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Abstract—The computation of the price sensitivities is of
paramount importance in financial risk management. Several
new approaches have been recently suggested in the literature
for this purpose. However, there is lack of studies that investi-
gate this issue during financial crises. During crises volatility is
naturally higher than normal situations. This is going to affect
the underlying option pricing. It is especially during the crisis
that the investors require to have access to precise calculations
in order to deal with the increased level of risk. This issue is
especially relevant due to the globalization. Thus, to compute
the price sensitivities in such a scenario is crucial. The issue that
this paper addresses is the computation of sensitivities during
the crisis period based on the Malliavin calculus.

Index Terms—Malliavin Calculus, Crisis; Price Sensitivities,
Options
JEL Classifications: F36, G15.

I. INTRODUCTION

AFinancial derivative trader that sells an option to an in-
vestor in the over-the-counter encounters certain prob-

lems to manage its risk. This is due to the fact that in such
cases the options are usually tailored to the needs of the
investor and not the standardized ones that can easily be
hedged by buying an option with the same properties that
is sold. In such a customer tailored scenario, hedging the
exposure is rather cumbersome. This problem can be dealt
with by using the price sensitivities that are usually called
”Greeks” in the financial literature. The price sensitivities
can play a crucial role in financial risk management. The
first price sensitivity is denoted by delta and it represents
the rate of the value of the underlying derivative (in this
case the price of the option) with regard to the price of the
original asset, assuming the ceteris paribus condition. Delta
is closely related to the Black and Scholes ([1])formula for
option pricing. In order to hedge against this price risk it is
desirable to create a delta-neutral or delta hedging position,
which is a position with zero delta. This can be achieved
by taking a position of minus delta in the original asset for
each long option because the delta for the original asset is
equal to one1. Therefore, calculating a correct value of the
delta is of vital importance in terms of successful hedging.
It should be mentioned that the delta of an option changes
across time and for this reason the position in the original
asset needs to be adjusted regularly. Theta represents the
rate of the price of the option with respect to time. Gamma
signifies the rate of change in delta with regard to the price
of the original asset. Thus, if gamma is large in absolute
terms then by consequence the delta is very sensitive to
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1That is, buy −∆ of the original asset for each long position of the
option.

the price change of the asset, which implies that leaving a
delta-neutral position unchanged during time is very risky.
By implication, it means that there is need for creating a
gamma-neutral position in such a situation. The sensitivity
of the price of the option with respect to the volatility of the
original asset is called vega. If the value of vega is high in
absolute terms it means that the option price is easily affected
by even a small change in the volatility. Hence, it is important
to create a vega neutral position in this case. Finally, the
sensitivity of the option value with regard to the interest
rate as a measure of risk free return is denoted by rho. To
neutralize these price sensitivities is the ultimate goal of any
optimal hedging strategy. For these reason the computation of
these price sensitivities in a precise manner is an integral part
of successful financial risk management in order to monitor
and neutralize risk. The efficient estimation of the price
sensitivities is especially important during the periods when
the market is under stress like during the recent financial
crisis. Economic agents, including investors and policymak-
ers, are interested in finding out whether there are spill-over
effects from one market to another during such a period (see
[2]). Because of globalization, with the consequent rise in
integration between financial markets worldwide, this issue
is becoming increasingly the focus of attention. It is during
the crisis that the investors require to have access to precise
calculations in order to deal with the increased level of risk.
Thus, to compute the price sensitivities correctly in such a
scenario is crucial. The issue that this paper addresses is to
suggest an approach to compute sensitivities during the crisis
period based on the Malliavin calculus.
Options pricing models coming from empirical studies on
the dynamics of financial markets after the occurrence of a
financial crash do not match with the stochastic models used
in the literature. For instance, while the Black-Scholes model
[1] assume that the underlying asset price follows a geometric
Brownian motion, the work of [3] shows empirically that the
post-crash dynamics follow a converging oscillatory motion.
On the other hand, the paper of [4] shows that the financial
markets follow power-law relaxation decay. Several ideas
have been suggested to overcome this shortcoming of the
Black-Scholes model. In fact, new option pricing models
were suggested from empirical observations (see for instance
[5], [6], [7], [8] and [9]). Recently, in [10], the authors sug-
gest a new model which extends the Black-Scholes model.
The extension takes into accounts the post-crash dynamics
proposed by [3]. The authors derive the following stochastic
differential equation that couples the post-crash market index
to individual stock prices

dSt
St

=

(
a+

bg(t)

