
 
 

 
Abstract— In this work, we resolve the problem of robustly 

stabilizing nonlinear feedback systems in the presence of 
disturbance signals (noise) at each subsystem. The process of 
stabilizing the system is achieved using Integrator 
backstepping that incorporates saturation functions as part of 
the controls. The resulting controller is tested to see its 
effectiveness under noise bombardment. The systems response 
upon application of the controller is one whose trajectory is 
globally stable, in order words, we have developed and 
implemented robust controller that can stabilize systems with 
uncertainties and noise at each subsystem. 
 

Index Terms—Integrator backstepping, noise, robust 
controller, saturation function, stabilization,  trajectory 

 

I. INTRODUCTION 

HE problem of of stability and stabilization of control 
systems has been the subject of much research over the 

years. These research efforts have produced such very 
powerful techniques like stability in the sense of Lyapunov, 
and its various extensions and converses, see Lyapunov 
[16], Massera [18], LaSalle [12], and Kurzweil [11]. Also, 
the problem of generating Lyapunov functions has been 
addressed and is still been addressed by a number of notable 
researchers, including Krasovskii [9], Lin [14], Lin and 
Sontag [15].  
     Quite recently, the concept of Integrator backstepping 
was introduced as a recursive control design tool. The 
earliest record of application of this control design 
methodology can be seen implicitly in the works of Parks 
[20], Tsinias [22], Kodistchek [8], Brynes and Isidori [2], 
Sontag and Sussmann [21]. However, a formal presentation 
on the design of adaptive control laws was seen in the works 
of Kanellakopolous, et al [6], while authoritative expositions 
on the subject can be found in Krstic et al [10], Marino and 
Tomei [17], Isidori [3, 4], Khalil [7], and Tsinias [23]. The 
process has been successfully used to design a wide range of 
control systems like Non Holonomic systems, adaptive 
control systems, Tracking Controllers, real life problem 
definitions in areas of Electric Machines, Steering and 
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Braking Control, tracking control of nonlinear mechanical 
systems [13], nonlinear control of underactuated mechanical 
systems with application to robotics and aerospace vehicles 
[19], etc. 
    In Tsinias [23], the problem of Backstepping Design for 
Time-Varying Nonlinear Systems with Unknown 
Parameters, was considered. However, the unknown was 
allowed to be within a class of measurable bounded maps. 
Thus, uncertainty in terms of noise and unboundedness, was 
not considered.  
    The problem of robustifying control laws against 
unmodeled dynamics has been a well-studied and fruitful 
area of research. Arcak, et al [1] proposed two redesign 
methods to robustify backstepping control laws against 
dynamic uncertainties at the input of the plant. These are the 
passivation and truncated passivation techniques. The 
cancellation and LGV - backstepping approaches investigated 
in [1] is suitable for the nominal system. However it does 
not guarantee global asymptotic stability (GAS) in the 
presence of unmodeled dynamics. They imposed a 
limitation on the unmodeled dynamics, in that it was 
required to be minimum phase and relative degree zero. 
Consequently their method cannot be used to stabilize 
systems that are not minimum phase and not relative degree 
zero. Also, they do not address the problem of disturbance 
(noise signals) in other parts of the system apart from the 
input stage.  
     For control systems  in which the input dynamics are 
ignored, Jiang and Arcak [5] used the method of input to 
state stability (ISS), coupled with small gain theorem to 
achieve global asymptotic stability (GAS). The essence of 
this study was to remove the stability restriction on the 
ignored input dynamics in earlier works. Their resulting 
control law guaranteed boundedness of closed-loop 
solutions, and their convergence to a compact set around the 
origin which can be rendered arbitrarily small. They ignored 
some of the subsystems since it destroyed the feedback 
structure of the overall system and restricted the other part 
to be minimum phase and relative degree zero. Again they 
did not address the problem of disturbance (noise signals) in 
other parts of the system .  
    In this work, we extend backstepping to achieve robust 
stabilization of nonlinear systems in the presence of 
disturbance (noise) signals at each subsystem using 
saturation functions. The process involves saturating the 
noise first and then recursively stabilizing the subsystems by 
applying integrator backstepping technique. The controllers 
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designed using this method are not restricted to systems that 
are minimum phase and relative degree zero. 

