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Abstract—We consider the optimal control problem
from view point of parametric aspects. We have ex-
amined the case of the parameterized problem. This
case describes the situation when the objective func-
tional contains time t as a parameter. We also show
how to apply the parametric optimization techniques
for finding a nominal optimal control path.
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1 Introduction

Parametric optimization offers very useful techniques
for solving optimization problems in finite dimensional
spaces whenever the objective function and the constraint
function continuously depends on some unknown param-
eter. These techniques yield as a result a minimizing
(or maximizing) curve that depends continuously on the
original parameter.

On the other hand, traditional techniques for solving op-
timal control problems rely on finding the nominal con-
trol trajectory that minimizes the Hamiltonian at each
instant along the time segment. Such trajectory should
be continuously time-dependent as well. Basing on this
argument, we can establish a bond between these two
types of optimization and will finally show how to apply
the parametric optimization techniques for solving opti-
mal control problems. There are many works devoted to
theory and methods of optimal control (see, e.g., [1, 3]).

The paper is organized as follows: The first section is de-
voted to basic problem of optimal control and traditional
approaches for solving them. Second section examines
application of parametric optimization to optimal con-
trol problems. Two numerical examples are discussed in
the last section.

2 Basic optimal control problem

The basic problem of optimal control can be formulated
as follows: find a control that minimizes the objective
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functional

minJ (u) = φ(x(tf )) +
∫ tf

t0

f0(x,u, t)dt (1)

subject to

ẋ = f(x,u, t), x(t0) = x0 (2)

u(t) ∈ U, t ∈ T = [t0, tf ] (3)

where T is fixed. System (2) describes the connection
between the state variable x(t) ∈ Rn and the control
variable u(t) ∈ Rr at each t ∈ T and also u ∈ PCr(T ).
Here x0 ∈ Rn is a given vector and U is a set in Rr that
specifies the constraints imposed on all admissible con-
trol functions. The vector function f and scalar function
f0 are continuous together with their partial derivatives
with respect to x for all admissible controls u ∈ U . The
traditional approach for solving the problem (1)-(3) con-
sists in applying the necessary condition of optimality in
the form of Pontryagin’s maximum principle, that is:

If u∗(t) is optimal in the problem (1)-(3), then it must
satisfy the maximum condition

H(ψ∗,x∗,u∗, t) = max
v∈U

H(ψ∗,x∗,v, t) almost for all t ∈ T

(4)
where

H(ψ, x, u, t) = 〈ψ(t), f(x, u, t)〉 − f0(x, u, t)

denotes the Hamiltonian function and ψ(t) is a solution
of the conjugate system:{

ψ̇ = −∂H(ψ,x,u, t)
∂x

ψ(tf ) = φx(x(tf ))
(5)

while x∗ and ψ∗ are the solutions of (2) and (5) for
u = u∗(t), respectively. The maximum principle (4) is
a key feature for many successive approximation algo-
rithms. These algorithms generate a sequence of admis-
sible control {uk} that is relaxational in the sense that

J (uk+1) < J (uk)

and a minimizing one, that is, ‖uk(t)−u∗(t)‖ → 0 when
k → ∞ almost for all t ∈ T .
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The standard technique for construction of uk+1 out of
uk relies on the use of so-called nominal optimal control
defined by

ûk(t) = arg min
v∈U

H(ψk,xk,v, t) for almost all t ∈ T.

(6)
Several methods can now be used iteratively to con-
struct uk+1 by maximizing the Hamiltonian subject to
the boundary value problem. In each iteration step,
the differential equation is numerically integrated forward
in time while the adjoint differential equations are inte-
grated backwards in time.

3 Application of parametric optimization
to optimal control

Consider the optimal control problem

minJ (u) =
∫ tf

t0

f0(x,u, t)dt (7)

ẋi = fi(x,u, t), i = 1, 2, . . . , n x(t0) = x0, t ∈ [t0, tf ]
(8)

u ∈ U = {u(t) ∈ Rr/gi(u) ≤ 0, i = 1, . . . , s} (9)

where t0, tf and x0 are given, the functions fi, i = 0, . . . , n

with partial derivatives ∂fi

∂xk
, k = 1, . . . n are continuous

on Rn × U × R, and gi : Rr → R, i = 1, . . . , s are twice
continuously differentiable convex functions. The Hamil-
tonian for problem (7)-(9) is written as follows:

H(ψ, x, u, t) =
n∑

i=1

ψifi(x, u, t) − f0(x, u, t), t ∈ [t0, tf ]

