
 

  
Abstract— This paper proposes a novel approach to project 

scheduling in networks with stochastic activity durations. 
Program evaluation and review techniques (PERT) used the 
conception of the random variable with the beta distribution to 
deal with uncertainty in a scheduling environment. The 
assumptions of the beta distribution, large enough number of 
activities and the way of approximating means and variances 
constitutes challenging problems which has received intensive 
attention. The exact calculation is generally intractable in 
PERT, except when the network is a series-parallel one. 
Although the Monte Carlo simulation has been suggested to 
cope with PERT difficulties and various probability 
distributions for activity durations, but it is often too expensive 
and is not able to determine the exact distribution of project 
completion time. To remedy the drawbacks connected with 
PERT and Monte Carlo simulation, an approach which 
determines the exact cumulative distribution functions of 
earliest and latest starting and finishing and floats of activities 
based on confidence interval is proposed. After computing the 
intervals of project quantities at each confidence level, the 
cumulative distribution functions of these quantities are 
reconstructed. The proposed approach was compared for 
accuracy and validation with Monte Carlo simulation. 
 

Index Terms— Project management and scheduling; 
PERT/CPM; Probability 

I. INTRODUCTION 
The critical path method-CPM  [25] which is a network-
based method is useful in practice and control of 
complex projects. The CPM introduced the concept of 

precedence which reflects the partial ordering that exists 
among activities of a project, due to technical or other 
reasons. The critical path analysis is based on the 
computation of latest starting times of activities from the 
knowledge of the earliest ending time of the project. The 
activity durations in the CPM are deterministic and known, 
although precise information about the durations of 
activities is seldom available. To deal quantitatively with 
imprecise durations, the Program Evaluation and Review 
Technique-PERT  [32] based on the probability theory can 
be employed. 
The originators of PERT modeled each activity duration as a 
stochastic variable with an appropriated the beta distribution 
and proposed an approximate method to calculate the 
expectation and the variance of the makespan of the project. 
They proposed to use three estimates for each activity 
duration (the optimistic, the most likely and the pessimistic 
estimate) to approximate the mean and the variance of the 
beta probability density function. The assumption of the 
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beta distribution and the way of approximating the mean 
and the variance constitutes the important and challenging 
problem which has received intensive attention ( [8],  [13], 
 [18],  [21],  [22],  [28],  [31],  [33],  [36],  [3],  [40]). 
Kamburowski  [24] summarized the most of arguments 
about computing the mean and variance of the random 
activity duration. Elmaghraby  [16] recommended the use of 
the uniform probability density function for the activity 
durations. Lootsma  [29] proposed the use of the gamma 
probability density function.  
PERT also assumed that the project has large enough 
number of activities to assume the normal distributions 
which is used to estimate the probability a critical path in 
desired time. Therefore, when the number of activities is not 
large, the analysis may be biased. A significant drawback of 
PERT is the assumption that the backward recursion is 
independent of the forward recursion, so the exact 
calculation of latest starting times and floats of activities is 
generally intractable in PERT, except when the network is a 
series-parallel one. The cumulative distribution function is 
calculated in series-parallel networks by using series-
parallel reductions. Adlakha and Kulkarni  [1] have listed 
researches on exact methods for computing the distribution 
of the project completion time. This is why approximation 
techniques have been proposed, e.g. transforming the 
original graph into a series–parallel one  [12]. Most efforts in 
literature on PERT concentrate on the so-called stochastic 
resource-constrained project scheduling problem (for a 
detailed discussion, see Chapter 9 in  [11]). For example, 
Golenko-Ginzburg and Gonik ( [19],  [20]) consider PERT 
where the activities require a constant amount of renewable 
resources during their execution and the objective is to 
minimize the expected project duration. 
Fuzzy sets is an approach for measuring imprecision or 
vagueness in estimation, and may be preferred to probability 
theory in capturing activity duration uncertainty in situations 
where past data are either unavailable or not relevant, the 
definition of the activity itself is somewhat unclear, or the 
notion of the activity’s completion is vague  [27]. Shipley et 
al.  [39] and Lootsma  [30] have compared the fuzzy 
approach with PERT. (See  [5] &  [23] for surveys on fuzzy 
project scheduling). 
Monte Carlo simulation is often preferred in practice when 
historical data about activity durations are available. 
Simulation involves the generation of artificial events or 
processes for the system and collects the observations to 
draw any inference about the real system. Monte Carlo 
simulation is able to cope with various probability 
distributions for activity durations. In fact in this situation, 
analytic approaches fail and researcher fall back on 
sampling techniques. Cook and Jennings  [9] have provided 
heuristics for determining paths in the network which have 
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little or no chance of becoming critical to reduce simulation 
time. Schonberger  [38] has discussed the advantages of 
Monte Carlo simulation. Anklesaria and Drezner  [2] have 
proposed an approach to estimate the distribution of 
completion times (see for instance  [35] for a survey and 
 [26]). Dawson  [10] proposed a dynamic sampling technique 
for the simulation. 
Despite merit of Monte Carlo simulation, numbers of 
execution affect the quality of results. By increasing the 
numbers of project activities, the number of simulation 
executions must increase and the exact distribution of 
project completion time can not be achieved. The exact 
distribution of project completion time, earliest and latest 
starting times and floats of activities in networks with 
stochastic activity durations are determined by the proposed 
approach. The concept of confidence interval is used to 
obtain networks with imprecise durations, represented by 
intervals. After computing the intervals of project quantities 
at each confidence level, cumulative distribution functions 
of the quantities are reconstructed from their interval. 
Numerical example is used to compare the proposed 
approach with Monte Carlos simulation. 