II. DEFINITIONS 

    In this section we give the following definitions needed in 
the development of the results: 
 

A.  Lyapunov Function 

    A Lyapunov function is defined as follows:  

 Let    be a 
1C  function defined in a 

domain    that includes the origin.  Then the 
Lyapunov function,V (t, x ), which must satisfy the 
following conditions: 

1. V is proper at the equilibrium state ex ; 

 nx R V x  
                                 (1) 

 that is, V is a compact subset of some neighborhood O of 

ex  for each  0 small enough. 

2. V is positive definite on O: 

   0eV x   and  0    

, ex x                                                        (2) 

 For ex x  in O there is some time 1t T , 1t  0 and 

some control 1[0, )tu U   admissible for x such that the 

trajectory  ,x u   resulting from the control and this 

initial state,       10,V t V x t t    and 

    1V t V x  .
    

 

3  as 
                       (3) 

    This third property is referred to as radially unbounded or 
uniformly unbounded or weakly coercive. 
 

B.  Saturation Function 

    We define a saturation function  ,i    as follows: 

             (4) 
 

where i is the saturation level 

   sgn   is the signum function defined as:                

    
1      0

sgn 0     0

1   0

if

if

if


 




 
 

                     (5) 

 
 
 

III. MAIN RESULTS 

    In this section we present the main results of this work in 
the theorem of subsection 3.1 with proofs.  Then we provide 
a systematic algorithm for obtaining the stabilizing 
controller using the method of Integrator backstepping with 
saturation function to eliminate the noise.  
 
 

A. Theorem 

    Given  a feedback control system with disturbance signal 
at each subsystem of the form: 

 , ,

,  ,  n m n

x f x u

x R u R R







  


                        (6) 

Then, the existence of  a controller of the form: 

    , , , where u k x       is a saturation function 

such that 
2

0 or 
dV dV

x
dt dt

    is a necessary and 

sufficient condition for the resulting closed loop control 
system to be robustly globally (locally) asymptotically 
stable. 
 
 

B.  Proof  

  
Necessity: 
    We need to show that the existence of the control 

  , ,u k x     is a necessary condition for robust 

global (local) asymptotic stability of the system. 
 

Assume that the controller   , ,u k x     exists and 

transforms  , ,f x u  , to   , , 0f x     . Using 

Lyapunov’s stability condition, select a function  V x  that 

is 
1C . For global (local) asymptotic stability, we have; 

    2
0,  or 

dV x dV x
x

dt dt
   . Evaluating this we 

have: 
   dV x dV x dx

dt dx dt
    this yields 

   , ,
dV x

f x u
dx

 .                              (7) 

 
The disturbance   is unknown and has the tendency to 

make  , , 0f x u    and consequently 

   , , 0
dV x

f x u
dx

  , hence instability is obtained. 

Since we have no information about this disturbance, we 
cannot select the control u to incorporate the negative of the 
noise. Thus it is not realizable to cancel the effect of the 
noise. Hence, there is the need to saturate it (using the 

saturation function  ,   ) to a finite gain that can  easily 

be resolved. Consequently, we can obtain the controller that 
no longer incorporates the destabilizing noise but the 

: nV R R R  
nD R



 V x

x O 

 ,V x t  x 

     , sgn min ,i i i i i i      
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saturated signals. Thus, we have   , ,u k x    . Now 

since the control   , ,u k x     makes 

 , , 0f x u    that is    , , , 0f x k x     , and 

V(x) is positive definite, proper and radially unbounded, 

0
dV

dx
  

dV dV dx

dt dx dt
   

 

          , , , 0.
dV

f x k x
dx

              (8) 

       = (positive).(negative)=negative 

If 0,  ndV
x R

dt
    then we have robust global 

asymptotic stability (controllability if the control 0u  ) 
 while it is said to be robust local asymptotic stability 
(controllability if the control 0u  ) if 

0,  ndV
x D R

dt
     

 
Next we prove sufficiency condition. 
  
