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Abstract—The EM algorithm is a standard tool for maximum
likelihood estimation in finite mixture models. Common ap-
proaches assume continuous data for its application. Frequently
in practice, data is only available in grouped form, i.e. the
frequencies of observations in fixed intervals are reported. The
fitting of two-component Gaussian mixture to such data is
considered in this paper. The aim is to compare several methods
for fitting mixtures to grouped data via the EM algorithm, as
well as to propose some new methods based on modifications of
existing ones. Furthermore, the influence of different widths of
intervals on the estimation is investigated. Finally, an example
is presented.

Index Terms—EM Algorithm, Finite Mixture, Grouped Data

I. INTRODUCTION

F INITE mixture models are being increasingly used to
model the distribution of heterogenous populations,

which arises when subpopulations with different density
functions occur.

A k-component mixture model for the density
function g(x) of a random variable X has the form
g(x) =

∑k
j=1 πjfj(x), where π1, ..., πk denote the mixing

proportions which sum to one, and fj(x) denote the
component density functions. Typically, the component
density functions are specified up to a vector of unknown
parameters, say θj . In many applications, the component
density functions f(x, θj) are taken to belong to the same
parametric family, for example, the Gaussian. In the case of
a two-component Gaussian mixture, the parameter vector is
θj = (µj , σj), where j = 1, 2.

Furthermore, x1, ..., xn denote an observed sample of size
n. A mixture model can be fitted to these data by maximum
likelihood via the Expectation-Maximization algorithm of
Dempster, Laird and Rubin [1]. There is a large amount
of literature dealing with fitting a mixture model when the
individual data points are available, see Everitt and Hand
[3], Titterington, Smith and Markov [13], McLachlan and
Peel [7], McLachan and Krishnan [9] and McLachlan and
Basford [11].

In practice, however, individual data points are frequently
not given and data is only available in grouped form,
i.e. the frequencies of observations in fixed intervals are
reported. Dempster, Laird, and Rubin [1] showed how the
EM algorithm can be used for such data, but they did
not consider mixture models in this context. Schader and
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Schmid [12] compared different algorithms for grouped
data, but not for mixture models.
Using the EM algorithm to fit a mixture model to grouped
data, as Dempster et al. suggested, the solution to the M-step
of the algorithm does not exist in closed form. Several
methods concerning this problem have been proposed, but
no comparative study appears to have been made. This
paper focuses on this issue. In particular, the first results
of a simulation study are presented that compares several
approaches of the EM algorithm in case of a two-component
Gaussian mixture, which are reviewed in Section II. The
results of the simulation study are shown in Section III.
Section IV presents an example, and finally a brief summary
is given in Section V.

II. FITTING MIXTURE TO GROUPED DATA

Consider a two component Gaussian mixture

g(x,Ψ) =

2∑
j=1

πjf(x, θj),

where Ψ = (π1, π2, θ1, θ2) contains the six parameters which
need to be estimated: the mixing proportions π1 and π2, as
well as the parameters θ1 = (µ1, σ1) and θ2 = (µ2, σ2) of the
Gaussian distributions. Instead of the individual observations,
only the number of observations y = (n1, ..., nm) falling into
the intervals [a0, a1), [a1, a2), ..., [am−1, am) are available.

Given data grouped like a histogram, a theoretical mixed
distribution g(x,Ψ) can be fitted by finding parameters Ψ̂
that make the discrepancy between the theoretical distribu-
tion and the observed grouped data as small as possible.
One possibility to solve this problem is the appliance of
the EM algorithm, which requires the calculation of the
conditional complete log likelihood function. In this context,
the observed data y is viewed as being incomplete. By
introducing a missing data vector z, the E-step of the EM
algorithm for the complete data w = (y, z) is generally given
by:

Q(Ψ,Ψ(t)) = EΨ(t) [logLc(Ψ, w)|y],

where Lc denotes the complete log likelihood function and
t indicates the tth iteration. On the M-step the intent is to
choose a value of Ψ that maximizes the Q-function.
The following methods, based on different previously pro-
posed approaches as well as new ones, have been compared:

Method 1: The approach, proposed by MacDonald and
Pitcher [5] and MacDonald and Green [6], was implemented
in the R package mixdist by Du [2]. By introducing the
variable n∗ij as missing data, which denotes the number of
observations from the jth group falling into the ith interval,
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the log likelihood function for the complete data w = (y, n∗)
is given as

logLc(Ψ, w) =
m∑
i=1

k∑
j=1

n∗ij log πj +
m∑
i=1

k∑
j=1

n∗ij logPij(θj),

with Pij(θj) =
∫ ai

ai−1
f(x, θj)dx. The E-step can be cal-

culated in a straightforward way: The unknown n∗ij are
replaced by their expected values given the observed data
y, which is E(Zij |y) = πjniPij(θ

(t)
j )/Pi(θ

(t)
j ), where

Pi(θ
(t)
j ) =

∑k
j=1 Pij(θ

(t)
j ). However, the maximization of

the Q-function, that is required in the M-step, cannot be done
analytically, so that another iterative procedure is necessary.
In this case the Newton-Raphson algorithm is used.

