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Abstract—This paper presents the formulation of a slip-
control model for purposes of performing slip tracking of target
slip. Antilock braking system modelling is performed to develop
a quarter car vehicle deceleration model for braking without
cornering. Input-state based feedback linearisation is applied
to the highly non-linear developed antilock braking system
model. Input-state feedback linearisation is shown to provide
a transformed linear ABS model while ensuring a verifiable
stable state transformation. Lie algebra is used to formalise the
analysis of the linearising transformation. Simulation results
of a quarter car vehicle’s braking dynamics demonstrate the
validity of the approach along with the key development of a
output to state transformation that facilitates the implementa-
tion of the linearisation approach as a mechatronic technique
to antilock braking system control.

Index Terms—antilock braking systems, feedback linearisa-
tion with differential geometry, mechatronics, nonlinear dynam-
ics, computational mechanics

I. INTRODUCTION

ANTILOCK Braking Systems (ABS) have been in
use in wheeled vehicles for numerous decades with

the specific aim of avoiding the locking of wheels during
braking and thereby improving braking performance [1].
As research into reducing braking times and distances
under various road conditions has developed, a number
of approaches have been suggested, most notably the
slip control during deceleration [2], [3], [4]. Slip control
primarily allows for the maximising of the braking friction
coefficient, hence primarily providing the maximum braking
force and achieving minimum braking times and/or distances
[5].

During the braking of a wheeled vehicle, a braking force is
applied to the wheel to reduce the wheel’s angular velocity. In
turn the reduced linearised wheel velocity leads to the wheel
skidding relative to the road/driving surface. This skidding
is called slip and while braking, slip varies from a minimum
of zero to a maximum of unity [6]. Zero slip corresponds to
the case when there is no braking force that is applied so the
linearised wheel speed is the same as the car speed relative to
the road surface. On the opposite extreme the unity or 100%
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slip case corresponds to the case when the wheel speed is
zero but the car’s speed is not zero as the car has not come to
rest. The 100% slip case is also called wheel locking or full-
skid. Antilock braking systems (ABS) are utilised in wheeled
vehicles with the specific aim of avoiding the locking of the
wheel. The effective braking force while braking increases
to a maximum as the slip increases from zero after which the
effective braking force decreases as the slip value approaches
100% or the locking value [6]. Pacejka models and various
works have demonstrated this explained observation [7], [8],
[1].

The goal of an optimal Anti-lock Braking System (ABS)
is to quickly reduce the speed of a vehicle from an initial
travelling speed towards rest in either the minimum possible
time or minimum possible distance, [1], [9], [3], []. Optimal
control theory has been successfully applied to ABS to prove
the need for slip control of ABS for various types of vehicle
braking systems such as pneumatic brakes, electro-pneumatic
brakes and electrical brakes in works such as [7], [8]. Various
disturbances and ABS uncertainties such as road conditions,
initial vehicle speeds, braking actuator dynamics in [10],
[11], wheel bearing friction, suspension effects in [7] and
wind resistance have also been treated in applying optimal
theory and a range of other controllers to ABS in [4], [5],
[12], [13], [8], [14], [15], [10] with significant degree of
success for ABS which is a typical safety critical system as
highlighted in [7],[1], [6].

A major challenge in designing controllers for ABS is the
highly non-linear model. Additionally when enhancements
such as suspension effects are included in the ABS model
the above mentioned works and solutions are not as
effective due mainly to the multiple ABS model inputs
and also multiple outputs. Yet another challenge brought
in by the high level of non-linearity in ABS is when
discrete methods are to be incorporated as linear discrete
analysis is the default approach for discretisation techniques.
Thus this paper’s main focus is to present a framework
for linearising the highly non-linear ABS model while
ensuring stability of the linearising technique as well as
handling given system outputs and states. In particular
feedback linearisation technique is used to establish a stable
linearisation technique that can avoid often complicated
internal stability analysis.

A common disadvantage of feedback linearisation is inter-
nal stability, [16], [17]. In the work [6] a stability analysis
condition is developed due to the often detailed internal
stability condition analysis that is required when performing
input-output feedback linearisation. In this paper an output to
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state transformation is developed to circumvent the detailed
internal instability analysis while also providing an approach
to linearise the highly non-linear ABS model.