Sufficiency : 
 
    Since the system is robustly globally (locally) 
asymptotically stable, using Lyapunov stability condition we 
have that: 

( )dV x

dt
=

   2
0,  or 

dV x dx
x

dx dt
     

 =  2
( , , ) 0 or  -

dV
f x u x

dx
               (9) 

from which ( , )u k x   

    Now  , is a disturbance which we have no information 
about. So, we cannot use cancellation technique to eliminate 
it from the system. Hence, the instability remains. Since the 
controller would still be unable to cancel the destabilizing 
effect of the noise, consequently we have to saturate the 
noise or disturbance   to a finite level  that we can 
control.  The incorporation of the saturation function 

transforms the noise to the form:  ,   . This transforms 

the control to the form:   , ,u k x    . Thus  robust 

global (local) asymptotic stability is a sufficient condition 
for the existence of controller of the form 

  , ,u k x    . 

 

C.  Development of Integrator Backstepping Based 
Controller 

 
   Consider a feedback control system described by: 

                                  (10)
  

 where the above system is C
 with  and 

. This system is assumed to be locally Lipschitz 

i.e. , nx y R   

 0,t t  .                                                                (11) 

 
The above system has a lower triangular structure, as shown 
in (12). 
Thus, in strict feedback form we have the control system as: 

1
:  

2
:  2 2 1 2 3 2, , ,x f x x x   

3
:  3 3 1 2 3 4 3, , , ,x f x x x x   




         

1
:

n  1 1 1 2 3 4 1, , , ,...., ,n n n nx f x x x x x     

:
n 1 2 3 4, , , ,....,

, ,n n
n n

x x x x
x f

x u 
 

  
 

      (12) 

 
Procedure: 

    First we saturate the noise signals through saturators 

 i   as follows: 
 

        (13)
 

where i is the saturation level 

 
    Equation (13) follows the standard definition of a 
saturation function. 
So the system now becomes: 

  1 1 1 2 1 1 11
: , , ,x f x x      

  2 2 1 2 3 2 2 22
: , , , ,x f x x x      

 
  3 3 1 2 3 4 3 3 33

: , , , , ,x f x x x x    
 

 



         

 
1 2 3 4

1 11
1 1 1

, , , ,..,
:

, ,n nn
n n n n

x x x x
x f

x    
  

 
  

 
   

 
1 2 3 4, , , ,..,

:
, , ,n nn

n n n n

x x x x
x f

x u   
 

  
 

                       (14) 

Treat  as input, and define it as   2 1 1 1, ,x x   
such that subsystem 1 is exponentially stable. So, we have: 

                       (15)
 

to be exponentially stable. Forexample, 
 ,x f x u

nx R
mu R

   , ,f t x f t y L x y  

 1 1 1 2 1, ,x f x x 

i

     , sgn min ,i i i i i i      

2x

   1 1 1 1 1 1, ,x f x x    
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                                   (16)
 

and select the Lyapunov function 

 
2
1

1 2

x
V x                             (17) 

  1
1 1 1 1 1

1

, ,
xV

x f x
x t

  
  

 
         (18) 

To track  and back step the integrator, we define: 

  2 2 1 1 1 1 1, ,z x x             (19) 

This gives: 

   2 2 1 1 1 1 1, ,z x x                      (20) 

Then, consider the subsystem: 

   1 1 1 2 1 1 1 1 11
: , , ,x f x z x       

  2 2 1 1 1 1 12
: , ,z x x           (21) 

But   2 2 1 2 3 2 2 2, , , ,x f x x x    , therefore 

   1 1 1 2 1 1 1 1 11
: , , ,x f x z x       

  
  

2 2 1 2 3 2 2 22

1 1 1 1 1

: , , , ,

             , ,

z f x x x

x

  

   





 


    (22) 

But from (9)   2 2 1 1 1 1 1, ,x z x     , therefore we 

have: 

   1 1 1 2 1 1 1 1 11
: , , ,x f x z x       

  
 
  

