
 

 
Abstract—The data-based filtration method is proposed on 

the basis of the recent results for bandwidth selection by using 
smoothed cross-validation procedure. The optimal 
regularization procedure was developed to obtain the stable 
nonparametric estimator of filtration. Simulation has shown a 
high quality of the proposed filtration estimators as compared 
with the optimal Kalman filter. 
   Index Terms—Bandwidth selection, kernel estimates, 
nonparametric filtration, regularization 
 

I. INTRODUCTION 

ORE then twenty years ago in [1] there was proposed 
the filtration method of a stochastic signal with an 

unknown distribution from mixture with the noise. It was 
assumed that the noise distribution in the observation model 
is known due to the principal opportunity to observe the 
noise without a signal (for instance, in hydroacoustics), and 
one can restore the noise distribution from the noise 
observations. Inverse situation – the signal observation 
without a noise – is unreal one. So, in this situation the 
estimation of the signal distribution is impossible, and 
therefore the signal distribution is assumed to be unknown. 

   Let n 1 n( , ) , ,m l
n n nS X S X     be partly observable 

random sequence, where 
nS  and 

nX  are unobservable and 

observable components of this sequence. The problem is to 
estimate the vector 

nS  or the known function )( nSQ  from 

the observations T
11 ),...,( n

n xxx   of .)( 1n nX  The optimal 

mean square estimate of )( nSQ  is the conditional mean 

1
ˆ ( ) ( ( ) | ).n

n nQ S Q S xE  

   The principal result of the theory of filtration is to obtain 

the optimal filtering equation for ˆ ( )nQ S  not depending on 

unknown distribution of a signal .nS  This is possible for a 

class of observation models when the observation 
conditional density under the fixed signal n nS s  belongs 

to the following conditionally-exponent family of densities 
[4]: 
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where ;),...,( T

1 mTTT  ;)...,,( T][]1[ mQQQ   ),(V  )(][ jQ  and 

),(jT  ),...,1( mj   are the given Borelean functions, and )(
~
C  

is the normalizing factor, .11  nL  
   In general case, under condition (1), the equation for the 

optimal estimate )(ˆ
nSQ  takes the form 
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where   is the matrix of size lm  with the elements 
][)/( j

n
n

Lniij xxT    ),...,1,,...,1( ljmi  ,   denotes the 

gradient operator, and )|( 1
1
n

n xxf  is the conditional density 

depending on observable variables. We use the same 
notation ( )f   for the densities of different variables without 

anxiety of ambiguity because the exact function form is not 
important now. Note that equation (2) is independent on a 
priori characteristics of an unobservable signal ( )nS , and it 

is not recurrent. As the conditional density 1
1( | )n

nf x x   in 

equation (2) is unknown, we will estimate 1
1( | )n

nf x x   from 

the dependent observations 1
nx  by using methods of 

nonparametric statistics. 
   In Section 2, the main idea of equation derivation for the 

optimal mean square estimate )(ˆ
nSQ  is illustrated by the 

example of the Gaussian conditional density of observation. 
The nonparametric counterpart of the optimal equation is 
also derived. Methods of bandwidth selection for kernel 
density and derivative estimates are stated in Section 3. The 
regularization problems of unstable nonparametric estimates 
are considered in Section 4. Section 5 presents the 
simulation results to compare the optimal Kalman filtration 
with the nonparametric filtration. 

 

II. BASIC MODELS AND OPTIMAL EQUATION  

   Compare the proposed algorithm with the Kalman filter, 
which is optimal when all the statistical information about 
signals and noises is available. Note that for the Kalman 
filter the state and observation equations should be linear. 
As an example we consider a scalar autoregressive process 

,1,1  nbaSS nnn                          (3) 

where n  is the Gaussian noise. The observation process is 

described by the additive model 
,1,  nASX nnn                          (4) 

where A  and   are the known constants and n  is the 

standard Gaussian noise. 
   The optimal Kalman filter can be obtained from these 
equations. It will be used in Section 5, devoted to simulation 
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results, and therefore the constants a  and b  in (3) are not 
specified now. 
   In the case under consideration, state equation (3) is 
unknown and we have only observation equation (4). Note 
that the assignment of equation (4) exactly corresponds to 
the assignment of the conditionally-Gaussian density 
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belonging to the family (1). 
   If )|( 1

