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Abstract— Probabilistic methods called Gaussian processes 

have been successfully shown as a powerful tool for modeling 
time series data and prediction problem as they are a Bayesian 
approach with kernel based learning. In this paper, the 
Gaussian processes are applied to model and predict financial 
volatility based on GARCH, EGARCH and GJR. Five different 
kernels are used to train each of the proposed volatility models. 
More precisely, the experimental results show that, the 
nonlinear hybrid models can capture well symmetric and 
asymmetric effects of news on volatility and yields better 
predictive performance than the classic GARCH, EGARCH 
and GJR approaches. 
 

Index Terms— Gaussian Process, GARCH, EGARCH, GJR, 
volatility 
 

I. INTRODUCTION 

Financial time series plays a crucial role in modeling and 
forecasting volatility of stock markets. The most famous and 
classic models include GARCH, EGARCH, and GJR 
models, [1,2,3,4] which cover symmetric and asymmetric 
effects of news in volatility. Since the volatility is very 
important for portfolio selection, option pricing and risk 
management, many researchers have used machine learning 
techniques, for instance, neural network and support vector 
machine, to improve the prediction of the financial volatility 
[5]. The main reason of using neural network and support 
vector machine is their flexible abilities to approximate any 
nonlinear functions arbitrarily without priori assumptions on 
data distribution [6]. Hence these approaches can cope with 
the situation that stock market is most of the time heavy 
tailed and violates normality. In addition, the neural network 
can capture the stylized characteristics of financial returns 
such as leptokurtosis, volatility clustering, and leverage 
effects; hence it generates better prediction of GARCH 
family [7]. For comprehensive discussions of GARCH 
predictions by the support vector machine approach, it is 
referred to [8,9,10,11].  
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Gaussian processes (GP) are one of Bayesian non-
parametric methods in machine learning whose functional 
form are the same as the well-known neural network and 
support vector machine. Like other kernel based methods 
such as the SVM, they combine a high flexibility of the 
model by working in high dimensional feature spaces with 
the simplicity that all operations are kernelized, i.e., they are 
performed in the lower dimensional input space using 
positive definite kernel. See [12] for detailed illustration. 
Besides, the GP have been applied in various areas 
including human function [13], real time online model [14], 
classification [15], non-stationary time series prediction 
[16], and dynamic model for human motion [17].  

Inspired by such efficiently predictive capability of the 
Gaussian processes and their successful applications, we are 
very interested in applying it for volatility prediction. 
Therefore, it is valuable for us to research the problem of 
whether more accurate forecasting performance could be 
achieved if we combine the GP with GARCH, EGARCH, 
and GJR structures to construct new hybrid models of 
financial volatility, say GP-GARCH, GP-EGARCH and GP-
GJR. 

In this work, simulated and real data, NASDAQ index, 
are analyzed to validate the proposed models. Five different 
kernels (or covariance functions) are applied to each of the 
volatility models as they are the heart of obtaining the 
Gaussian processes. The paper is organized as follow. Next 
section introduces volatility models based on classical 
GARCH, EGARCH, GJR and hybrid Gaussian Processes 
with GARCH, EGARCH and GJR. Section 3 presents the 
experimental results including parameters estimation, 
Gaussian Processes training and out of sample forecasting 
performance. The last section is reserved for conclusion. 

II. VOLATILITY MODELING 

A. Parametric models 

Let ௧ܲ be stock price at time ݐ. Then  
௧ݕ  ൌ 100ሺ݈݊ ௧ܲ െ ݈݊ ௧ܲିଵሻ       (1) 

denotes the continuously compounded daily returns of the 
underlying assets at time ݐ.  
 
GARCH(1,1) is defined as ݕ௧ ൌ ௧ߤ ൅ ௧ߝ , ௧ߝ ൌ   ௧, andݖ௧ߪ

௧ߪ 
ଶ ൌ ߱ ൅ ௧ିଵߪߚ

ଶ ൅ ௧ିଵߝߙ
ଶ       (2) 

where ߱ ൐ ߙ , 0 ൒ ߚ , 0 ൒ 0, and this process is weakly 
stationary if ߙ ൅ ߚ ൏ 1. ሼݖ௧ሽ is a sequence of (iid) 
independent identically distributed random variables with 
mean 0 and variance 1. One step ahead forecast of 
GARCH(1,1) is ߪ௧ାଵ