The rest of this paper is structured as follows, first a
model for ABS is obtained followed by slip control mo-
tivation, and the major contribution of formulating a stable
linearisation approach for the ABS model. Simulation results
for a linearised controller are provided to demonstrate the
effectiveness of the linearising technique.

II. MODELING

A. Physical Model
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Fig. 1. Quarter car braking model

The general quarter-car model and formulation used in [7],
[8], [1], [9], [6] is also utilised in this paper. The quarter-car
wheel and braking system is shown in Fig. 1. At any point in
time, t, the car has a forward longitudinal velocity, v(t), the
wheel has an angular velocity, ω(t). As the braking force is
applied a braking torque τ is applied to the wheel. The wheel
will have a component of the car’s weight Fz exerted on it.
It is assumed that the weight is equally distributed on the
four wheels of the vehicle and that each of the four wheels
of the car contribute equally to the car’s total braking force.
It is further assumed in this quarter-car model that cornering
forces road roughness related forces are negligible.

B. Mathematical Model

The car while travelling has brakes applied at an initial time
t = t0 = 0 and comes to a stop at a final time t = tf .
As the brakes are applied the car’s longitudinal velocity v is
initially v(t0) and at t = tf the car’s velocity will have come
to zero i.e. v(tf ) = 0. Application of Newton’s law to the
quarter-car wheel and braking system shown in Fig.1 gives
the governing equations of motion. The vehicle translational
dynamics are:

Mv̇ = −µ(λ)Fz − Cxv
2 (1)

where M is the quarter-car’s total mass, µ is the longitudinal
friction coefficient, Fz is the normal force acting on the
vehicle wheel, and Cx is the vehicle aerodynamic friction
coefficient. For slip control as explained later µ is a function

of the slip ratio λ as detailed later in Fig.2. The wheel
rotational dynamics are:

Jω̇ = µ(λ)Fzr −Bω − τb (2)

where J is the moment of inertia of the wheel, r is the wheel
radius, B is the wheel bearing friction coefficient, and τb is
the braking torque. An electro-mechanical set of brakes is
used to apply a braking torque, τb, on the disk/drum brakes.
The weight component of the quarter-car, FN , is given by:

FN =Mg (3)

where g is the acceleration due to gravity.

By definition the slip ratio λ is:

λ =
v − rω
v

(4)

Typical relationship between µ and λ is given in Fig.2, and
is modeled by the approximate equation, [7]:

µ(λ) = 2µ0
λ0λ

λ20 + λ2
(5)

The peak µ value µ0 occurs at a λ value λ0 and from
Fig.2 for a dry asphalt road surface µ0 = 0.9 and λ0 = 0.22
respectively.

Fig. 2. Typical tire longitudinal friction µ-λ curves

Different road surfaces are modelled by different λ0 and
corresponding µ0 values as they are unique for each road
surface. Since the peak friction coefficient µ0 is obtained
when λ has the value λ0, i.e. µ0 = µ(λ0) hence the goal of
slip control is to generate a braking torque τb to maintain
the braking slip value always close or equal to its optimal
value λ0.

Suspension effects are assumed to be negligible so the
vertical forces applicable to the quarter car model are the
respective weight FZ . Hence

FN = FZ (6)

The quarter car model is assumed to have negligible cor-
nering forces FY and so is free from cornering torque
considerations. Additionally, road roughness is thus lumped
into the equation (5) and Fig.2 for the various typical road
surfaces. The electro-mechanical braking system producing
the torque τb is assumed to have a very high bandwidth
and as such is a very fast actuator whose dynamics are thus
considered negligible.
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III. SLIP CONTROL FORMULATION

A. ABS Model State Equations

From (1) we obtain the following non-linear state equations

ẋ1 = −µ(λ)FN/M − µ(λ)kwx4/M − Cxx
2
1/M

ẋ2 = µ(λ)FNr/J + µ(λ)kwx4r/J −Bω/J
−ub/J (7)

y = [λ] (8)

where the states are x = [x1 x2]
T , x1 = v, x2 = ω.

y is the output slip (4).
ub is the braking torque τb as the system braking control
input.