⎧⎪⎪⎨
⎪⎪⎩

ẋi = ∂H(ψ,x,u, t)
∂ψi

ψ̇i = −∂H(ψ,x,u, t)
∂xi

(10)

and {
x(t0) = x0

ψ(tf ) = φx(tf )
(11)

Furthermore, we assume that

[H1 ] The Hamiltonian is strictly concave with respect
to u;

[H2 ] ũ(t) = arg maxu∈U H(ψ,x,u, t), t ∈ [t0, tf ] is con-
tinuous on [t0, tf ]

[H3 ] u ∈ Cr[t0, tf ]

Note that u(t) is determined in a unique way for each t
since U is convex and H is concave. Now we consider the
problem of maximizing the Hamiltonian with respect to
u:

max
u∈U

H(ψ, x, u, t) for each t ∈ [t0, tf ]

Usually in literature, u is found explicitly as a function
u = u(ψ, x, t) and after substituting it into the system
(10)-(11), the problem reduces to the boundary value
problem.

Theorem 3.1 Assume that the conditions [H1]-[H3]
hold and problem (7)-(9) has an optimal solution (u∗,x∗).
Then for a given ε there exist a finite discretization

t0 = τ0 < τ1 < . . . < τi < . . . < τN = tf

and approximate solution ũ(t), t ∈ [t0, tf ] such that

‖ u∗(ti) − ũ(ti) ‖< ε, i = 1, 2, . . . , N

Proof : Let u∗ be an optimal solution of problem (7)-(9).
Then (u∗,x∗) satisfies the conditions:

ẋ∗
i =

∂H(ψ∗,x∗,u∗, t)
∂ψi

ψ̇i = −∂H(ψ∗,x∗,u∗, t)
∂xi

, i = 1, 2, . . . , n

where

H(ψ, x, u, t) =
n∑

i=1

ψi(t)fi(x, u, t)−f0(x, u, t), t ∈ [t0, tf ]

and (u∗,x∗) satisfies the maximum principle:

H(ψ∗, x∗, u∗, t) = max
u∈U

H(ψ∗, x∗, u, t), t ∈ [t0, tf ] (12)

Now we consider problem (12) as one parametric maxi-
mization problem. Since H(ψ∗, x∗, u, t) is twice differen-
tiable in u and assumptions [H1]-[H3] hold, we can apply
the Theorem 3.4.1 from [4, p.78] to the problem (12).
Then as a result, the method PATH1 [4] generates a dis-
cretization t0 = τ0 < τ1 < . . . < τi < . . . < τN = tf , and
corresponding points ũi = ũ(ti) such that:

‖ u∗(ti) − ũ(ti) ‖< ε, i = 1, 2, . . . , N

which proves the assertion. Parametric optimization also
can be applied in finding nominal optimal control [2]
given in (6). It is easy to see that at each iteration k, the
Hamiltonian function is a scalar function of u ∈ U ⊂ Rr

and t ∈ T = [t0, tf ], that is

Gk(u, t) = −H(ψk(t), xk(t), u, t)

The latter states that ûk(t) must be a minimizer of the
following problem

min
u∈U

Gk(u, t), t ∈ T (13)

which is a problem of parametric optimization as formu-
lated in various papers [4], where the independent vari-
able t is now considered as unknown parameter t ∈ T =
[t0, tf ]. We can also consider a case when the set of ad-
missible control is time-varying, i.e. U = U(t), t ∈ T =
[t0, tf ]. In this case, a general theory of parametric opti-
mization is also applicable for finding the nominal opti-
mal controls.
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Remark 3.2 One can write (13) and add a penalty term
as:

δuj(t) = arg min
δu(t)∈U−u

Gk(u + δu, t) + β‖ δu(t) ‖2

Then uk+1 is constructed using the newton step:

uk+1(t) = uk(t) + δuk

with β = 0 initially, If U is convex function and H is
convex function w.r.t. u then δu is a descent direction
and evaluating the objective for uk(t) + δuk(t) must yield
descent. In general we must still have descent so that
uk(t) + δuk(t) yields a reduction when β is chosen suffi-
cently large. When β = 0 does not work, we set β = 1
and then double it repeatedly until the objective is really
reduced.

Let us go back to the parametric optimization problem
(13)

min
u∈U

G(u, t), t ∈ [t0, tf ], (14)

U = {u ∈ Rr : gi(u) ≤ 0, i ∈ J} , J = {1, 2, . . . , s}.
The KKT conditions for the problem (14) state that

DuG(u, t) +
∑
j∈J

μiDugi(u, t) = 0

gi(u, t) ≤ 0, μi ≥ 0, i ∈ J

μigi(u, t) = 0, i ∈ J, t ∈ [t0, tf ]

where

Duf(u, t) =
(

∂f(u, t)
∂u1

, . . . ,
∂f(u, t)

∂ur

)
.