ଶ ൌ ෝ߱ ൅ ௧ߪመߚ
ଶ ൅ ௧ߝොߙ

ଶ. 
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GJR(1,1)  is written as the following: 
௧ߪ 

ଶ ൌ ߱ ൅ ௧ିଵߪߚ
ଶ ൅ ௧ିଵߝߙ

ଶ ൅ ௧ିଵܵߛ
ି ௧ିଵߝ

ଶ    (3)  
where ܵ௧ିଵ

ି ൌ 1 for ߝ௧ିଵ ൏ 0 and 0 otherwise. Stationary 

assumption for the model requires ߙ ൅ ߚ ൅
ଵ

ଶ
ߛ ൏ 1,   ߱ ൐

ߙ  ,0 ൒ ߚ , 0 ൒ ߙ ,0 ൅ ߛ ൒ 0. The model assumes that bad 
news have higher impact than the good news. One step-
ahead-forecast for GJR(1,1) is ߪ௧ାଵ

ଶ ൌ ෝ߱ ൅ ௧ߪመߚ
ଶ ൅ ௧ߝොߙ

ଶ for 
௧ߝ ൐ 0 and ߪ௧ାଵ

ଶ ൌ ෝ߱ ൅ ௧ߪመߚ
ଶ ൅ ௧ߝොߙ

ଶ ൅ ௧ߝොߛ
ଶ for ߝ௧ ൏ 0. 

 
EGARCH(1,1)  is represented as logarithm form:݈݊ሺߪ௧ଶሻ ൌ
߱ ൅ ௧ିଵߪሺ݈݊ߚ

ଶ ሻ ൅ ߙ ቂ
|ఌ೟షభ|

ఙ೟షభ
െ ܧ ቀ

|ఌ೟షభ|

ఙ೟షభ
ቁቃ ൅ ߛ ቀ

ఌ೟షభ

ఙ೟షభ
ቁ        (4) 

EGARCH model allows good news and bad news to have a 
different impact on volatility because the level of  

ఌ೟షభ

ఙ೟షభ
 is 

included with a coefficient ߛ. One step ahead forecast by 
EGARCH(1,1) is  

 ݈݊ሺߪ௧ାଵ
ଶ ሻ ൌ ෝ߱ ൅ ௧ߪመ݈݊ሺߚ

ଶሻ ൅ ොߙ ቈ
|ఌ೟|

ఙ೟
െ ට

ଶ

గ
 ቉ ൅ ොߛ ቀ

ఌ೟

ఙ೟
ቁ.   

 

B. Hybrid models of GP-GARCH, GP-EGARCH and GP-
GJR 

Gaussian Processes based on GARCH, EGARCH and 
GJR models are represented as  
GP-GARCH: ߪ௧

ଶ ൌ ݂ሺݔ௧ିଵ, ௧ିଵݔ 
∗ ሻ         (5) 

where ߪ௧
ଶ is treated as dependent variable, and ݔ௧ିଵ ൌ ௧ିଵߪ

ଶ  , 
௧ିଵݔ
∗ ൌ ௧ିଵߝ

ଶ  are treated as independent variables. Its one 
step ahead forecast is  ߪ௧ାଵ

ଶ ൌ መ݂ሺݔ௧, ௧ݔ
∗ሻ. 

 
GP-GJR model:   ߪ௧

ଶ ൌ ݂ሺݔ௧ିଵ, ௧ିଵݔ
∗ , ௧ିଵݔ 

∗∗ ሻ      (6) 
where the input variables are defined as ݔ௧ିଵ ൌ ௧ିଵߪ

ଶ  , 
௧ିଵݔ
∗ ൌ ௧ିଵߝ

ଶ  and ݔ௧ିଵ
∗∗ ൌ ܵ௧ିଵ

ି ௧ିଵߝ
ଶ  . One step ahead forecast 

of this model is ߪ௧ାଵ
ଶ ൌ መ݂ሺݔ௧, ௧ݔ

∗, ௧ݔ 
∗∗ሻ.     