II. TERMINOLOGY AND REPRESENTATION 
The project scheduling problems to be dealt with throughout 
this paper can be stated as follows. A set V={1,2, …, n} of 
activities has to be executed where the dummy activities 1 
and n represent the beginning and the termination of the 
project, respectively. Dummy activities are only needed to 
satisfy the requirement that the network possesses only one 
initial and one terminal node. Activities can be represented 
by an activity-on-node (AON) network G=<V, E> with 
node set V, arc set E. The arc set E define the zero-lag 
finish-start precedence relations among the activities. 
Assume without loss of generality that the activities 
topologically numbered such that an arc always leads from a 
smaller to a higher node number. 

A. Activity Durations 
In order to cope with uncertainties, the duration of an 
activity i, i∈V, is assumed to be a random variable id . 
Each random variable has its arbitrary probability 
distribution. )(xfi  denotes the probability density function 

(pdf) of id . For discrete distributions, the pdf assigns a 
probability to each outcome, in this context the pdf is often 
called a probability mass function (pmf). For continuous 
distributions, the pdf assigns a probability density to each 
outcome. The probability of any single outcome is zero. The 
pdf must be integrated over a set of outcomes to compute 
the probability that an outcome falls within that set. )( xiF  

will denote the cumulative distribution function (cdf) of id  
(for discrete distributions ∑ ≤= xy yifxiF )()(  and for continuous 

distributions ydx xifxiF ∫ ∞−= )()(  ). An interval for the random 

variable id  at a measure of probability α−1  is defined as 
following: 

αα −=≤≤ 1}{ ididα
idP  (1) 

where α
id  and α

id  are the lower and upper the interval, 
respectively. The measure of probability α−1  is called the 

confidence level. It should be noted that when it is said id  
lies in a )1(100 α−  percent interval, it means that on the 
average, id  lies in the interval )1(100 α− percent of the time. 
Thus, if the project is repeated many times and a )1(100 α−  
percent interval is computed each time, then in )1(100 α−  
percent of the project executions, the interval includes the 
true value of id .The interval of id  at a confidence level of 

α−1  is denoted by ],[ α
idα

id . αG  will denote the network G at 
a confidence level of α−1 . It means that the network G with 
interval activity durations ],[ α

idα
id , Vi∈ . 