St

)
dt+

(
σ +

γg(t)

St

)
dWt,

where t ∈ [0, T ], S0 = x > 0 and g(t) = A +
Beαtsin(ωt). They obtain the following partial differential
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equation (P.D.E.) for the option price

∂C

∂t
+ rS

∂C

∂S
− rC +

1

2
(σS + γg(t))

2 ∂
2C

∂S2
= 0,

with the terminal condition C(S, T ) = (S −K)+.
In this paper, we compute the prices sensitivities for options
where the dynamic of the underlying asset price is driven by
the model suggested in [10].
The rest of the paper is organized as follows. In section 2
we provide the computations of the Greeks using Malliavin
calculus. The last section concludes the paper.

II. COMPUTATIONS OF GREEKS

THe first part of this section gives an overview of the
Malliavin derivative in Wiener space and of its adjoint:

the Skorohod integral. We refer the reader to [11] and [12]
for more details about the Malliavin calculus. The second
Part of the section is dedicated to the computation of the
price sensitivities.

We consider a market with two assets: the risky asset
S to which is related a European call option and a riskless
one given by

dAt = rAtdt, t ∈ [0, T ], A0 = 1.

We work on a probability space (Ω,F , P ), (Wt)t∈[0,T ]

denotes a Brownian motion and (Ft)t∈[0,T ] is the natural
filtration generated by (Wt)t∈[0,T ]. Recall that a stochastic
process is a function of two variables i.e time t ∈ [0, T ] and
the event ω ∈ Ω. However in the literature it is common to
write St instead of St(ω). The same is true for Wt or any
other stochastic process in this paper. We assume that the
probability P is the risk-neutral probability and the stochastic
differential equation for the underlying asset price under the
risk-neutral probability P is given as in [6] by

dSt
St

= rdt+

(
σ +

γg(t)

St

)
dWt, (1)

where t ∈ [0, T ], and S0 = x. Let (Dt)t∈[0,T ] be the
Malliavin derivative on the direction of W . We denote by
V the set of random variables F : Ω → R, such that F has
the representation

F (ω) = f

(∫ T

0

f1(t)dWt, . . . ,

∫ T

0

fn(t)dWt

)
,

where f(x1, . . . , xn) =
∑
α aαx

α is a polynomial in n vari-
ables x1, . . . , xn and deterministic functions fi ∈ L2([0, T ])
. Let ‖.‖1,2 be the norm

‖F‖1,2 := ‖F‖L2(Ω) + ‖D·F‖L2([0,T ]×Ω), F ∈ L2(Ω).

Thus the domain of the operator D, Dom(D), coincide with
V w.r.t the norm ‖.‖1,2. The next proposition will be useful.

Proposition 1: Given F =

f
(∫ T

0
f1(t)dWt, . . . ,

∫ T
0
fn(t)dWt

)
∈ V. We have

DtF =

k=n∑
k=0

∂f

∂xk

(∫ T

0

f1(t)dWt, . . . ,

∫ T

0

fn(t)dWt

)
fk(t).

To calculate the Mallaivin derivative for integrals, we
will use the following propositions

Proposition 2: Let (ut)t∈[0,T ] be a Ft−adapted process,
such that ut ∈ Dom(D), we have then

Ds

∫ T

0

utdt =

∫ T

s

(Dsut)dt, s < T.

and
Proposition 3: Let (ut)t∈[0,T ] be a Ft−adapted process,

such that ut ∈ Dom(D), we have

Ds

∫ T

0

utdWt =

∫ T

s

(Dsut)dWt + us, s < T.

From now on, for any stochastic process u and for F ∈
Dom(D) such that u.D.F ∈ L2([0, T ]) we let

DuF := 〈DF, u〉L2([0,T ]) :=

∫ T

0

utDtFdt.

Let δ be the Skorohod integral in Wiener space. We have
δ is the adjoint of D as showing in the next proposition,
moreover it is an extension of the Itô integral

Proposition 4: a) Let u ∈ Dom(δ) and F ∈ Dom(D), we
have E[DuF ] ≤ C(u)‖F‖1,2, and E[Fδ(u)] = E[DuF ].
b) Consider a L2(Ω× [0, T ])-adapted stochastic process u =

(ut)t∈[0,T ]. We have δ(u) =
∫ T

0
utdWt.

c) Let F ∈ Dom(D) and u ∈ Dom(δ) such that uF ∈
Dom(δ) thus δ(uF ) = Fδ(u)−DuF.

