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Abstract—In this paper, we focus on introduc-
ing the Variance Swap and estimating the portfo-
lios. The portfolios of the Variance Swap are opti-
mized based on maximizing the distorted expecta-
tion given the index of acceptability. The variance
strike is calculated from the option surface calibra-
tion. The realized variance is constructed through
Hardy-Littlewood transform considering the highly
correlated autocorrelation and dependencies of cross
assets. A non-Gaussian model: Varanance Gamma
Correlated (VGC) is also applied to the residual data
of the regression model.
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1 Introduction

This paper focuses on constructing an optimal portfolio
of trading the Variance Swaps. Our approach is broadly
similar to the classical portfolio theory for stock invest-
ment first proposed by Markowitz (1952). Madan (2010)
first introduces the portfolio theory of Variance Swap,
however, his method to deal with the realized variance
is based on the Fully Gaussian Copula (FGC), proposed
by Malevergne and Sornette (2003); while we apply an-
other non-Gaussian model: Variance Gamma Correlated
(VGC) model developed in Madan and Ajay (2009) and
Eberlein and Madan (2009-2). Cherny and Madan (2009)
introduce the optimization theory of performance evalu-
ation, as well as distortion functions. Several ways of
optimization are applied in Eberlein and Madan (2009-1)
and Madan (2009), such as maximizing the index of ac-
ceptability, and maximizing the expected distortion given
fixed acceptable index. In our paper, we make the index
fixed and seek a portfolio that maximizes the expected
distortion.
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Section 2 describes the definition of Variance Swap and
gives a brief introduction on how to calculate the cash
flow of the swap. Section 3 describes and derives the
variance strike. Section 4 describes and derives the real-
ized variance. Section 5 explains the distortion function
and index of acceptability, and shows which methodol-
ogy we will choose to run the optimization and get the
optimal portfolio. Section 6 shows the numerical results
in the process and the optimal portfolio given the index
of acceptability.

2 Definition of Variance Swap

Variance Swap is an over-the-counter financial derivative
that allows one to speculate on or hedge risks associated
with the magnitude of movement, i.e. volatility, of some
underlying product, like an exchange rate, interest rate.
Through variance swap, investors could achieve long or
short exposure to market volatility. In some sense, it
could be considered as a kind of ’option’, which is a con-
tract signed by two parties that agree to exchange cash
flows based on the measured variance of a specified under-
lying asset during a certain time period. On the trading
day mentioned by the contract, the two parties will trade
the variance swap according to the variance strike, the
realized variance and the notional amount.

The features of a variance swap include the variance
strike, which is also called fixed leg, the realized vari-
ance, i.e., the floating leg and the notional amount. The
floating leg of the swap will pay an amount based on
the realized variance of the price changes of the underly-
ing product. The fixed leg of the swap will pay a fixed
amount which is the strike quoted at the deal’s inception.
In general, the payoff of a variance swap would be:

P × (σ2
r − σ2

k),

where P is the notional pricipal, σ2
r is the annualized real-

ized variance, and σ2
k is the variance strike. Madan(2007)

shows that σ2
r = 252

T

T
∑

t=1
x2
t , and σ2

k = k2, where xt =

log( St

St−1
), St is the stock price of the underlying asset at

the end of day t, and k is the annualized volatility quo-
tation. Thus, the variance swap pays at the end of day
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T is:

P × (

T
∑

t=1

x2
t

T
252− k2). (1)

Moreover, r is the constant continuously compounded in-
terest rate.

3 Variance Strike

Before we go to calculate the variance strike, let us in-
troduce the Variance Gamma Specific Self-Decomposable
Model (VGSSD), which is often used to calibrate the op-
tion surface. Thus, we calibrate this model to estimate
the price of variance strike.

3.1 Variance Gamma Specific Self-
Decomposable Model

If Y (t) follows VGSSD model, Carr, Geman, Madan and
Yor (2007) show that the law of Y (t) is equivalent to
the law of tγX(1) by the scaling property, where X(t)
follows the VG process and X(1) = X(t)

∣

∣

t=1
. Therefore,

the characteristic function of Y (t) is:

φY (t)(u) = E[eiuY (t)]

= E[eiut
γX(1)]

= (
1

1− iuθνtγ + 0.5× σ2νu2t2γ
)−

1
γ .