Method 2: An easier approach to the previous method
is to approximate the probability Pij(θj) that an individual
observation xi falls into the jth interval by h·f(āi, θj), where
h is the width of the interval and āi = (ai−1+ai)/2 indicates
the midpoint of the ith interval. For this approximation the
log likelihood for the complete data w = (y, n∗) is:

logLc(Ψ, w) =
m∑
i=1

k∑
j=1

n∗ij log πj +

m∑
i=1

k∑
j=1

n∗ij log[h · f(āi, θj)].

After replacing the n∗ij by their conditional expectation
E(Zij |y) = πjnif(āi, θ

(t)
j )/g(āi, θ

(t)
j ) =: e

(t)
ij , the deriva-

tion of the Q-function in the M-step can be done analytically.
The iterative estimators are given by:

π
(t+1)
j =

1

m

m∑
i=1

e
(t)
ij

µ
(t+1)
j =

m∑
i=1

e
(t)
ij ai/

m∑
i=1

e
(t)
ij

σ
2(t+1)
j =

m∑
i=1

e
(t)
ij (ai − µ(t+1)

j )2/
m∑
i=1

e
(t)
ij

Method 3: The simplest approach being examined is the
transformation of grouped data into individual data. For
each interval [ai, ai+1) the midpoint āi = (ai−1 + ai)/2
is replicated ni times, where ni indicates the number of
observations per interval. For this transformed data x∗ =
(x∗1, x

∗
2, ..., x

∗
n) the EM algorithm for finite mixture models

has been applied, where the missing data is given by an
indicator variable zij ∈ {0, 1}, which indicates whether an
observation x∗i arose or did not arise from the jth component.
The log likelihood for the complete data w = (x∗, z) is given
by:

logLc(Ψ, w) =
n∑

i=1

k∑
j=1

zij log πj +
n∑

i=1

k∑
j=1

zij log f(x∗i , θj).

Considering the conditional expectation E(Zij |x) =

πjf(x∗i , θ
(t)
j )/g(x∗i , θ

(t)
j ) =: e∗

(t)

ij , the solutions of the max-
imization have closed forms, that are similar to those of
method 2.

Method 4: The second data transformation being consid-
ered is that the grouped data is transformed into individual
data x∗ = (x∗1, x

∗
2, ..., x

∗
n), which is uniformly distributed at

every interval. Similar to method 3, this transformed data is
used by the EM algorithm for finite mixture models.

Method 5: McLachlan and Jones [11], [10] proposed
another approach. By introducing a random variable xij as
missing data vector, which includes individual observations
per interval, and extending the complete data vector to a zero-
one indicator variable zijl, which indicates the affiliation of
the lth observation in the ith interval to the jth component,
the log likelihood for the complete data w = (x, y, z) is
given by

logLc(Ψ, w) =
m∑
i=1

k∑
j=1

ni∑
l=1

zijl[log πj + log f(xij , θj)].

For this log likelihood function, the calculation of the E-step
can be done analytically as well as the maximization in the
M-step.

The similarity of method 2 and 3 gives reason to investigate
this two methods separately. An analytical consideration of
the conditional expectation of method 3 gives:

n∑
i=1

e∗
(t)

ij =
n∑

i=1

πjf(x∗i , θ
(t)
j )

g(x∗i , θ
(t)
j )

=

πjf(x∗1, θ
(t)
j )

g(x∗1, θ
(t)
j )

+ ...+
πjf(x∗1, θ

(t)
j )

g(x∗1, θ
(t)
j )︸ ︷︷ ︸

n1times

+...+

πjf(x∗n, θ
(t)
j )

g(x∗n, θ
(t)
j )

+ ...+
πjf(x∗n, θ

(t)
j )

g(x∗n, θ
(t)
j )︸ ︷︷ ︸

nmtimes

=
m∑
i=1

πjnif(āi, θ
(t)
j )

g(āi, θ
(t)
j )

=
m∑
i=1

e
(t)
ij ,

which is equal to the conditional expectation of method 2.
Hence, both methods provide the same iterative estimators,
although they uses two different approaches. However, the
runtime is not equal, which can be seen more detailed in the
next section, where the comparison is presented.