 
GP-EGARCH:  ݈݊ሺߪ௧

ଶሻ ൌ ݂ሺݔ௧ିଵ, ௧ିଵݔ
∗ , ௧ିଵݔ

∗∗ ሻ      (7) 
where ݈݊ሺߪ௧

ଶሻ is treated as response. The regressors, in this 

case, are denoted as ݔ௧ିଵ ൌ ݈݊ሺߪ௧ିଵ
ଶ ሻ, ݔ௧ିଵ

∗ ൌ ቂ
|ఌ೟షభ|

ఙ೟షభ
െ

ܧ ቀ
|ఌ೟షభ|

ఙ೟షభ
ቁቃ and ݔ௧ିଵ

∗∗ ൌ ቀ
ఌ೟షభ

ఙ೟షభ
ቁ. Here the expected value 

ܧ ቀ
|ఌ೟షభ|

ఙ೟షభ
ቁ is approximated by its mean value. One step ahead 

forecast based on GP-EGARCH is defined as exponential 
transformation: ߪ௧ାଵ

ଶ ൌ  ൛݌ݔ݁ መ݂ሺݔ௧, ௧ݔ 
∗, ௧ݔ 

∗∗ሻ ൟ .  
Note, for all models, we take ݕ௧

ଶ ൌ ௧ߝ
ଶ assuming ߤ௧ ൌ 0 (as 

usual) and ߪො௧
ଶ ൌ

ଵ

ହ
∑ ௧ି௞ݕ

ଶସ
௞ୀ଴  according to [8] so that we can 

obtain ݔ௧ିଵ, ௧ିଵݔ
∗ , ௧ିଵݔ 

∗∗ and ߪ௧
ଶ before making analysis. The 

function ݂ is approximated by the Gaussian Processes in 
(10) below to be መ݂. 
 

C. Gaussian Processes  

Gaussian processes are a popular method for 
nonparametric regression. Gaussian processes are defined by 
its mean and covariance functions. It is assumed that the 
observations are normally distributed. Using the kernel 
matrix as the covariance matrix is a convenient way of 
extending Bayesian modeling of linear estimators to 
nonlinear situations. Furthermore, it represents the 
counterpart of the kernel trick in methods minimizing the 
regularized risk. Specifically, given a set of training data 
ܦ ൌ ሼሺ࢞௜, ,௜ሻݕ ݅ ൌ 1,… , ݊ሽ, the objective is to predict the 
value of new ݕ∗given ࢞∗ via a learning function ݂ሺ࢞௜ሻsuch 

that ݕ௜ ൌ ݂ሺ࢞௜ሻ ൅  ௜ is normally distributed withߜ ௜ whereߜ
mean zero and variance ߪ௡

ଶ. With the assumption of the 
Gaussian noise, ߜ, the observed target can be described as 
,ሺ0ܰ~࢟ ۹ሺ܆, ,܆ሻሻwhere ۹ሺ܆  ሻdenotes the covariance܆
matrix and ܆ is ሺ݊ ൈ ݉ሻ matrix of input. The common 
choice of covariance function is a Gaussian kernel defined 
as  

݇൫࢞௣, ௤൯࢞ ൌ ௦ߪ
ଶ ݁݌ݔ ቄ െ

ଵ

ଶ
൫࢞௣ െ ௤൯࢞

்
௣࢞൫܅ െ  ௤൯ ቅ    (8)࢞

where ߪ௦
ଶ denotes the signal variance and W are the widths 

of the Gaussian kernel.   
For a new ࢞∗, the predictive distribution of the 
corresponding outputs is simply obtained by conditioning on 
the training data to obtain ݌ሺ݂ሺ࢞∗ሻ|࢞∗ ,  ሻ. The jointܦ
distribution of the observed target values and predicted 
value for ࢞∗ is given by  
 

  ቂ
࢟

݂ሺ࢞∗ሻ
ቃ ~ ܰ ൬0 , ൤

۹ሺ܆, ሻ܆ ൅ ௡ߪ
ଶ۷ ,܆ሺܓ ሻ∗࢞

,∗࢞ሺܓ ሻ܆ ݇ሺ࢞∗, ሻ∗࢞
൨൰.     (9) 

 
The conditional distribution is also Gaussian and yields the 
predicted mean value ݂̅ሺ࢞∗ሻ with the variance  ௙ܸሺ࢞∗ሻ, 
 
 ݂̅ሺ࢞∗ሻ ൌ ∗ܓ

்ሺ۹ ൅ ௡ߪ
ଶ۷ሻିଵ࢟ ൌ ∗ܓ

 (10)              ࢻ்
 

௙ܸሺ࢞∗ሻ ൌ ݇ሺ࢞∗, ሻ∗࢞ െ ∗ܓ
்ሺ۹ ൅ ௡ߪ

ଶ۷ሻିଵ(11)          ∗ܓ 
 
where ),(),,( ** XXKKXkk  x and ࢻ denotes the so-

called prediction vector.  
 