The system model can thus be defined in the state-space
form as the non-linear single-input single-output system:

ẋ = f (x) + gu(t) (9)
y = h (x) = [λ] (10)

where

g = [ 0 1/J ]
T (11)

u = [ub ] = τb (12)

Highly non linear f(x) consists of all terms of (7) except for
the terms in ub. For stabilisation, and tracking control this
ABS model thus requires linearisation.

B. Input-State Feedback Linearisation

Input-output feedback linearisation, IOFBL, is one ap-
proach to linearise a system and has been applied in various
of our previous works [9], [18], [6]. Yet as highlighted in [6]
IOFBL often requires elaborate internal stability analysis.
This is mainly because IOFBL transforms the states of
ABS by transforming the original ABS states and often
resulting in hidden states. The stability of the hidden states
then consequently demands of necessity the internal stability
analysis.

Input-state feedback linearisation ISFBL referred to
FBL in this work avoids the above hidden states of IOFBL
by performing a state transformation that maintains the
number of system states. Without hidden states the internal
stability challenge is totally circumvented.

Yet the one key challenge of ISFBL referred to as
FBL is this work is that ISFBL formulates a linear
relationship between the states and the input. Thus ISFBL
only performs an input to state linearisation transformation
as the name ISFBL suggests. Linear reference tracking of
slip is still not possible due to the key challenge of the
nonlinear output slip equation. To avoid this problem this
work proposes an initial state transformation such that the
output is one of the ABS states. Though this transformation
is not new to ABS analysis yet we propose the use of this
transformation as a novel linearisation approach.

Thus this paper seeks to generate a linear transformed-
input to slip-output relation for the non-linear ABS model.
Additionally, FBL allows us to check on the stability of
the linearising transformations on the ABS model and in so
doing this paper identifies an output to state transformation
for the slip controlled ABS model. Furthermore, we then

design stable slip reference tracking feedback controllers for
the linearised model.

Taking the total derivative of the state output equation (8)
we get

ẏ = λ̇ =
∂λ

∂v
v̇ +

∂λ

∂ω
ω̇ (13)

Substituting (4) into (13) allows for the slip state equation
formulation

ẏ = λ̇ = − v̇
v
λ+

v̇ − rω̇
v

and substituting (1) and (2) in the above slip-state equation
gives a slip to braking input ub equation of relative degree 1
when considered as an IOFBL linearisation transformation:

ẏ = λ̇(t) = fab(λ) + gab(t)ub(t) = ubnew (14)

fab = − v̇
v
λ+

v̇

v
− µFzr

2

vJ
+
Brω

vJ

gab =
−r
vJ

From (14) ẏ is a function of the braking input ub(t) and by
letting ubnew be the transformed braking input such that ẏ1 =
ubnew we thus have a linear relation between the transformed
braking input ubnew and the output slip, λ.
FBL theory states that IOFBL is equivalent to ISFBL

if the relative degree of the IOFBL linearisation is equal
to the degree of the ABS system. Given that ABS model
is of degree 2 from equation (7). Hence output to state
transformation for ISFBL must transform the ABS model
from a system of degree 2 to and ABS model of degree 1 so
as to be equal to the relative degree of IOFBL as shown
in (14) above.

C. Slip Control Criteria

The primary objective of the slip controller is to bring a car
traveling with an initial speed v0 down to stop in a shortest
possible distance or time while using admissible control
(0 ≤ τb ≤ τbmax

). In doing so the slip value should rise to
its optimum value λ0 as fast as possible and track this value
through the deceleration process with minimal deviation
from the set reference value λ0 until the car stops. The
braking system should also use admissible braking torques,
i.e. have limited control input through the braking process
including initial transient response, steady state control and
the final stage of the braking process as the car comes to rest.

Correspondingly the suspension system should have
admissible active suspension forces i.e have limited transient
and steady state suspension control input through the
braking process. The suspension must also have a limited
suspension travel as this is a physical restriction due to a
finite space between the vehicle’s wheel and body.