Consider the auxiliary parametric optimization problem

minG(u, t), t ∈ [t0, tf ] (15)

subject to
gi(u) = 0, i ∈ J̃ ⊂ J. (16)

Let v0 = (u0(t), μ0(t)) satisfy the KKT conditions for
problem (15)-(16) with J̃ = J0. This system can be writ-
ten in the following compact notation

F (u, t) = 0, t ∈ [t0, tf ] (17)

where,v = (u0(t), μ0(t)). In order to apply Newton’s
method to system (17), we have to solve a linear system
with DuF (v(t), t) as matrix.

Algorithm:
Choose intial control trajectory u0, t ∈ [t0, tf ], β0, k = 0.
Do:

Original initialisation xk(0) = x0

Original sweep t : t0 → tf
Integrate forward ẋk = f(xk(t), uk(t), t).

Adjoint initilisation Set λk(tf ) = φ�
x (tf ).

Adjoint sweep t : tf → t0
Integrate backward λ̇� = −∂H

∂x

Final sweep Solve the following parametric optimiza-
tion problem to get δu, t ∈ [t0, tf ]
δuk(t) = arg minδu(t)∈U−u Gk(u+δu, t)+β‖ δu(t) ‖2

uk+1(t) = uk(t) + δuk(t).

k = k + 1

βk+1 = 2βk

while: ‖ δuk(t) ‖≥ Tol and k < MAXITER

Example 1 ([5])

Determine the optimal mixing policy of two catalysts
along the length of a tubular plug flow reactor involving
several reactions. The nonlinear model that describes the
reactions is:

ẋ1(t) = u(t)(10x2(t) − x1(t)) (18)

ẋ2(t) = u(t)(x1(t) − 10x2(t)) − (1 − u(t))x2(t) (19)

Initial conditions for (18,19) are x1(0) = 1 and
x2(0) = 0. The control variable u represents the mixing
ratio of the catalysts and must satisfy the bounds.

0 ≤ u(t) ≤ 1

The problem is to minimize

J = −1 + x1(tf ) + x2(tf ), tf = 1

The adjoint equations are determined from the Hamilto-
nian function,

H(x(t),u(t),ψ(t)) = ψ0(u(t)(10x2(t) − x1(t)) +
ψ1(u(t)(x1(t) − 10x2(t)) − (1 − u(t))x2(t))

as
ψ̇0(t) = ψ0 − ψ1u(t)

ψ̇1(t) = u(t)(−10ψ0 + 9ψ1) + ψ1

With u(0)(t) = 1.0, t ∈ [0, 1], the value of the optimal cost
for is equal J = −0.0482226380432. The control function
is shown in figure (1).
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Figure 1: control function

Example 2 This is a well-known problem which has
been studied by several authors([5]). The dynamic op-
timization problem is to minimize

J = x3(tf )

subject to
ẋ1(t) = (1 − x2

2)x1 − x2 + u (20)

ẋ2(t) = x1 (21)

ẋ3(t) = x2
1 + x2

2 + u2 (22)

The adjoint equations are determined from the Hamilto-
nian function,

H(x(t),u(t),ψ(t)) = ψ0((1 − x2
2)x1 − x2 + u) +

ψ1(x1) + ψ1(x2
1 + x2

2 + u2) as

ψ̇0(t) = −ψ0((1 − x2
2)) − ψ1 − 2x1ψ2

ψ̇1(t) = ψ0(2x1x2 + 1) − 2x2ψ2

ψ̇2(t) = 0

and the algebraic relation that must be satisfied is

∂H

∂u
= ψ0(t) + 2ψ2(t)u = 0.

with −3.0 ≤ u ≤ 1.0 and initial and terminal con-
ditions x(0) = [0 1 0]�, u(0)(t) = −0.01, t ∈ [0, 5],
ψ0(5) = 0, ψ1(5) = 0, ψ2(5) = 1 the value of the opti-
mal cost for is equal J = 2.92015428748. The control
and state functions are shown in figure (2, 3).

4 Conclusions and Future Work

We have examined parametric optimal control problems.
We have shown that the parametric optimization tech-
nique can be applied in maximizing the Hamiltonian un-
der some assumptions. Two numerical examples have
been introduced as well. We aim in the future to use the
second order method as the next step to handle the same
problem.

Figure 2: control function

Figure 3: state function
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