The predicted mean  ݂̅ሺ࢞∗ሻ  is in general used as an 
estimate of the output መ݂ሺ࢞∗ሻ with uncertainty ௙ܸሺ࢞∗ሻ. The 
hyper-parameters of Gaussian processes with their kernel 
and their optimal value for a particular data set can be 
derived by maximizing the log marginal likelihood using 
common optimization procedures such as Quasi-Newton 
methods. 

 
Five different kernels (or covariance functions) used in 

this study includes  
 

- Gaussian radial basis function   
 ݇ሺ࢞, ᇱሻ࢞ ൌ ࢞‖ߪሺെ݌ݔ݁ െ  ᇱ‖ଶሻ            (12)࢞
- Linear kernel which is simplest case:  
 ݇ሺ࢞, ᇱሻ࢞ ൌ , ࢞〉  ᇱ〉                 (13)࢞
- Polynomial kernel:    
 ݇ሺ࢞, ᇱሻ࢞ ൌ ሺscale  ∙ , ࢞〉 〈ᇱ࢞ ൅ offsetሻୢୣ୥୰ୣୣ        (14) 
- Laplace radial basis kernel:     
 ݇ሺ࢞, ᇱሻ࢞ ൌ ࢞‖ߪሺെ݌ݔ݁ െ  ᇱ‖ሻ             (15)࢞
- Bessel function:      

 ݇ሺ࢞, ᇱሻ࢞ ൌ
୆ୣୱୱୣ୪ሺഛశభሻ

೙  ሺఙฮ࢞ି࢞ᇲฮሻ

ሺ‖࢞ି࢞ᇲ‖ሻష೙ሺഛశభሻ
.            (16) 

  

III. EMPIRICAL ANALYSIS 

A. Artificial Simulated Data  

In this section, we investigate the forecasting performance 
of all models using simulated data. We generate 1000 
samples from GARCH(1,1) with coefficients ሺܿ ൌ 0.0001,
߱ ൌ 0.01, ߙ ൌ 0.1, ߚ ൌ 0.8ሻ and EGARCH(1,1) ሺܿ ൌ
0.0001, ߱ ൌ 0.01, ߙ ൌ 0.1, ߚ ൌ 0.8, ߛ ൌ െ0.06ሻ as well 
as GJR(1,1) ሺܿ ൌ 0.0001, ߱ ൌ 0.01, ߙ ൌ 0.1, ߚ ൌ 0.8,
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ߛ ൌ 0.06ሻ with, first, Normal innovation and then the 
Student’s t with 6 degree of freedom. The second innovation 
distribution tries to model the excess of kurtosis that usually 
appears in real financial time series. Six sets of simulated 
data are achieved and then fitted by hybrid models based on 
the GP as in (5), (6), and (7). These simulated data are also 
fitted again, respectively, by six different models of 
GARCH, EGARCH and GJR with Normal and Student’s 
innovations to make comparison with the hybrid 
approaches. 75% of the whole data, 750 observations, are 
used for estimation or training the models; and the 
remaining data, 250 points, are reserved for out of sample 
forecasting. GARCH toolbox in Matlab is used to simulate 
the return series and to fit GARCH, EGARCH and GJR 
models; and Kernlab package in R software by [18] is used 
to fit the volatility models based on the Gaussian processes.  
 

TABLE I 
TRAINING RESULTS BY GAUSSIAN PROCESS WITH FIVE 

DIFFERENT KERNELS (SIMULATED DATA) 
Hybrid models Train. Error CV error Kernel Para. 
GP-GARCH 1 0.25137 0.00340 5.01863 
GP-GARCH 2 0.25866 0.00189  
GP-GARCH 3 0.25473 0.00221 d=3, a=1, b=1 
GP-GARCH 4 0.20130 0.00470 7.40439 
GP-GARCH 5 0.26465 0.00211 n=1,ߴ ൌ ߪ,1 ൌ 1 
GP-EGARCH 1 0.33234 0.22741 0.48660 
GP-EGARCH 2 0.34233 0.21404  
GP-EGARCH 3 0.33538 0.22281 3,1,1 
GP-EGARCH 4 0.25073 0.24047 0.89982 
GP-EGARCH 5 0.35519 0.23249 1,1,1 
GP-GJR 1 0.22908 0.00722 5.38091 
GP-GJR 2 0.24774 0.00352  
GP-GJR 3 0.24222 0.00417 3,1,1 
GP-GJR 4 0.18835 0.00844 5.27188 
GP-GJR 5 0.27141 0.00467 1,1,1 
 
Note:  1.   GP-GARCH 1, 2, 3, 4, 5 denote Gaussian Process based 
on GARCH with Gaussian Kernel, Linear kernel, Polynomial 
kernel, Laplace Kernel, and Bessel kernel respectively.  
 2.   CV error = 10 fold Cross Validation error. 
 3.   a is scale, b is offset and d is degree of the polynomial kernel. 