B. The notation of Configuration 
The notation of configuration has been defined  [4] to relate 
the interval case to the deterministic case of classical CPM 
problems. A configuration at a confidence level of α−1 , 
denoted by αΩ , is a tuple  ( nddd ,...,2,1 ) of activity durations 

such that Vi∈∀ , ],[ α
idα

idid ∈ . αH  denotes the set of all 

configurations at the confidence level of α−1 : αH  = 
],[],1[

α
idα

idni∈× . For a configuration αΩ , )( αΩid  will denote 

the duration of the activity i. 
A configuration defines an instance of deterministic project 
scheduling problem, to which the CPM can be applied. 

)( αΩiES , )( αΩiLS  and )( αΩiF  will denote the earliest 
starting time, latest starting time and total float of the 
activity i in the configuration αΩ , respectively. The earliest 
starting time of each activity is determined by a forward 
recursion procedure consists in applying formula (1). 

{ 1for    )}()({)(Prmax
1for                                                    0

)( ≠Ω+Ω∈

=
=Ω ijdjESiedj

i
iES ααα  (1) 

where Pred(i) (resp, Succ(i)) refers to the set of activities 
that immediately precede (resp. follow) i, PRED(i) while 
(resp. SUCC(i)) stands for the set of all activities that come 
before (resp. after) i∈V. A backward recursion procedure, 
under assumption )()( αα Ω=Ω nESnLS , is used to determine the 
latest starting time of each activity. 

⎩
⎨
⎧

≠Ω−Ω∈

=Ω
=Ω

njidjLSiSuccj

njnES
iLS

for   )()}({)(min

for                                     )(
)( αα

α
α  (2) 

The float )( αΩiF  is determined by means of the formula 

)()()( ααα Ω−Ω=Ω iESiLSiF . 

III. THE PROPOSED APPROACH 
The crux of the proposed approach is the notion of the 
interval of random variables of activity durations at a 
confidence level of α−1 . We claim that the interval of 
random variables of activity durations can be used to solve 
problems of determining distributions of earliest starting 
times, latest starting times and floats of activities, by 
decomposition of activity distributions into confidence 
intervals. For each confidence level of α−1 , each interval of 
random variables of activity durations at the confidence 
level of α−1  is obtain, thus the project scheduling problem 
in stochastic networks is converted to the project scheduling 
problem in networks with imprecise durations, represented 
by intervals. Then intervals of earliest starting times, latest 
starting times and floats of activities are computed by 
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interval methods. Based on the definition of the cumulative 
distribution function, the cumulative distribution functions 
of these quantities are then reconstructed from their interval 
as show in Figure 1. 
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Figure 1: Reconstructing the cumulative distribution function of project 
quantities 
 
In Figure 1, it is assumed that the activity duration obeys the 
normal distribution then two intervals at confidence levels 
of α−1  and β−1  are made. Based on the intervals, the 
cumulative distribution function is reconstructed. In the 
following this approach elaborated for earliest starting times 
and latest starting times of activities. 
 

A. Determining the cdf of the Earliest Starting Times 
In the network G at a confidence level of α−1 , αG , the 
bounds on the earliest starting times for a given activity 

Vk∈ , denoted by ],[ ααα
kESkESkES = , are equal 

)(min α
αα

α Ω
∈Ω

= kES
HkES  and )(max α

αα
α Ω

∈Ω
= kES

HkES . 

Proposition 1 provides the necessary and sufficient 
condition to compute α

kES  and α
kES . In order to compute 

these values, it is enough to use a forward recursion 
procedure in optimistic and pessimistic configurations at a 
confidence level of α−1 . The pessimistic configuration at the 
confidence level of α−1 , denoted by αΩ , is a configuration 

αα H∈Ω  that αα
idid =Ω )(  for all Vi∈  and similarly αΩ  , called 

the optimistic configuration at the confidence level of α−1 , 
is a configuration αα H∈Ω  that αα

idid =Ω )(  for all Vi∈ . 
Proposition 1: The optimistic configuration at the 
confidence level of α−1 , αΩ , minimizes the earliest starting 
time of all the activities in αG , Vk∈ , and the pessimistic 
configuration at the confidence level of α−1 , αΩ , 
maximizes their earliest starting times in αG . 
Proof: Assume on the contrary that )( αα Ω≠ kESkES  so there 

exists a configuration *Ω , αH∈Ω* , that )*(Ω= kESkESα . It is 

concluded that )(*)( Ω<Ω kESkES . Based on formula (2), there 

exist at least an activity )(kPREDi∈  which )(*)( αΩ<Ω idid . This 

contradicts that αα
idid =Ω )( , the definition of the optimistic 

configuration, thus )( αα Ω= kESkES . 