III. A SIMULATION COMPARISON

The methods described above are compared by considering
several two component Gaussian mixtures. The first compo-
nent is taken to be fixed with parameters µ1 = 5 and σ1 = 1.
The mixing proportions are chosen as π1 = π2 = 0.5.
The standard deviation of the second component σ2 is
chosen equal to 1 while for the mean µ2 five different
values are considered. Starting with a heavily overlapped
distribution, where the mean µ2 is taken to be equal to
6, the second distribution is adjusted as long as there are
two well-separated distributions, i.e. when µ2 is equal to
10. According to preliminary simulations, the sample size is
chosen as n = 100. In the first investigation, the generated
individual data is grouped with an interval width of h = 1.
Iterations are stopped if the absolute difference in the log
likelihood is smaller than 10−6. To avoid the convergence to
local maxima, the true values are chosen as initial values.

In the comparison of the methods, the main focus is on the
quality of the estimation of Ψ, measured by the discrepancy
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TABLE I
MSES FOR THE SIX ESTIMATED PARAMETERS FOR THE MODEL π1 = π2 = 0.5, σ1 = σ2 = 1, µ1 = 5 AND µ2 = 6

MSE π̂1 π̂2 µ̂1 µ̂2 σ̂1 σ̂2
∑

Method 1 0.10906 0.10906 0.98357 0.92800 0.26321 0.24113 2.63403
Method 2&3 0.00045 0.00045 0.01094 0.01187 0.00654 0.00622 0.03648

Method 4 0.00047 0.00047 0.01378 0.01477 0.00892 0.00834 0.04676
Method 5 0.00040 0.00040 0.00902 0.00965 0.00497 0.00471 0.02915

between the estimated and the true parameters. Therefore, the
mean squared error (MSE) is considered, which is defined
by

MSE(θ̂) = V ar(θ̂) + (E(θ̂)− θ)2.

The simulation study provides the distribution for each pa-
rameter estimator, hence the mean and the standard deviation
for the six parameters can be estimated, which is necessary
for the MSE. The results for the first considered model,
where µ2 = 6, are given in Table I. For comparable reasons,
the cumulated MSEs for every method were calculated. As
can be seen, method 1 provides the largest discrepancy
between the true and the estimated parameters (2.634). These
results correspond to those of Du [2]. It is proposed, that
the difficulties arising with heavily overlapping components,
can be solved by adding previous knowledge about the
parameters. However, the other methods provide good results
in spite of the heavy overlapping. The best results were
achieved by method 5 with a cumulated MSE of 0.029.
Method 2&3 and 4 provide acceptable values as well, 0.047
and 0.037, respectively.

Further, Table II provides the results of the cumulated
MSEs, when µ2 is adjusted. It can be seen that the more the
difference between µ1 and µ2 decreases, the more accurate
the results from method 1 are. For the other methods the
opposite seems to be true. To confirm this assumption, more
research is needed. However, over all investigated models,
method 5 provides the best results, followed by method 2 and
method 4. Comparing method 1 and method 2 directly, which
use the same approach, it can be seen, that the approximation
in method 2 provides much better results, especially, when
the means are close to each other.

TABLE II
CUMULATED MSES FOR DIFFERENT MIXTURE MODELS

MSE Method 1 Method 2&3 Method 4 Method 5

µ2 = 6 2.6340 0.0365 0.0468 0.0292
µ2 = 7 1.8948 0.0383 0.0458 0.0311
µ2 = 8 0.4292 0.0438 0.0493 0.0356
µ2 = 9 0.1371 0.0518 0.0601 0.0423
µ2 = 10 0.0899 0.0627 0.0717 0.0512

As the most comparable results were achieved with µ2 =
10, this model is taken to investigate the influence of different
interval widths. Five interval widths were considered: (a)
h = 0.1, (b) h = 0.2, (c) h = 0.5, (d) h = 1, and (e)
h = 2. The results are shown in Table III. For small interval
widths, like h = 0.1 and h = 0.2, the results cannot prove
major superiority of one method over another, but there is an
indication for the slight benefit of method 5. By enlarging

TABLE III
CUMULATED MSES FOR DIFFERENT INTERVAL WIDTHS

MSE Method 1 Method 2&3 Method 4 Method 5

h = 0.1 0.0721 0.0544 0.0544 0.0543
h = 0.2 0.0733 0.0536 0.0535 0.0532
h = 0.5 0.0761 0.0561 0.0568 0.0537
h = 1.0 0.0899 0.0627 0.0717 0.0512
h = 2.0 0.3774 0.0915 0.1908 0.0337

the interval width to h = 1 and h = 2 the benefit increases.
While for the other methods the discrepancy between the
estimated and true parameters increases for larger intervals,
the accuracy of method 5 is retained.

