient method.
That is, not only does the proposed LARS method carry out
L1 regularization and compute the whole solution path, but
it also does this in the least amount of time among the three
techniques! Furthermore, having a large number of class
labels K hurts TMPM most. It came significantly behind
LARS for two out of the three configuration triples with
K ≥ 12. For the medium-size triple (10K, 100, 3) LARS
ran about as fast as mnrfit, while for the two largest-size
triples it performed less than three times worse than TMPM.
To put this factor of three into proper context, if one were
to vary λ as part of model selection, one would be better
off running LARS to obtain the whole solution path than
picking 3 different λ’s to choose from and running TMPM.
Since one typically explores a much greater number of λ’s,
LARS would be a heavy favorite from the computational
perspective over TMPM.

VI. APPLICATION TO WEB PERSONALIZATION
We apply the proposed technique to a corporate marketing

web personalization problem. A carousel widget, a yellow
popin that appears in the middle right in Figure 4, was
deployed across a large segment of Sun Microsystems web
properties, including www.sun.com, docs.sun.com, develop-
ers.sun.com, and so on. The carousel shows up to 12 items
(4 frames, 3 items per frame) pointing to various pieces of
marketing collateral, such as white papers, webinars, demos,
etc. The goal of presenting the collateral is not only to
serve as an initial research tool at the awareness and early
consideration stages of a prospective customer lifecycle, but
also to let the users self-select into interested parties, submit
registrations to possibly become sales leads, and initiate
inbound interaction with sales [10].
The key problem is item selection for populating the

carousel. To this end, we first apply the proposed technique
to classify a user into one of the following categories:
Developer, System Administrator, Retail Partner, Federal,
Enterprise, Small/Medium Business, Startup, and Student.
This multinomial model is fitted on approximately 15K users
who classified themselves as part of their engagement with
the company. The category was regressed on user actions
recorded on and off the web, such as visited web page
content, software downloads, registrations, sales interaction,
etc.
Second, we undertake two approaches. In the user segmen-

tation approach, editors hand-pick appropriate items for each
category of users and the system rotates through them giving
preference to items that perform better within a given user
category. In the personalization approach, a logistic LARS
model is fitted to predict the success probability for an item
in the context of a user. The definition of success varies with
an item, but is typically a click, a registration, initializing a
chat with sales, etc. The context of a user consists of a) the
aforementioned user actions where we also distinguish as
to whether or not they have taken place during the current
browser session; and b) the inferred multinomial probabilities
from the classification above. Thus, these probabilities were
explicitly included as predictors in the logistic model. Giving
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Fig. 4. The Sun Microsystems carousel widget (the yellow popin in the middle right) shows personalized links to marketing collateral.

specific attention to the current browser session aims at
making the items relevant to the user based both on what
we know about her historically and on what she is engaged
in at the moment. Finally, based on the logistic probabilities
and the expected payoff of a success as well as some business
logic, a decision for populating the carousel is made.
While the personalization approach generates significantly

more success events (by about 30%), the simpler segmenta-
tion approach fares similarly better than a baseline test of
just showing popular items, user category notwithstanding.
Additionally, the category probabilities proved to be some of
the most significant predictors in the logistic model. Thus,
this preclassification constitutes a potent method for improv-
ing a model by bringing in highly relevant and compactly
packaged information. Overall, the personalization program
proved a great success nearly doubling both the rate of sales
lead generation from the web and the pipeline revenue from
these leads.

VII. CONCLUSION
In this work we extended least angle regression and

LASSO (LARS), a state-of-the-art approach to building
regularized solution paths, to the multinomial regression
setting. To the best of our knowledge, this is the first
such extension in the literature. We started with the logistic
regression algorithm in [2]. An analogous approach would
entail an introduction of (K−1)-dimensional approximation
regions and computing points of intersections of lines with
these regions as part of building solution path extensions.
This would result in significant complexity, computational
performance degradation, and scalability limitations. Instead,
we proposed an efficient method by introducing a new link
function based on stick-breaking construction. Using this
link function allows us to continue relying on a univariate

approximation to a) efficiently carry out path extension
distance computations and b) work with a block-diagonal
Hessian. The latter permits inversion of only a single block
of the Hessian during each step of the algorithm.
Least angle regression methods typically exhibit running

times comparable to those of a single-objective optimization
method, such as unpenalized maximum likelihood estima-
tion or regularization for a single value of the regular-
ization parameter. We were able to verify this superior
quality/scalability tradeoff for the proposed technique. Our
research-quality Matlab implementation is available from the
author.
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