n
n xsw  is a posteriori density of an unobservable 

signal ,nS  then 1( | ) 1.n
n nw s x ds   So, using the total 

probability formula, we have 
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Transpose the multiplier )|( 1
1
n

n xxf  in the right side of the 

last equation (6), differentiate it with respect to nx  and 

obtain 
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        (7) 

where, according to equation (4), the conditional density 
),|(),|( 1
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  and its derivative is 
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Substitution of (8) in (7) provides 
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and the exact equation for the optimal filtering estimate 

 n
n

nnn dsxswsS )|(ˆ
1 can be written as 
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   Equation (10) contains the logarithmic derivative of the 
conditional density of observations and does not contain any 
characteristics of an unobservable signal ).( nS  If the 

probability distribution of a signal )( nS  is unknown, then 

the distribution of an observable signal )( nX  is unknown 

too. Therefore, equation (10) can not be used directly. 
However, relying on the strong stationarity of the sequence  

),( nX  the logarithmic derivative of the density in (10) may 

be estimated from observations nx1 . As the logarithmic 

density derivative has the form  
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then according to a plug-in method it is necessary to 
estimate the derivative and density separately. For large ,n  
i.e., for a long realization of the sequence )( nX , a 

dimension of the multivariate density in (10) is very high. 
Therefore, taking into account a strong mixing condition of 
the sequence )( nX , accepted in this approach, one can 

replace (with a small error) the conditional density 
)|( 1

1
n

n xxf  by the truncated conditional density 

),|( 1


n
nn xxf   ,11  n  where the number   is called a 

degree of dependence and represents an order of 
connectivity of the Markov process approximating the non-
Markovian process )( nX . Then equality (11) takes the form  
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The denominator in (12) is a )1(  -dimensional marginal 
density. The nonparametric density estimate of a small 
dimension can be obtained by using the single series 
realization nx1 , which is divided into the overlapping  

fragments ,k
kx  11  nk  of the length 1 . All the 

realizations contain 1 nN  fragments. The last 

fragment n
nx   is used as the argument of the function )(ˆ hf  

in formula (13). The nonparametric kernel estimates of a 
density and its derivative in (12) have the forms 
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where K   denote the partial derivatives with respect to nx . 

So, the nonparametric estimate of the logarithmic density 
derivative )( n

nx    can be written as   
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To calculate (15) it needs to select bandwidths h  and 1h  in 

(13) and (14). 
 

III. BANDWIDTH SELECTION FOR DENSITIES AND THEIR 

DERIVATIVES  

   For the time being, several data-based selection methods 
of bandwidths are known of which the methods of cross-
validation CV [2, 3], smoothed cross-validation SCV  [4], 
and plug-in [5] seem to be the basic ones as the most clear 
and rapidly converging procedures. In [6] the method ,SCV  
proposed in [7] for density estimation, was extended to the 
kernel estimates of density derivatives. The SCV  method 
generates data-based bandwidth estimates with a higher rate 
of convergence and substantially smaller scatter than in the 
CV  method. 

   Take a measure of distance between )()( rf  and its 

estimator )(ˆ )( r
hf  as the mean integrated square error )(MISE  

 2
( ) ( )ˆ( ) ( ) ( ) ,r r

r hMISE h f x f x dx E  

0,  1,r   ).()()0( xfxf   
This criterion depends on the bandwidth h  and it would be 
natural to select such an ,h  which will minimize the 

)(hMISEr . Using the aforementioned SCV  method and  

Gaussian kernels )(K  in (13) provides [9] 
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where )(ut  is a Gaussian density with zero mean and 

standard deviation t , and a new constant g  is responsible 
for the data presmoothing. Select g  by minimization of the 

mean square error )(MSE  of the bandwidth estimate ),(ˆ gh  
which minimizes (16): 
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where 
                     ,)()()( dxxfxf k

k   .8,...,1,0k                 (18)                                           

Analogous technique provides an estimate for the 1MISE  of 

the derivative in a more complicated form [6] 
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where ,g  minimizing the MSE  of ),(ˆ
1 gh  is as follows 
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Formulae (17) and (20) contain the parameters 6  and ,8  

which depend upon an unknown density )(xf  and its 
derivatives. They are also can be estimated using the cross-
validation method for a density and the rule of thumb for a 
higher derivative. 
   According to the law of large numbers, integral (18) is 
approximated by the sum 
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Such estimates, unlike to (13), are estimates of the second 
level, where a less precision is admissible. For the Gaussian 
kernels ),()( 1 xxK   where )(1 x  is the standard normal 

density, the derivatives in (21) are calculated by making use 
of the well known formula 
                         ( ) k