The computations of Greeks by Malliavin approach rest
on a known integration by parts formula -cf. [13]- given

in the following proposition.
Proposition 5: Let I be an open interval of R. Let

(F ζ)ζ∈I and (Hζ)ζ∈I , be two families of random function-
als, continuously differentiable in Dom(D) in the parameter
ζ ∈ I . Let (ut)t∈[0,T ] be a process satisfying

DuF
ξ 6= 0, a.s. on {∂ζF ζ 6= 0}, ζ ∈ I,

and such that uHζ∂ζF
ζ/DuF

ζ is continuous in ζ in
Dom(δ). We have

∂

∂ζ
E
[
Hζf

(
F ζ
)]

= E

[
f
(
F ζ
)
δ

(
uHζ ∂ζF

ζ

DuF ζ

)]
+E

[
f
(
F ζ
)
∂ζH

ζ
]
.

for any function f such that f
(
F ζ
)
∈ L2(Ω), ζ ∈ I .

Our aim is to compute the Greeks for options with
payoff f(ST ), where (St)t∈[0,T ] denotes the underlying

asset price given by

ST = x+ r

∫ T

0

Ssds+

∫ T

0

(σSs + γg(s)) dWs. (2)

Let ζ be a parameter taking the values: the initial asset price
x = S0, the volatility σ, or the interest rate r. Let C =
e−rTE[f(Sζt )] be the price of the option. We will compute
the following Greeks:

Delta =
∂C

∂x
, Gamma =

∂2C

∂x2
,

Rho =
∂C

∂r
, Vega =

∂C

∂σ
and Theta =

∂C

∂T
.
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Delta, Rho, Vega

We have using Proposition 5 and c) in Proposition 4

∂

∂ζ
E
[
Hζf

(
SζT

)]
= E

[
f(ST )

(
Lζδ(u)−DuL

ζ + ∂ζH
ζ
)]

(3)
where

Lζ :=
Hζ∂ζS

ζ
T

DuS
ζ
T

. (4)

and

DuL
ζ = Du

Hζ∂ζS
ζ
T

DuS
ζ
T

=
Du

(
Hζ∂ζS

ζ
T

)
−DuDuS

ζ
T

(DuS
ζ
T )2

. (5)

The Delta and Vega are the first order derivatives of
E[Hζf(SζT )] with respect to ζ = x and ζ = σ respectively,
with Hζ = e−rT and so ∂ζHζ = 0, we have

∂

∂ζ
E
[
e−rT f(SζT )

]
= E

[
f(SζT )

(
Lζδ(u)−DuL

ζ
)]
, (6)

where Lζ is given by (4). For instance the Delta is computed
by

Delta = e−rTE

[
f(ST )

(
∂xST
DuST

δ(u)−Du

(
∂xST
DuST

))]
.

The Rho and Theta are calculated by using equation (3)
with Hζ = e−rT , then ∂re

−rT = −re−rT and ∂T e
−rT =

−Te−rT . The Rho for example is given by

Rho = e−rTE

[
f(ST )

(
∂rST
DuST

δ(u)−Du

(
∂rST
DuST

)
− r
)]

.

Gamma

The Gamma is the second order derivative of C =
E[e−rT f(ST )] with respect to x and it is obtained by
differentiating Delta with respect to x. Using twice equation
(3)

∂2

∂x2
E[e−rT f(ST )] =

∂

∂x
E [f(SxT ) (Lxδ(u)−DuL

x)]

=
∂

∂x
E [f(ST ) (Gxδ(u)−DuG

x + ∂ζG
x)] , (7)

where

Gx :=
(Lxδ(u)−DuL

x)∂xS
x
T

DuSxT
, (8)

and Lx is given by (4). And

DuG
x =

Du((Lxδ(u)−DuL
x)∂xS

x
T )−DuDuS

x
T

(DuSxT )2
. (9)

From equations (3-9), in order to compute the greeks, we
need to find DuST , DuDuST and DuDuDuST , for this
we use mainly Proposition 2, so for example for DuST ,

DuDuST we have

DuST =

∫ T

0

utDtST dt

DuDuST = Du

(∫ T

0

utDtST dt

)

=

∫ T

0

usDs

(∫ T

0

utDtST dt

)
ds

=

∫ T

0

us

∫ T

s

Ds(utDtST )dtds

=

∫ T

0

us

∫ T

s

(utDsDtST +DtSTDsut)dtds.