1 2

2 2 1 1 1 1 12

3 2 2 2

1 1 1 1 1

,

: , , ,

, ,

             , ,

x z

z f x

x

x

   

  

   

 
 

  
  
 



 



         
  (23) 

Select the Lyapunov function as: 
2 2
1 2

2 2 2

x z
V                              (24) 

This gives: 

  2 2
2 1 2 1 2

1 2

,
V V

V x z x z
x z

 
   
 

    

         1 1 1 2 1 1 1 1 1. , , ,x f x z x        

   

  
 
  

1 2 1 1 1 1 1

2 2

3 2 2 2

1 1 1 1 1

, , , ,

, ,

, ,

x z x
z f

x

x

   

  

   

  
   

   
 

   (25) 

Solve for  such that  2 1 2, 0V x z  to achieve stability. 

Input the value of  into subsystem 2. 

But 3x  is not the control, so, define a new variable: 

 
 

1 2 1 1 1

3 3 3

2 2 2

, , , ,

,

x z
z x

  


  

 
    

 
                   (26) 

To backstep, we differentiate as follows: 

    
3 3

3 1 2 1 1 1 2 2 2   , , , , ,

z x

x z      






          

(27)
 

We proceed in the same manner as above until we get to the 
last step. Define the new state variable as 

 
 
 
 

1 2 1

1 1 1

1
2 2 2

, ,.., ,

, ,

, ,..,

,

n

n n n

n n n

x z z

z x
  


  

  





 
 
    
 
 
 

                            (28) 

To backstep, differentiate     

 
 
 

1 2 1

1 1 1

1
2 2 2

, ,.., ,

, ,

, ,..,

,

n

n n n

n n n

x z z

z x
  


  

  





 
 
    
 
 
 

                                 (29) 

Substitute for nx from the original system. Then, substitute 

for 2 3, ,... nx x x in the resulting subsystem. With u as the 

input, use a Lyapunov function  

and solve for stability and obtain a value for u that is 

 1 2 3 1 1 2 3
1 2 3

1
1

, , ,... ,

                                     ..... 0

cn cn cn
cn n n

cn cn
n n

n n

V V V
V x x x x z x x x

x x x

V V
x z

x z

  
  

 
 






  

  

   

 

      = < 0                   (30) 

 
 

IV. ILLUSTRATIVE EXAMPLES 

A.   Example 1 

Consider the system: 

1
:  1 1 2 12x x x t    

2
:  2 1 2 3 23x x x x t     

3
:  3 1 2 3 32x x x x u t         (31) 

In the above system, ( )   1, 2,3i t i   represents the noise 

(disturbance) signal. 
For an input u=sin(t) and a band limited white noise as 
shown in Figure 1 
 
in stabilizing the system we proceed as follows: 

1 1x x 

2x

3x

3x

),,...,,( 1121  nncn zxxxV




 











1

1

..
n

i
n

n

cn
i

i

cn z
z

V
x

x

V 
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Saturate the noise signals  1 t ,  2 t ,  3 t as 

 1 1,   ,  2 2 ,   ,  3 3,   , thus we have:

  1 1 2 1 11
: 2 ,x x x        

 2 1 2 3 2 22
: 3 ,x x x x         

 
3 1 2

3
3 3 3

: 2

            ,

x x x

x u   
 

  


     (32) 

For the subsystem
1
, let us treat 2x  as the virtual control 

or input and select its value such that we have stability. 
 
Let  

    1
22 1 1 1 1,x x x       

 
       (33) 

Therefore 

    1 1 1 1 12x x x         

 1x x                                                 (34) 

Using the Lyapunov function, 

  
2
1

2

x
V x                                         (35) 

we have  

    1
1 1

1

V x
V x x

x


 


   

            2
1x                                         (36) 

and 2
1 0x  hence the subsystem

1
, is asymptotically 

stable. But 2x  is not the control so we introduce a variable 

2z to track error and then carry out integrator backstepping. 