Finally, the runtime of the methods is presented in Table
IV. Apparently, method 1 is the slowest, because of the
second iteration in the M-step. The other methods need ap-
proximately the same amount of time. Comparing methods 2
and 3 directly, which both provide the same results, it can be
seen, that method 3 is slightly faster than method 2. Because
of this, and the easier implementation, method 3 should
be preferred. Method 5, which provides the most accurate
estimations, is just a little bit slower, but nevertheless this is
an acceptable amount of time.

TABLE IV
TIME NEEDED FOR THE PERFORMANCE IN SECONDS

Method 1 Method 2 Method 3 Method 4 Method 5

Time 396.62 22.09 21.97 21.57 25.97

Thus, over all simulations the best results were achieved
by method 5. Because of the most accurate estimations,
the acceptable time of performance and the straightforward
calculation, this method can be recommended for the consid-
ered situations. Nevertheless, it needs to be mentioned that
because of their easy calculation and their fast computation
methods 3 and 4 are also excellent choices to fit a mixture
model to grouped data. Both methods use a transformation
that avoids the problems that arises with grouped data. The
results may depend on special parameter choices, however.
Ongoing simulations with various parameter sets are com-
puted to ensure these results.

The application of the considered method may be demon-
strated by an example from the material research.

IV. EXAMPLE

A grain denotes a particle from granular materials. The
grain size has an important influence on the material charac-
teristics; therefore its investigation is an important research
field. The grain size of microsheets consisting of steel is
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currently investigated by the SFB 747 “Mikrokaltumformen”
in Bremen, Germany. The analyzed data contains intervals,
which arise by classification of the grain sizes obtained as
areas in a two-dimensional section with interval width h = 1.
Further, the percentages of grain areas are given. Figure
1 shows a histogram of the grouped data as well as the
four fitted mixture models with initial values π1 = 0.8,
π2 = 0.2, µ1 = 9, µ2 = 10.5, σ1 = 1, and σ2 = 1.5.
The corresponding estimators are given in Table V.

Fig. 1. A two-component Gaussian mixture is fitted to data, adapted from
Köhler et. al. [4]. Solid: method 1, dashed: method 2&3, dotted: method 4,
dotdashed: method 5.

TABLE V
ESTIMATION

π̂1 π̂2 µ̂1 µ̂2 σ̂1 σ̂2 p-value

Method 1 0.80 0.20 9.26 10.76 0.99 1.44 1.00
Method 2&3 0.76 0.24 9.20 10.72 0.99 1.40 1.00

Method 4 0.76 0.24 9.18 10.75 1.02 1.41 1.00
Method 5 0.77 0.23 9.20 10.69 0.97 1.39 1.00

To investigate the goodness of fit of the models, χ2-tests
were performed. As can be seen in Table V the p-values are
close to 1, hence, the null hypothesis can not be rejected for
any of the considered models.
If it is attempted to fit just one Gaussian distribution the p-
value results in p = 0.0241, which indicates a less capable
fit.
Hence, it seems that this material consists of two kinds of
grain sizes. A consequence of this finding could be the in-
corporation of two components in the subsequent calculation
of material parameters like elasticity and tensile strength.

V. SUMMARY

A two-component Gaussian mixture model was fitted to
grouped data by estimating the parameter via five methods
based on the EM algorithm. The compared methods consist
of previously published methods as well as new ones that
are based on modifications of existing ones. Besides the
comparison, the aim of the study was to investigate the
influence of different interval widths. For well-separated

distributions and small interval width, method 1, using an
approach by MacDonald and Green [5], provides acceptable
results. However, this method needs significant more time
for the performance, and because throughout all simulations
this method achieved the largest discrepancy between the
estimated and the true values, this method seems to be less
appropriate for the considered data sets.
Considering the straightforward calculation, the excellent
estimators, and the small amount of time needed for its
performance, method 5, using an approach from McLachlan
and Jones [10], seems to be the best choice for estimating
the parameter of a finite mixture from grouped data. Even
with enlarged interval widths, this method provides the most
accurate estimators.
Nevertheless, the simulations have shown that the new pro-
posed methods could be recommended as well. Especially for
small interval widths, method 3 and 4, which both use a data
transformation, provide excellent estimators, and because of
their easy implementation and their fast computation, these
methods are good choices as well. The comparison of method
2 and 3 has shown, that even though both methods use a
different approach, they provide the same results.
Finally, the example from the grain research has shown the
practical relevance and it demonstrates the feasibility of the
methods.
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