1 1( ) (-1) ( ) ( ),k
kx H x x                        (22)                                           

where )(xHk  is the Hermitian polynomial, which may be 

found by the recurrent formula 
         1 1( ) ( ) - ( ),k k kH x xH x kH x   0 ( ) 1,H x   ,...2,1k  

At last, the bandwidth h  on the second level is found 
roughly from the observations by the rule of thumb: 

                         1/5ˆ1,06  ,h n   

where ̂  is the sample standard deviation, estimated from 

1
nx . 

   As a result, we obtain the following data-based 
expressions: 
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IV. REGULARIZED ESTIMATE 

   Logarithmic density derivative estimate (15) is the special 
case of the plug-in estimate of a composite function 

)),(( xtG n  where 1,x    1: ,m
nt

     1: .mG    In 

our case ,2m  ,),( T
21 nnn ttt   1

ˆ ( ),n
n h nt f x   

1

(1)
2

ˆ ( ),n
n h nt f x   ./)( 12 nnn tttG   If the statistic nt  converges 

to a function t  in the mean square sense as ,n  then 
under some regularity conditions )()( tGtG n   in the same 

sense too. 
   Write the main regularity conditions: 

1) the existence and boundedness of several 
derivatives of )( ntG ; 

2) the sequence |})({| ntG  is dominated by the  

number sequence  ,0

ndC  where 0C  is a constant, 

nd  as ,n  and .0    

   These conditions provide the mean square convergence of 
)( ntG  to )(tG  [8]. 

   If the mean Euclidean distance n||t || ,t  E  0,   then 

for a small   the following equality holds: 
               ),)(()()( ttGtGtG nnn    ),,( ttnn                            

where   is the gradient with respect to .t From here 
according to [8] 

        ),()))((E())()(E( 2/322  nnnn dOttGtGtG         (23)                    

i.e., the mean square closeness of the composite functions 
)( ntG  and )(tG  is replaced by the mean square closeness of 

more simple statistics nt  and .t  

   There are a number of cases when conditions 1) and 2) do 
not hold. For example, the function ttG /1)(   does not 
satisfy both the conditions, and the estimator nn ttG /1)(   

becomes unstable because of its possible unboundedness. 
For the one-dimensional Gaussian density ),(xf  we have 

.xG   This function is unbounded on 1.  As proposition 
(23) is valid only for bounded functions ,G  we apply here 
some procedure of regularization, called the piecewise 
smooth approximation  [8]. In the special case the procedure 
coincides with the Tychonoff regularization method. Using 
this procedure, we obtain the following stable 
approximation of :G  
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where 0n  is a regularization parameter. As it is proved 

in [8], ),(
~

nnt   satisfies both the above mentioned 

conditions, and therefore is dominated by the power 
function of .n  Moreover, ),(

~
nnt   converges to )(tG  in the 

mean square sense, i.e., as n||t || 0t E  and 0,n   then 
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The statistic )(ˆ n
nn x    in (15) is unstable when its 

denominator is close to zero. So, we use the stable estimate 
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where the regularization parameter n  has to be found. One 

can obtain an optimal parameter, which minimizes the mean 
square deviation of )( n

nn x  


 from )( n
nx    at each point 

.n
nx   But this approach is not so good for practice because a 

minimization procedure has to be repeated for each signal 
processing. We propose to make an optimization procedure 
only once before signal processing using the criterion of the 
MISE  for estimating the logarithmic density derivative with 
a weight function ( ),   i.e., 
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To exist the criterion, we should select the weight function 
as ).()( 2  f  
   Calculating of the expectation of the ratio in (26) is 
laborious. According to (24), for the mean square 
convergence of the regularized estimate )( n

nn x  


 to the 

logarithmic density derivative )( n
nx    it is necessary that 

0n   as .n   Therefore, under the assumption of a 

small n  we expand (25) with respect to the parameter  n  

and approximately obtain 
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Substituting (27) into the MISE  (26) and using Theorem 2 
from [8], we receive 
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   Now, minimizing (26) with respect to ,  we find 

     
      .