Then the risk-neutral stock price S(t) could be defined
by:

S(t) = S(0)e(rt)
eY (t)

E[eY (t)]
. (2)

3.2 Calculation of Variance Strike

The price of a variance swap contract σ2
k = k2 could be

calculated as:

σ2
kt = 2i

∂φM (u, t)

∂u

∣

∣

∣

∣

u=0

, (3)

where φM (u, t) = EQ[exp(iuln(M(t)))]. Denoting r the
risk-free interest rate and q the dividend rate, we could
define the stock price in the risk-neutral measure by
S(t) = S(0)e(r−q)tM(t). Therefore, We could get the
characteristic function of M(t) from the characteristic
function of S(t), which can be calculated from equation
2. We would have

σ2
kt = −2E[lnM]

= −2E[lnSt − lnS0 − (r − q)t]

= −2qt− 2θtγ − 2

ν
ln(1− θνtγ − 1

2
σ2νt2γ),

where r = 0, q = 0 to make Equation (4) equivalent to the
variance strike as proposed in Madan (2007). Therefore,
the variance strike is

σ2
k = (−2θtγ − 2

ν
ln(1− θνtγ − 1

2
σ2νt2γ))t−1.

The calibrated parameters are in table (1), the calibrated
option surfaces are in figure (1) and the prices of the
variance strike are in table (2).

4 Realized Variance

We download the data from the Wharton Research Data
Services (WRDS) of the ten stock prices whose ticker are:
xom, aapl, mmm, c, adbe, amzn, gs, coh, goog, bac on
the S&P500 index as on November 18, 2007. Let Si,t

denote the price of asset i at market close on day t for
i = 1, ..., 10. As defined above, the daily realized variance
for asset i on day t defined as vi,t is:

vi,t = (ln(
Si,t

Si,t−1
))2. (4)

4.1 Transform of log-Return

Recognizing the squared log returns are highly autocor-
related and will subject to some levels of clustering, we
follow Madan (2010) and apply the ’similar to linear’
transform: Hardy-Littlewood transform to the squared
daily log returns. This transform can deal with the highly
correlated autocorrelation, as well as map the vi,t from
positive values to all real values, which is required by the
linear regression model, since it is rather difficult to keep
the linear regression model positive in the future simula-
tion. We thought of the transform of taking the log of
the vi,t, however this would make a double exponent and
result in pretty bad data for the linear regression.

Let f(x) be any symmetric density on the real line hav-
ing finite expectation of absolute value of x. The Hardy-
Littlewood transform is defined as:

g(x) =

∫∞

x
uf(u)du

∫∞

x
f(u)du

. (5)

As x → −∞, g(x) would be close to 0; while when x is
large enough, g(x) would behave like x, which means this
transformation is close to ’linear’. It is easy to show the
g(x) is always positive, so that the inverse of g(x) could
transform the positive squared log return vi,t to all real
values, which satisfies our requirement. In this paper,
we set the density f(x) be the standard normal density:

f(x) = 1√
2π

e−
x2

2 , then we could get the so-called Hardy-

Littlewood Gauss transform:

g(x) =

∫∞

x
u 1√

2π
e−

u2

2 du
∫∞

x
1√
2π

e−
u2

2 du
=

1√
2π

e−
u2

2

∫∞

x
1√
2π

e−
u2

2 du
(6)

To calculate the realized variance, we suggest the follow-
ing steps.

• Take historical data of stock prices of the 10 assets
from Mar.18, 2007 to Nov.18, 2007 to calculate the
series of real data of squared log-return vi,t.
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• Take the Inverse Hardy-Littlewood Gauss transform
to the historical data of vi,t

xi,t = g−1(vi,t)

to get the series of newly generated data xi,t.

• Considering the highly correlated autocorrelation of
the series of data xi,t, we take the linear regression
to the newly generated time series data xi,t :

xi,t = ai +
5

∑

j=1

bi,jxi,t−j + ui,t. (7)

The results of the lags of the linear regression model are
in table (3).

4.2 Variance Gamma Correlated Model

Recognizing that the time series of ui,t, i = 1, ...,M
have excess kurtosis and possible skewness, we con-
sider the newly generated data ui,t as correlated multi-
dimensional variance gamma process. We apply Vari-
ance Gamma Correlated(VGC) proposed in Eberlein and
Madan (2009-2) to deal with the residual data ui,t, which
can also be written as multi-dimensional correlated non-
Gaussian process Ui(t), i = 1, ..., N. With the given series
of data ui,t,, we demean the original data first. Like the
variance gamma process, ui(t) could be expressed as a
gamma time changed Brownian motion which is subor-
dinated by the gamma process Gi(t). Note that Gi(t) is
a subordinating process which is a positive independent
identical increasing process with unit expectation at a
unit time. Therefore,