 
 

TABLE II 
OUT OF SAMPLE FORECASTING PERFORMANCE (SIMULATED DATA) 

Simulated 
GARCH(1,1) 

Normal innovation  Student’s Innovation 
NMSE  ܴଶ NMSE  ܴଶ

GARCH-N,T  0.97330  0.1505 0.97040 0.1499 
GP-GARCH1 0.74431  0.2626 0.98552 0.0260 
GP-GARCH2 0.70946 0.3022 0.69233 0.3341 
GP-GARCH3 0.69732 0.3161 0.70326 0.3216 
GP-GARCH4 0.80456 0.1974 0.99819 0.0188 
GP-GARCH5 0.69627 0.3226 0.80097 0.2038 
Simulated 
EGARC(1,1) 

Normal innovation  Student’s Innovation 
NMSE  ܴଶ NMSE  ܴଶ

EGARC-N,T 0.94444 0.0900 0.92210 0.1093 
GP-EGARC1 0.70897 0.3300 0.87006 0.1618 
GP-EGARC2 0.74054 0.2820 0.79103 0.2599 
GP-EGARC3 0.71590 0.3224 0.54061 0.5315 
GP-EGARC4 0.71949 0.3177 0.87476 0.1534 
GP-EGARC5 0.72364 0.2998 0.85129 0.1936 
Simulated 
GJR(1,1) 

Normal innovation Student’s Innovation 
NMSE  ܴଶ NMSE  ܴଶ

GJR‐N,T 0.89345 0.1068 0.76465 0.1562 
GP-GJR 1 0.83414 0.1630 0.97703 0.0290 
GP-GJR 2 0.64595 0.3738 0.66360 0.3601 
GP-GJR 3 0.63715 0.3833 0.58039 0.4437 
GP-GJR 4 0.87530 0.1280 0.97189 0.0415 
GP-GJR 5 0.67596 0.3332 0.94129 0.0603 

Note:  ܴଶ  is obtained by regression between actual volatilities (square 
returns) and predicted volatilities. NMSE stands for normalized mean 
squared error. 

 
In this experiment, 70% of the training data is used for 

training the GP model to get the optimal hyper-parameter of 
Kernel (or correlation) function and the remaining data, 
30%, is reserved for validation of the model. The optimal 
results of the training, including the training error, 10 fold 
cross-validation error and Kernel parameter, are displayed in 
Table I. The training results of GP from simulated data for 
GARCH, EGARCH and GJR based returns with Student’s t 
innovation are not shown here to reduce the space. The 
forecasting performance from each model for out-of-sample 
data, measured by NMSE and ܴଶ, are shown in Table II. 
Basically, the larger ܴଶvalue, the better the model predicts 
the actual values. The smaller value of NMSE, the more 
preferred the model. From the Table II, it is seen that most 
of the hybrid models yield more accuracy than the 
parametric models.  

B. Real data of NASDAQ index 

Now we analyze NASDAQ index, ௧ܲ, which is first 
downloaded from the Yahoo finance and then transformed 
into log return as in (1). The whole sample consists of 3274 
daily data spanning from 02 Jan. 1996 to 31 Dec. 2008 
which covers the financial crisis period. We select 
subsample of size 3023, dated from 02 Jan. 1996 to 31 Dec. 
2007, as the training set for the Gaussian Processes or 
parameter estimation for classic models. The remaining 
sample of size 251 daily data, Jan-Dec 2008, is used as the 
test set or for out-of-sample forecasting. Table III 
summarizes the descriptive statistics of the index return 
series along the whole period.  