)(ˆ5)()ˆ,ˆcov10)(ˆ5

)(ˆ)()ˆ,ˆcov2)(ˆ

26'5'24

22''2

   
   


ffufffffu

ffufffffu
opt


  

(29) 
The integrals in the numerator and denominator of opt  

depend on unknown densities. Therefore, they will be 
estimated from the observations. 
   The main parts of )(2 u  and ),cov(   equal as n  
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Substituting these formulae into (29), we find opt , in which 

it is necessary to estimate the following integrals: 

                 ,)()()( duufufJ
qk

k  ,4,...,0  ,...2,1q  

It can be done by the CV  method, described above. 
 

V. SIMULATION RESULTS 

First, we generate a sequence of dependent observations 
using state equation (3) for nS  and observation equation (4) 

for .nX  The equation for the Kalman filter is well known 

and is not given here. 
   When the state equation is unknown, we use the 
nonparametric counterpart of optimal equation (10), which, 
taking into account expression (15), can be written as 

                              ,)(ˆ
~ 2

A

x
x

A

B
S nn

nnn                            

where 

       ,

2

)(
exp

2

)(
exp)(

)(ˆ
1

1

1

1
2

2
)1(

1

1 1
2
1

2
)3(

1

  














  



























 





 

 


n

i j n

ij
n

n

i j n

ij
ninn

n
nn

h

b
h

h

b
xxh

x         (30) 

.11   ijnjnij xxb  The plug-in nonparametric estimate 

)(ˆ n
nn x    is constructed from the realization of an observed 

sequence ).( nX  Unfortunately, the plug-in estimate is 

unstable when the denominator of (30) is close to zero. In 
this case, the estimate may have spikes, which can be seen 
in Fig.1.  
 

 
Fig. 1.  Comparison of the nonparametric and optimal Kalman filtration 
when there are spikes. 

 
   These spikes sharply impaire the performance of the plug-
in the nonparametric estimate (see Table 1). To eliminate 
the spikes, we use the regularized estimates, introduced in 
(25). This leads to the following regularized nonparametric 
equation: 
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Comparison of nonparametric estimates nS
~

 and nS


 with the 

optimal Kalman estimate nŜ  is carried out by calculating 

the relative error   in percentage 
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The nonparametric filtering estimates ,
~

nS  nS
  and optimal 

Kalman estimate nŜ  are given in Fig. 1 and 2. 

 

 
Fig. 2.  Comparison of the nonparametric and optimal Kalman filtration 
without spikes. 

 
   One can see that the discrepancy   between both the 
estimates is very small without spikes. But when spikes are 
present, the advantage of the regularization procedure 
becomes obvious. The distances between the nonparametric 

estimates ,
~

nS  nS
  and optimal Kalman estimate nŜ  in 

the -units are given in Table 1. 
 

       TABLE 1 

MEASURE OF CLOSENESS OF THE ESTIMATES nS AND  nS


 

  TO THE KALMAN ESTIMATE  ˆ
nS  

 
Plug-in 

  
Regularized 

  
Spikes 

83.13% 1.42% yes 
1.13% 1.31% no 

  
   It should be noted that the quality of the nonparametric 
filtering estimates depends strongly on the bandwidth and 
regularization parameters. So, the problem of theirs optimal 
selection is an important part of the signal processing. 

VI. CONCLUSION 

   The new results in nonparametric bandwidth selection [2, 
5] and regularization methods allow to synthesize the data-
based algorithms of the nonparametric signal filtration. Such 
algorithms are based on the optimal filtering equation for 
partly observable stochastic sequences (not only Gaussian). 

This equation does not include the probability 
characteristics of an unobservable component of the 
sequence. 
   For the strong stationary sequences the nonparametric 
counterpart of the optimal equation was constructed in the 
theory of nonparametric signal processing. This approach 
was developed when the state equation and the probability 
distribution of an unobservable signal are unknown, and the 
stochastic observation equation is known completely. The 
estimation equation includes the kernel estimator of the 
logarithmic density derivative, which depends on 
bandwidths of density estimates and its derivatives.  
   The data-based filtration method is suggested, using the 
recent results of [6] and [7] for bandwidth selection by the 
SCV  method. The optimal regularization procedure was 
developed to obtain the formula of the stable non-parametric 
algorithm of filtration.  
   Simulation, carried out to compare the behavior of the 
nonparametric filtration algorithms with the optimal Kalman 
filter, has showed a high quality of the proposed procedures. 
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