Ui(t) = θi(Gi(t)− t) + σiWi(Gi(t)), (8)

where θi, σi > 0. As Ui(t) is correlated non-Gaussian pro-
cess, we have to also put the correlation into the expres-
sion above. Eberlein and Madan(2009-2) showed that
we can put the correlation in the time-changed Brownian
motion. We can write the process at the unit time that
Ui = Ui(1) and:

Ui =
(d) θi(gi − 1) + σi

√
giZi,

where gi = Gi(1) and Zi are standard normal variates
with correlation ρij between Zi and Zj for i 6= j, and
gi are independent gamma variates with unit mean and
variance νi. We will have E(Zi) = 0 and Var(Zi) = 1.
Hence,

Cov(Zi, Zj) = Corr(Zi, Zj) = ρij ,

and
Cov(Ui, Uj) = σiσjE(

√
gi)E(

√
gj)ρij . (9)

We could use the series of ui(t) derived from the historical
data and estimate the parameters σi, νi, θi and calculate
the covariance from Equation (9). Then we could sim-
ulate the multi-dimensional non-Gaussian process Ui(t)

which are correlated with each other. The estimating
procedure for applying the VGC model to the residual
variates is summarized as following:

• Apply MLE to the time series data U =
ui,t, i = 1, ..., N, in each dimension separately; each
would follow variance gamma distribution with the
corresponding parameters σi, νi, θi.

• Apply the calculated covariance of ui,t to the Equa-
tion (9) to get the correlation ρi,j of the standard
normal variable Zi.

• Simulate the N-dimensional correlated standard nor-
mal variable Ẑ with the correlation ρi,j between dif-
ferent assets.

• Use the parameters we estimated and the newly sim-
ulated Zi, and plug back into the equation 8, we will
get the newly simulated series data Û .

The estimated parameters of the independent VG vari-
ates Y are in table (4), and the covariance matrix of the
standard normal variable Z are in table (5).

Therefore, we will simulate 10000 times, and the annu-
alized unit realized variance of the asset i on day t on
sample path s is

σ2
i,t,s =

252

21

t+21
∑

j=t+1

vi,j,s, (10)

and T = 21 in this paper. Note that we are using trading
day, which means that each year has 252 days and each
month has 21 days.

The simulated cash flow to asset i on the variance swap
on path s is then obtained as

ci,s = σ2
i,t,s − k2i,t,s. (11)

5 Optimization

Eberlein and Madan (2009-1) show that concave distor-
tion function φγ(y) is defined on the unit interval with
values in the unit interval that is point wise increasing in
the level of the distortion γ. A random variable X with
distribution function F (x) is accepted at level γ if

∫ ∞

−∞

xdφγ(F (x)) ≥ 0, (12)

which means that the expected value of the cash flow un-
der the distortion Φγ is nonnegative. Cherny and Madan
(2009) propose the MINMAXVAR distortion function φγ

at level γ as:

φγ(u) = 1− (1− u
1

1+γ )1+γ , 0 ≤ u ≤ 1.
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We optimize the portfolios to maximize the distorted ex-
pectation in Equation (12), given some acceptability in-
dex γ. The distorted expectation would be

∫ ∞

∞

cdφγ(F (c)), (13)

where F is the cumulative distribution function of the
portfolio cash flow c. The computation of distorted ex-
pectation is facilitated in terms of an ordered sample from
the relevant distribution with c(1) < c(2) < ... < c(N) as:

N
∑

i=1

c(i)(φ(
i

N
)− φ(

i− 1

N
)).

When we do the optimization, we restrict the portfolios
on the unit sphere by the condition that:

51
∑

i=1

a2i = 1.

Moreover, the aggregated portfolio is zero dollar:

51
∑

i=1

k2i,tai = 0.

In addition, we have to have a zero Vega constraint as:

51
∑

i=1

ki,tai = 0.

Therefore, we can apply the restrictions above to do the
optimization showed above. We set the acceptable in-
dex to be some constant, i,e, γ = 0.6 and maximize the
expected distortion value.

6 Numerical Results

Setting index of acceptability γ = 0.6, and maximizing
the expected distortion, we will get the maximized ex-
pected distortion 0.2136 and the optimal portfolio results
are in table (6). All the tables of results are on the last
pages.
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[1] Carr, Peter, Hélyette Geman, Madan, Dilip B. and
Marc Yor (2007), Self-Decomposability and Option

Pricing, Mathematical Finance, vol.17, No.1, 31-57.

[2] Cherny, A., Madan, Dilip B. (2009), New Measures

for Performance Evaluation, Review of Financial
Studies, 22, 2571-2606.