 
TABLE III 

SUMMARY STATISTIC (NASDAQ) 
Sample 3274 Excess Kurtosis 4.57513
Mean 0.0132 LB.Q2 3057.27
Std.Dev. 1.7998 JB test 2861.30
Skewness -0.01079 ARCH(12) 648.367

 
We remark that these facts suggest a highly competitive 

and volatile market. There are significant price fluctuations 
in the markets as suggested by positive standard deviation. 
The negative skewness indicates that there is a high 
probability of losses in the market. The excess value of 
kurtosis suggests that the market is volatile with high 
probability of extreme events occurrences. Moreover, the 
rejection of Jarque Bera (JB) test of normality shows that 
the returns deviate from normal distribution significantly 
and exhibit leptokurtic. The Ljung Box statistic for squared 
return and Engle ARCH test prove the exhibition of ARCH 
effects in the return series. Therefore, it is appropriate to 
apply GARCH, EGARCH, GJR especially the hybrid 
approach for modeling volatility to this return.  

We, then, apply the return series to (2), (3) and (4) to get 
parameters of GARCH, GJR and EGARCH models with 
normal and student’s t innovations. The estimation results 
and diagnosis are shown in Table IV. Among the parametric 
models, the series best fit to the GJR with student’s t 
innovation, GJR-T, according to highest value of Log 
likelihood (LL) and smallest value of AIC and BIC. The 
conditions of asymmetric effects hold for all models 
according to the significance of leverage effect coefficients 
 s. This implies that the market exhibits two kinds of’ߛ
leverage effects of news impact in volatility.   
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TABLE IV 
ESTIMATION RESULTS BY PARAMETRIC MODELS 

Statistics GARCH-N EGARCH-N GJR-N 
 [0.022]0.045 [0.022]0.037 [0.022]0.080 ߤ
߱ 0.015[0.004] 0.009[0.002] 0.017[0.004] 
 [0.007]0.028 [0.012]0.151 [0.007]0.086 ߙ
 [0.007]0.918 [0.002]0.988 [0.007]0.909 ߚ
 [0.009]0.092 [0.005]0.064-  ߛ
LL -4910 -4884 -4885 
AIC 9828 9778 9780 
BIC 9852 9808 9810 

Note: [ ] indicates standard error of estimation. 

 
Statistics GARCH-T EGARCH-T GJR-T 
 [0.022]0.059 [0.019]0.101 [0.022]0.084 ߤ
߱ 0.011[0.004] 0.001[0.005] 0.013[0.004] 
 [0.009]0.021 [0.031]0.350 [0.009]0.074 ߙ
 [0.009]0.926 [0.006]0.962 [0.009]0.922 ߚ
 [0.013]0.091 [0.014]0.08- -- ߛ
 [3.497]16.97 [2.146]11.91 [2.847]15.21 ߴ
LL -4895 -4923 -4874 
AIC 9801 9859 9760 
BIC 9831 9895 9795 

Note: [ ] indicates standard error of estimation. 
 
 

TABLE V 
TRAINING RESULTS BY GAUSSIAN PROCESSES 

Hybrid models Train. Error CV error Kernel Para. 
GP-GARCH 1 0.20629 16.1661 42.56467 
GP-GARCH 2 0.15063 4.00422  
GP-GARCH 3 0.14506 3.71741 3, 1, 1 
GP-GARCH 4 0.21857 19.8882 49.10658 
GP-GARCH 5 0.18365 6.81695 1, 1, 1 
GP-EGARCH 1 0.13332 0.19156 0.64779 
GP-EGARCH 2 0.13863 0.18574  
GP-EGARCH 3 0.13386 0.18165 3, 1, 1 
GP-EGARCH 4 0.11323 0.18973 0.59678 
GP-EGARCH 5 0.13836 0.18820 1, 1, 1 
GP-GJR 1 0.21351 17.3607 33.09276 
GP-GJR 2 0.14812 3.53482  
GP-GJR 3 0.13935 16.4461 3, 1, 1 
GP-GJR 4 0.21810 19.8230 30.89865 
GP-GJR 5 0.18494 7.74181 1, 1, 1 
 
Note:  1.   GP-GARCH 1, 2, 3, 4, 5 denote Gaussian Process based on 
GARCH with Gaussian Kernel, Linear kernel, Polynomial kernel, 
Laplace Kernel, and Bessel kernel respectively.  
           2.   CV error = 10 fold Cross Validation error. 