The next Proposition gives the first, second and third order
derivatives of ST with respect to D, needed for the compu-
tations of the different Greeks. It gives also the derivative of
ST with respect to S0 = x needed for the computation of
the Delta and Gamma (for the Rho, Vega and Theta, the
first derivatives can be computed by the same way.)

Proposition 6: For 0 ≤ t ≤ T , we let

ξt = exp

[(
r − σ2

2

)
t+ σWt

]
.

We have

∂xST = ξT

DtST = (σSt + γg(t))ξT−t

DsDtST = σ {(σSs + γg(s))ξT−s1s≤t + (σSt

+γg(t))ξT−t1s≤T−t}
DlDsDtST = σ {ξT−s1s≤tσDlSs + (σSs + γg(s))1s≤t

DlξT−s + ξT−t1s≤T−tσDlSt

+(σSt + γg(t))1s≤T−tDlξT−t} .

Proof: By the chain rule of Dt and thanks to Proposi-
tion 2 and Proposition 3 we obtain

∂xSt = 1 + r

∫ t

0

∂xSτdτ + σ

∫ t

0

∂xSτdWτ .

DtST = Dtx+Dt

∫ T

0

(aSs + bg(s)) ds+Dt

∫ T

0

(σSs

+γg(s)) dWs =

∫ T

t

Dt (aSs + bg(s)) ds

+

∫ T

t

Dt (σSs + γg(s)) dWs

= a

∫ T

t

DtSsds+ σ

∫ T

t

DtSsdWs + σSt + γg(t).

Using Itô Lemma, the processes (∂xSt)0≤t≤T and
(DtST )0≤t≤T can be written as ∂xSt = ξt and

DtST = (σSt + γg(t))ξT−t.

For the second Malliavin derivative of ST , we have for 0 ≤
s ≤ T

DsDtST = Ds ((σSt + γg(t))ξT−t)

= ξT−tDsSt + (σSt + γg(t))DsξT−t

= ξT−t(σSs + γg(s))ξt−s1s≤t

+(σSt + γg(t))DsξT−t.
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But

Dsξν = Ds exp

[(
a− σ2

2

)
ν + σWν

]
= exp

[(
a− σ2

2

)
ν + σWν

]
σDs(Wν)

= exp

[(
a− σ2

2

)
ν + σWν

]
σDs(

∫ ν

0

dWv)

= σξν1s≤ν .

thus

DsDtST = Dr ((σSt + γg(t))ξT−t)

= σξT−tDsSt + (σSt + γg(t))DsξT−t

= σξT−t(σSs + γg(s))ξt−s1s≤t

+(σSt + γg(t))σξT−t1s≤T−t

= σ {(σSs + γg(s))ξT−s1s≤t

+(σSt + γg(t))ξT−t1s≤T−t} .

The third Malliavin derivative of ST can be computed as
follows, for 0 ≤ l ≤ T

DlDsDtST = σDl {(σSs + γg(s))ξT−s1s≤t

+(σSt + γg(t))ξT−t1s≤T−t}
= σ {ξT−s1s≤tσDlSs + (σSs + γg(s))

1s≤tDlξT−s + ξT−t1s≤T−tσDlSt

+(σSt + γg(t))1r≤T−tDlξT−t} .

III. CONCLUSION

THe calculation of the price sensitivities of a financial
derivative (like an option or a portfolio of option con-

tracts) is of paramount importance for implementing hedging
strategies that are successful to neutralize the underlying
risk. This is the case especially during a financial crisis
in which the need for dealing with the increased level of
risk is urgent. While different approaches have been utilized
in the literature to calculate the price sensitivities during
normal circumstance, none has focused on this issue during
a financial crisis. This paper is the first attempt, to our best
knowledge, to deal with this issue by suggesting a formula
for computing each of the underlying price sensitivities in a
more precise manner during a financial crisis based on the
Malliavin calculus. Mathematical proof for each proposition
is provided. Thus, the results obtained from this paper are
expected to improve on the success of the hedging strategies
that must be undertaken by the investor during a financial
crisis, a period in which the need for hedging is more
imperative than normal circumstances.
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