Fig. 3 shows the comparison results for locked wheel
braking and perfect tracking of ideal slip control with no
suspension effects. The ideal slip control is obtained by
assuming an ideal braking actuator with zero transient time
delays in its response. A similar braking actuator is also
assumed for the locked wheel braking case, locking the
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brakes at t = t0 = 0 and throughout the braking process
until the car comes to rest. As can be observed from these
results slip controlled braking gives far better results of
about half the braking time and half the braking distance.

The goal of the FBL analysis for ABS with suspension
effects is to at least achieve improved performance than the
ideal slip controlled ABS results.
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Fig. 3. locked and slip control braking for ABS.

For this quarter-car model the maximum braking torque
is 2250Nm while the optimal slip value as obtained from
the dry-asphalt graph on Fig.2 is λ0 = 0.2 with µ0 = 0.9.
The ideal braking time of 3.15s and the ideal braking
distance of 46.5m from Fig.3 are to be used as a basis for
evaluating the various modeling parameter variations. The
suspension system travel trajectory is hand-tuned to provide
an approximate 25% increase in nominal weight of the car
body and wheel as exerted on the road surface. During the
braking process the suspension travel is limited in its peak
maximum travel so the individual wheel travel and body
travel.

IV. CONTROL FORMULATION

A. Linearising Input-Output Transformation

Control systems theory has various ways of linearising
nonlinear systems the most applicable of which is Feedback
Linearisation, see [16], [19], [17], [18], [6]. The Input-
Output Feedback Linearisation, IOFBL, performed to ob-
tain (14) is a linearising state transformation from x to
zo = [µi]

T .

ẏ =
∂h (x)
∂x

ẋ

=
∂h
∂x

f (x) +
∂h
∂x

gub (t)

= fab(x) + gabub(t) (15)

Using differential geometry notation (i.e. Lie derivatives and
diffeomorphism notation) see [17], [6]

ẏ =
∂h (x)
∂x

ẋ = ∇h (f + gub)

= Lfh (x) + Lgh (x)ub (16)

u =
1

Lgh
(
−Lfh + ubnew

)
(17)

The input transformation on the control law (14) gives the
linear relation of the form ẏ = unew. The transformed state
is zo = [µ1] . IOFBL theory allows us to choose µ1 = λ
see [6], [16].

Thus we have a linearised system utilising practically
feasible new states additionally λ is our output and enables
the direct design of the controller for λ and γ reference
tracking purposes. The ABS control input torque can be
generated from (14).

B. Linearising Input-State Transformation

As noted in FBL theory see [16], [20] ISFBL is
equivalent to IOFBL if the relative degree (1 for the ABS
model) from IOFBL is equal to the system degree. Since
the ABS model system degree from (7) is of degree 2 we
choose the output variable as the only system state such
as to have a system degree of 1. Hence the ABS model
equation becomes (14).

FBL requires the following procedure to be performed
to effect linearisation by ISFBL see [16], [20].

Construct the vector field
M = [gab, adfab

gab, . . . , adn−1

fab
gab]

with n = 1
so

M = gab =
−r
Jv

(18)

Since M is both controllable and involutive for both v 6= 0
and for finite v, FBL theory allows the formulation of the
new linearised state z such that:

∇zgab 6= 0 (19)

so

∂z

∂λ
gab 6= 0 (20)

from which is chosen the new linear state z as z = λ
simultaneously being the linearising state transform.

Finally FBL allows us to formulate the input transforma-
tion as

ub = τb = α(λ) + β(λ)ubnew (21)
with

α =
Ln

fab
z

Lg
ab
Ln−1

fab
z

(22)

β =
1

Lg
ab
Ln−1

fab
z

(23)

with n=1 we get

Lfab
z = ∇zfab = fab (24)

similarly

Lg
ab
L0

fab
z = Lg

ab
z = ∇zgab = gab (25)
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so the input transformation is thus

ub = τb = α(λ) + β(λ)ubnew
(26)

=
−fab
gab

+
unew
gab

(27)

=
−Jvfab

r
+
Jvunew

r
(28)

and the new state equation is

λ̇ = ubnew = fab(x) + gabub(t) (29)