 
Now we train Gaussian processes to the return series by (5) 
for GARCH, (6) GJR and (7) for EGARCH. The optimal 
results of the training, including the training error, 10 fold 
cross-validation error and Kernel parameter, are displayed in 
Table V. These volatility models are used to forecast future 
volatilities in the test set for comparison with the classic 
models. Table VI report the values of NMSE and  ܴଶ 
obtained from different models. The Gaussian processes 
achieve smallest value of NMSE and highest value of  ܴଶ. 
This implies that the Gaussian Processes method can capture 
well both symmetric and asymmetric volatilities and also 
produce improved forecasting performance than the 
parametric models. Fig. 1,2,3 also plot the superior 
performance of the Gaussian Processes in modeling and 
forecasting volatilities based on GARCH (Fig.1) and 
EGARCH forms (Fig.2) as well as GJR types (Fig.3). It is 
seen that the forecasting lines by the hybrid models, GP-
GARCH, GP-EGARCH and GP-GJR, are more flexible and 
can capture more extreme points than the corresponding 
classic models. 
 
 

TABLE VI 
OUT OF SAMPLE FORECASTING PERFORMANCE (NASDAQ) 

NMSE  ܴଶ

GARCH-N 0.7925  0.2163
GARCH-T 0.8105 0.1949 
GP-GARCH1 0.6995  0.3353 
GP-GARCH2 0.5576 0.4513
GP-GARCH3 0.5599 0.4483
GP-GARCH4 0.6965 0.3719 
GP-GARCH5 0.6277 0.3847 
   
EGARCH-N 0.8013 0.1961
EGARCH-T 0.6233 0.3934 
GP-EGARCH1 0.6741 0.3387 
GP-EGARCH2 0.5958 0.4259 
GP-EGARCH3 0.5769 0.4392
GP-EGARCH4 0.6521 0.3626 
GP-EGARCH5 0.6904 0.3442 
   
GJR-N 0.7782 0.2317 
GJR-T 0.7886 0.2188 
GP-GJR1 0.7081 0.2899 
GP-GJR2 0.5586 0.4500
GP-GJR3 0.5621 0.2965 
GP-GJR4 0.6971 0.3701 
GP-GJR5 0.6471 0.3693 
   

Note:  ܴଶ is obtained by regression between actual volatilities  
(square returns) and predicted volatilities. NMSE stands for  
normalized mean squared error. 

 

IV. CONCLUSION 

In this paper, we proposed nonlinear volatility models 
based on Gaussian processes combined with GARCH, 
EGARCH and GJR models. The empirical analysis of 
simulated and real data, NASDAQ index, show that these 
hybrid models can capture well the symmetric and 
asymmetric effects of news in volatility and generate 
superior performance of volatility prediction than the 
corresponding classic models of GARCH, EGARCH and 
GJR with both Normal and Student’s t innovations. Among 
the five kernels, Linear and Polynomial kernels are most 
suited for the hybrid Gaussian processes in this study. In 
addition, the Gaussian process models are simple, practical 
and powerful Bayesian tools for data analysis. 
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APPENDIX  

The NMSE is defined as NMSEൌ
ଵ

௡௦మ
∑ ሺܽ௧ െ ௧ሻ݌

ଶ௡
௧ୀଵ  where 

ଶݏ ൌ
ଵ

௡ିଵ
∑ ሺܽ௧ െ ܽ௧ഥ ሻ

ଶ௡
௧ୀଵ . Here we take ܽ௧ ൌ ௧ݕ

ଶ as actual 

values, and ݌௧ ൌ ௧ߪ
ଶ෢ is treated as the forecasted volatility 

obtained by each of the competing models. ݊ is sample size 
corresponding to each time of forecasting. The square 
correlation ܴଶ is a measure of forecasting performance is 
obtained by regressing squared return on a constant and the 
forecasted volatility for out-of-sample time point, ݐ ൌ
1,2, … , ௧ݕ ,݊

ଶ ൌ ଴ܥ ൅ ௧ߪଵܥ
ଶ෢ ൅ ݁௧. In this regression, the 

constant term ܥ଴  should be close to zero and the slope ܥଵ  
should close to 1. The higher value of ܴଶ, the better the 
forecasting model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 1. . PLOT OF VOLATILITY BASED GARCH VERSUS GP-GARCH 

 
 
 

 
FIGURE 2. . PLOT OF VOLATILITY BASED EGARCH VERSUS GP-EGARCH 

 
 
 
 

 
FIGURE 3. PLOT OF VOLATILITY BASED GJR VERSUS GP-GJR 
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