The proof of )( αα Ω= kESkES  is the same as )( αα Ω= kESkES .  
Thus, it is enough to use forward recursion procedures to 
compute the bounds on the earliest starting times at a 
confidence level of α−1 . This proposition yields an approach 
which determines the cumulative distribution function of the 

project completion time and the earliest starting and 
finishing times of activities. To reconstruct the cumulative 
distribution functions of these quantities, the proposition can 
be applied only on a selection of suitably chosen confidence 
levels. This concept is illustrated in a numerical example in 
the following section. 

B. Determining the cdf of Latest Starting Times and 
Floats of Activities 

Analogously, the latest starting times and floats of activities 
are reconstructed from their intervals in the network G at 
confidence levels. The possible interval value of the latest 
starting times for a given activity Vk ∈  in the network G 
at a confidence level of α−1 , αG , is defined as 

],[ ααα
kLSkLSkLS =  where )(min α

αα
α Ω

∈Ω
= kLS

HkLS  and 

)(max α
αα

α Ω
∈Ω

= kLS
HkLS . The float interval for a given 

activity Vk∈  in the network G at a confidence level of α−1 , 
αG , is defined as ],[ ααα

kFkFkF =  where )(min α
αα

α Ω
∈Ω

= kF
HkF  

and )(max α
αα

α Ω
∈Ω

= kF
HkF . These quantities can be 

calculated by configurations where activity durations are 
assigned to their minimal and maximal possible values. A 
configuration αα H∈Ω  such that Vk∈∀ , ααα

ididid or)( =Ω  is 

called an extreme configuration. α
extH  will denote the set of 

all extreme configurations. It is shown that the maximum 
and the minimum of the latest starting times and the floats 
of activities are attained on specific extreme configurations 
 [15].  
Unfortunately the backward recursion procedure fails to 
compute the possible values of the latest starting times. 
There are two common methods for determining the 
extreme configurations that contain the maximum and the 
minimum of the latest starting times and the floats of 
activities. The first method, called incremental method, the 
duration of a given activity is increased by the free float of 
activities that the longest path from node 1 to that node 
traversing the given activity. This method computes the 
latest starting times of only one activity (see  [45] &  [43]). A 
path enumeration method, second method, is used to 
compute these quantities. Although this method is not 
polynomial, but experimental results have shown that this 
method can compute in a reasonable time the interval of the 
latest starting times and the floats of activities for project 
networks with more than one hundred activities  [14]. 
The problem of computing the maximal float of a given 
activity in the network with interval duration has been 
solved (Fortin et al., 2005). Unfortunately the problem of 
determining the lower bound on floats of a given activity is 
strongly NP-Hard  [7]. Chanas and Zielinski  [6] have shown 
that this problem remains NP-Hard even in a network 
restricted to be planar. For this problem, Yakhchali and 
Ghodsypour  [44] have proposed a hybrid genetic algorithm. 
The above methods are used to compute the interval of the 
latest starting times and floats of activities at each 
confidence level and then their cumulative distributions are 
reconstructed as illustrated in the following numerical 
example. 
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IV. NUMERICAL EXAMPLES 
To illustrate the validity of the proposed, the following 
examples are investigated. Two examples have the same 
network (precedence relations) but different types of 
probability density functions. The activity durations in the 
first example are discrete probability densities and those in 
the second example are continuous probability distributions. 
To underscore the main advantages of the proposed 
approach, these two examples have to be investigated. 

A. Example 1 (Discrete Distributions) 
Assume that the network in Figure 2 is given where the 
dummy activities 1 and n represent the beginning and the 
termination of the project, respectively. 
 