[3] Eberlein Ernst, Madan, Dilip B. (2009-1), Maxi-

mally Acceptable Portfolios

[4] Eberlein Ernst, Madan, Dilip B. (2009-2), On Cor-
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Table 1: VGSSD Parameters on 20071019
ticker σ ν θ γ RMSE APE
xom 0.2511 0.3708 -0.2480 0.4961 0.0511 0.0320
aapl 0.4207 0.0648 -0.3021 0.3912 0.2460 0.0413
mmm 0.2013 0.1177 -0.4167 0.4685 0.0518 0.0395
c 0.2978 0.3147 -0.3405 0.4427 0.0348 0.0432
adbe 0.3182 0.2501 -0.2370 0.5628 0.0277 0.0289
amzn 0.4711 0.1265 -0.6917 0.4135 0.1993 0.0492
gs 0.3236 0.4495 -0.3659 0.4406 0.1526 0.0241
coh 0.3566 0.1027 -0.7032 0.4132 0.0658 0.0372
goog 0.3006 0.3513 -0.1737 0.4954 0.3885 0.0341
bac 0.2540 0.5081 -0.2585 0.5405 0.0425 0.0419

Table 2: One Month Variance Strike on 20071019
xom aapl mmm c adbe amzn gs coh goog bac
0.06919 0.28499 0.05088 0.13431 0.07342 0.35493 0.13865 0.23385 0.11399 0.05944

Table 3: Robust Regression Results
ticker Constant Lag1 Lag2 Lag3 lag4 Lag5
xom -3.044282304 0.122916681 -0.022811004 0.133290834 0.034290086 0.012055923
aapl -2.722644539 0.078059138 -0.022363233 0.090387532 0.160207687 0.015064441
mmm -4.624608398 -0.061968352 0.105659475 -0.001571275 -0.056962574 -0.032638583
c -2.277948738 -0.068889361 0.050149556 0.140823951 0.189014766 0.144177176
adbe -4.48662104 -0.123990041 -0.019817241 0.048802074 0.028637862 -0.001471024
amzn -2.979800894 0.135376415 -0.040781192 0.101940809 0.112595202 -0.051193212
gs -2.613411184 -0.01689588 0.06347052 0.238165455 0.159326734 -0.088686314
coh -2.839041356 0.043968516 0.09038196 0.003050781 0.207789308 -0.061070552
goog -3.748142097 0.025429933 -0.026313457 0.081221404 -0.098445657 0.139077882
bac -2.808136424 0.11446335 0.160697946 0.032296285 0.00548911 0.040231169

Table 4: VG estimates for variates Y for VGC
ticker σ ν θ

xom 0.346247456 0.118161236 -1.066018343
aapl 0.402793432 0.276506222 -0.830714211
mmm 0.399104493 0.117985537 -0.636605618
c 0.507005417 0.337929748 -0.182348617
adbe 0.181295155 0.157614674 -1.097035718
amzn 0.584271328 0.424370606 -0.155372743
gs 0.286851575 0.10806575 -1.308065579
coh 0.393375704 0.417369534 -0.576416845
goog 0.496208941 0.054063569 -0.422749397
bac 0.211200295 0.088339226 -1.484604124

Table 5: The Covariance Matrix for Standard Normal Variates Z
2.3313 0.1848 0.2617 0.2570 0.5993 0.2871 0.6386 0.1729 0.1490 0.9059
0.1848 2.2776 0.2799 0.1420 0.5811 0.5530 0.2907 0.0289 0.1640 0.4178
0.2617 0.2799 1.3459 0.1469 0.4177 0.1317 0.2606 0.1992 0.1948 0.6956
0.2570 0.1420 0.1469 0.8496 0.3184 0.2681 0.6036 0.2162 0.2105 1.0608
0.5993 0.5811 0.4177 0.3184 6.9588 0.0314 0.3632 0.2397 0.4339 1.3021
0.2871 0.5530 0.1317 0.2681 0.0314 1.1467 0.2536 0.1850 0.1943 0.4705
0.6386 0.2907 0.2606 0.6036 0.3632 0.2536 3.3790 0.3895 0.3428 1.3985
0.1729 0.0289 0.1992 0.2162 0.2397 0.1850 0.3895 1.9780 0.2554 0.3340
0.1490 0.1640 0.1948 0.2105 0.4339 0.1943 0.3428 0.2554 0.9470 0.5116
0.9059 0.4178 0.6956 1.0608 1.3021 0.4705 1.3985 0.3340 0.5116 5.3622
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Figure 1: Graph of Fitted Option Surface on 20071019
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Table 6: Portfolio to Maximize the Expected Distortion
xom aapl mmm c adbe amzn gs coh goog bac
-0.1584 -0.1187 -0.2532 0.2937 0.0700 0.0024 0.7776 -0.1848 -0.3749 -0.1618

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011