Remarks
• the transformation from ABS states v and ω to the new

ABS single state λ is a linearising state transform
• the transformation from ABS states v and ω to the

new ABS single state λ is also an output to state
transformation

• (16) and (17) are obtained by IOFBL while the same
equations are obtained for ISFBL in (29) and (26)

• thus equivalence of IOFBL and ISFBL are thus
shown in the results of pairs (16),(17) and (29), (26)
as is required by FBL theory

• the fact that an ABS model initially with two system
states is reduced to a system with only one state to
which ISFBL is successfully applied warrants further
analysis for internal stability purposes.
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Fig. 4. Braking velocities with with IS-FBL

C. Stability Analysis

The transformation from an ABS model with two states
namely v and ω to only one state λ means that one of the
states has been internalised, which further demands that the
stability of this transform be analysed. In fact the transform
is made valid since the linearised system tracks the slip
instead of tracking both v and ω in the non-linear ABS.

Simultaneously a control law (26) is formulated only for
the linear tracking of λ while the internal state v needs
no control law for its trajectory. Without an internal state
v the linearised slip λ controller would only be a system
that tracks the slip but would have unobservable velocity.
So internalising the state v makes v still observable and
only λ is both observable and controllable. The v state is
known to have stable dynamics as the car slows to rest due
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Fig. 5. Braking slip (top) and distances (bottom) with IS-FBL

to the aerodynamic friction force Cxv
2 if no braking torque

is applied. Hence the stable zero dynamics of v mean that
the internalised v dynamics are also stable as long as v 6= 0
and indeed the linearising FBL transform is also stable.

D. Linear Tracking Slip Controller Design
Linear pole placement is finally applied to (29)

λ = unew = żd − a0z̃ (30)
where żd = 0

and (31)
z̃ = z − zd = λ− λ0 (32)

hence for asymptotically stable slip tracking error dynam-
ics
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TABLE I
PARAMETERS OF THE QUARTER-CAR MODEL USED FOR SIMULATION.

Parameters Parameters Parameters
B = 0.08 kgm2/s Cx = 0.856 kg/m I = 1.6 kgm2

ms = 400 kg M = 440 kg mu = 40 kg
r = 0.3 m µ0 = 0.9 λ0 = 0.2
α = 0.1 τbmax = 10000 Nm tsettling = 0.3s

˙̃z + a0z̃ = 0 (33)

choose a negative a0 that gives fast tracking dynamics
without saturating the control torque in this case a0 = −200
was chosen.

V. RESULTS AND DISCUSSION

Results are compared with perfect slip reference tracking
rsults of Fig.3. The settling time for slip control is 3.4s
from Fig.5. There is a near perfect time to come to rest
from a speed of 33.3̇ms−1(120km/hr) as noted in Fig.4
in 3.4s instead of 3.2s. The near perfect braking time is
due to the presence of the formulated ISFBL based linear
slip controller. Similarly the braking distance is near perfect
as seen in Fig.5 for the ABS slip control. The braking
distances for ABS with perfect slip tracking, Fig.3, and with
ISFBL formulated linear pole placement controller are
48.5m instead of 46.5m. Yet again a near perfect braking
performance as measured by the braking distance

A point to note is that all the above tests are run until ”rest”
yet stopped when the vehicle’s speed is about 1ms−1. The
tests are run to as near 0ms−1 as possible because firstly
the stability of the linearising transform is not guaranteed
when the vehicle velocity is 0ms−1 and secondly that the slip
itself becomes undefined when the vehicle velocity reaches
0ms−1. Hence it is traditional to apply slip controlled ABS
until just before the car comes to rest. For our tests 1ms−1

is regarded as near 0ms−1.

VI. CONCLUSION

This paper has demonstrated a linearising technique for
a highly non-linear ABS model. The feedback linearisation
approach presented can be applied to a wide range of ABS
non linear model parameters that introduce non-linearities.
Simulation results demonstrate a consequent simple but
effective linear system analyses where a linear controller as
basic as pole placement is applied to significantly improve
the braking performance of ABS. A key feature is the
identification of a transformation that not only linearises the
input output relationship but also simultaneously identifies
the output as a new system state that facilitates a linearisation
transform equivalent to input-output linearisation.
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