 
Figure 2: A project network for examples 1 and 2. 
The activities durations are discrete probability densities as 
following (see for discrete probability densities 
Montgomery and Hines, 1990): 
d2 ~Discrete Uniform (3,5)  d3 ~2+Binomial (5,0.5) 
d4 ~3+Poisson (7)               d5 ~4+Poisson (4) 
d6 ~2+Poisson (5)              d7 ~Discrete Uniform (2,6) 
d8 ~4+Binomial (8, 0.4)    d9 ~Discrete Uniform (2,7) 
d10 ~Binomial (10, 0.7)     d11 ~Poisson (9) 
It is worth noticing that the question of how the project 
manager chooses the appropriate probability distributions is 
important but is not treated in this paper. It is assumed that 
the probability distributions representing activity durations 
are already known. Several solutions have been proposed 
for this question. 
Monte Carlo simulation is used to compare results of the 
proposed approach. Monte Carlo simulation is an attempt to 
create a series of randomly sample from the activity 
probability distributions. In the of the fact that the quality of 
simulation depends on numbers of executions, Monte Carlo 
simulation with 1000 and 10000 times of executions are 
reported (in as far as numbers suggested  [41]. The 
cumulative probability distribution of the project completion 
time in example 1 is given in Figure 3. The results of the 
proposed approach and Monte Carlo simulation are shown 
in blue, green (10000 times) and red (1000 times) curve in 
Figure 3, respectively. 
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Figure 3: The cumulative distribution function of the project completion 
time in example 1. 

 
The statistical indices, such as minimum, maximum, mean 
and etc, are listed in Table 1. 
TABLE 1: THE COMPARISON BETWEEN OF PROJECT COMPLETION TIME 

RESULTS OF THE APPROACH AND SIMULATIONS IN EXAMPLE 1. 
The Proposed Approach Monte Carlo simulation (1000 times) Monte Carlo simulation (10000 times)

Min 14 27 23
Max 64 50 51
Mean 35.7683 38.5 37

Median 36 38.5 37
Standard Deviation 8.022 6.9954 8.4397

Range 50 23 28  
 
When the numbers of executions are increased in Monte 
Carlo simulation, better results are obtained (see Table 1). 
The discrete uniform distribution is expected for the earliest 
starting time of activity (4) for its real predecessor is activity 
(2) with discrete uniform distribution. This conclusion is 
obtained by the proposed approach and Monte Carlo 
simulation as shown in Figure 4. 
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Figure 4: The cumulative distribution functions of the earliest starting time 
of activity (4) in example 1. 
Figure 5 shows the cumulative distribution functions of the 
earliest finishing time of activity (4) computed by the 
proposed approach and Monte Carlo simulation in example 
1. 
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Figure 5: The cumulative distribution functions of the earliest finishing 
time of activity (4) 
The cdf of the latest starting time of activity (4) is shown in 
Figure 6. 
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Figure 6: The cdf of the latest starting time of activity (4) example 1. 
The earliest and latest starting and finishing times of other 
activities are omitted for sack of brevity. 
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B. Example 2 (Continuous Distributions) 
The project network is similar to that in Example 1 Assume 
that the activity durations are continuous probability 
densities as following: 
d2 ~Uniform (3,5)       d3 ~5+Exponential (4) 
d4 ~3+Gamma (2,4)   d5 ~3+Normal (4,1) 
d6 ~2+Normal (6,1)   d7 ~3+Normal (8,2) 
d8 ~Uniform (5,8)      d9 ~Uniform (2,5) 
d10 ~Uniform (3,6)    d11 ~Uniform (4,7) 
In example 2, the intervals of confidence level of 1  are not 
defined for some probability distributions, such as the 
normal distribution. The cumulative distribution function of 
the project completion time in example (2) is shown in 
Figure 7. 
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Figure 7: The cumulative distribution function of the project completion 
time in example (2). 
 
Similarly, Monte Carlo simulation with 1000 and 10000 
execution times is used to determine the cumulative 
distribution function of the project quantities in example (2) 
then the results are compared with the proposed approach as 
listed in Table 2. 

TABLE 2: THE COMPARISON BETWEEN OF PROJECT COMPLETION TIME 
RESULTS OF THE PROPOSED AND SIMULATIONS IN EXAMPLE 2 

The Proposed Approach Monte Carlo simulation (1000 times) Monte Carlo simulation (10000 times)
Min 16.281 21.1686 20.0182
Max 79.3593 59.9981 79.9189
Mean 30.3167 30.829 30.6765

Median 28.7726 29.9137 29.8477
Standard Deviation 9.0195 5.0202 4.7457  

 
As an example of earliest starting times of activities, the 
cumulative distribution function of the earliest starting times 
of activity (7) is drawn in Figure 8. 
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Figure 8: The cdf of the earliest starting times of activities in example (2). 

C. Comparisons 
Although both of the proposed approach and Monte Carlo 
simulation are related to probability theory, they are 
different on methodology and obtained results. The 
proposed approach is able to determine the exact cumulative 
distribution functions of project quantities with fix number 
of executions which is not depended on the number of 

activity and number of precedence relations among the 
activities. The proposed approach can be carryout only on a 
section of suitable chosen confidence levels. Monte Carlo 
simulation provides approximate probability theory for 
project quantities. To improve the quality of the Monte 
Carlo simulation results, the number of classical CPM 
executions must be increased. More observations in Monte 
Carlo simulation are needed if the number of activities 
increases. In above examples, the proposed approach 
invoked 200 executions of CPM calculations, although 1000 
and 10000 executions of CPM calculations were invoked by 
Monte Carlo simulation.  
The proposed approach copes with the exponential nature of 
the large project scheduling problem with stochastic 
activities. The proposed approach is easy to understand, due 
to simple principles. Another point to note is that since the 
proposed approach is based on interval confidence, it is 
applicable to the stochastic activity durations with reference 
distribution functions of different types. 

V. CONCLUSIONS 
A novel approach for project scheduling in networks with 
stochastic activity durations is introduced and analyzed in 
this paper. In the real world, project activities are subject to 
considerable uncertainty. To deal quantitatively with 
imprecise durations, PERT based on the probability theory 
can be employed. PERT assuming that the durations of 
activities are random variables of the beta distribution and 
the structure of the precedence network is deterministic, aim 
at providing the distribution function of the project 
completion time. PERT has been developed under 
assumptions that the probability distributions of activity 
durations are different to the beta distribution. Another 
drawback is the problem of finding the distribution of the 
project completion time that is intractable, due to the 
dependencies induced by network structures. 
Therefore the Monte Carlo simulation has been suggested to 
cope with PERT difficulties. Monte Carlo simulation 
attempts to compute the distribution of the project 
completion time, but the exact distribution is not achievable. 
Even if the exact distribution of project quantities can be 
determined, it is admitted that an enormous execution of 
simulation is required. The important problem studied in 
this paper involves determining the exact distribution of 
project quantities. 
The proposed approach determines the exact cumulative 
distribution functions of earliest and latest starting and 
finishing and floats of activities. The notion of confidence 
interval is used to obtain networks with imprecise activity 
durations, represented by intervals. The key to construct the 
exact distributions of project quantities is the confidence 
interval. The interval of earliest starting times of activities 
can be derived by applying the classical CPM on optimistic 
and pessimistic configurations at a specific confidence level. 
The path enumeration and incremental methods can be used 
to calculate the intervals of latest starting times and floats of 
activities. After computing the intervals of project quantities 
at each confidence level, the cumulative distribution 
functions of these quantities are reconstructed. The idea of 
reconstructions is based on the definition of the cumulative 
distribution function. 
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The proposed approach’s output was compared for accuracy 
and validation with simulation output. This approach is 
more tractable that Monte Carlo simulation. Moreover, the 
principle of the proposed approach is simpler than the 
Monte Carlo simulation, and it copes with the exponential 
nature of the large project scheduling problem with 
stochastic activities. Thus, the proposed approach is easy to 
understand and apply. 
As a hint for further research, the project scheduling 
problems without any resource constrains are considered in 
this paper, but the proposed approach can extent to the 
resource constrained project scheduling problems.  
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