Set 

   2 2 1 1 1,z x x                             (37) 

which gives 

   2 2 1 1 1,z x x      

  1
22 2 1 1z x x                             (38) 

But from subsystem 
1 and 

2
,  

  1 1 2 1 12 ,x x x       

 2 1 2 3 2 23 ,x x x x          

Therefore, 

 
 

   
2 1 2 3 1 1

2 2 1 1

3 1.5 ,

      , 0.5 ,

z x z x   

     

   

 


                      (39) 

This implies that 

1 1 21
: 2x x z     

 
   

2 1 2 3

1 12

2 2 1 1

: 3

            1.5 ,

            , 0.5 ,

z x z x

  

     

  



 





    

(40) 

  
Define 

  
2 2
1 2

2 1 2,
2 2

x z
V x z                             (41) 

 
Hence, 
 

     
 

1 2 3

1 1 2 2 1 1 2 2

1 1

3

2 1.5 , ,

0.5 ,

x z x

V x x z z      

  

  
 

      
   




 

      
   

2 2
1 2 1 2 2 3

2 1 1

2 2 2 2 1 1

5

   1.5 ,

  , 0.5 ,

x z x z z x

z

z z

  

     

    



  
                   (42) 

For 2 2
1 2V x z   , 

 
 

   
3 1 1 1

2 2 1 1

5 1.5 ,

     , 0.5 ,

x x   

     

  

                         (43) 

 This gives 

  2 1 22z x z                                      

(44) 
Define 

     3 3 2 1 2 1 1 2 2, , , , ,z x x z            (45)  

with  

    
 

   

2 1 2 1 1 2 2

1 2 1 1

2 2 1 1

, , , , ,

    5 1.5 ,

    , 0.5 ,

x z

x z

      

  

     



  

  
                           (46) 

Therefore,  

 
 

   
3 3 1 2 1 1

2 2 1 1

5 1.5 ,

     , 0.5 ,

z x x z   

     

   

                           (47) 

and 

 
 

   
3 3 1 2 1 1

2 2 1 1

5 1.5 ,

     , 0.5 ,

z x x z   

     

   

 

  
                       (48)

  

Replacing 1x , 2z and 3x with their values gives 

 

 
   
   

3 1 2 3 1 1

2 2 1 1

2 2 1 1

7 12 1.5 ,

      ,  0.5 ,

      , 0.5 ,

z x z z u   

     

     

     

 

 




 
              (49) 

Define 

  
22 2
31 2

3 1 2 3, ,
2 2 2

zx z
V x z z                (50) 

Therefore, 

   
   

   

1 2 32 2
3 1 2 3 1 2 3

1 1

2 2 1 1

2 2 1 1

7 12
, ,

1.5 ,

, 0.5 ,

, 0.5 ,

x z z
V x z z x z z

u   

     

     

  
     

  
 





 

      (51) 

This reduces to 
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 

   
   
 

2 2
3 1 2 3 1 2 3 1

2
2 3 3 3

3 1 1 2 3 1

3 1 1 3 2 2

3 1 1

, , 7

                   12

1.5 , ,

                   0.5 , ,

                   0.5 ,

V x z z x z z x

z z z uz

z z

z z

z

     

     

  

   

  

 

 





 



              

                                                                                       (52)  

For   2 2 2
3 1 2 3 1 2 3, ,V x z z x z z     

 
   
   

1 2 3 1 1

2 2 1 1

2 2 1 1

7 12 2 1.5 ,

    , 0.5 ,

    , 0.5 ,

u x z z   

     

     

   

 

 



 
    

                      (53) 

Substituting foru in 3z gives: 

 3 3z z                                             (54) 

 
 
Therefore we simulate the resulting system (eqn.55), 
considering three different initial conditions: 

case1:      1 2 30 5 0 9  0 7x z z      

case2:    1 2 30 0.002 0 0.008  0.005x z z      

case3:      1 2 30 8000 0 5000  0 9000x z z    

The simulation results are shown in Fig. 1.

  

 
 
 

 Time (s) 
 

Fig. 1. System input(control, U=Sin(t) and d(t)= Band Limited white noise 

 
The response of the system is shown in Fig. 2 
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Fig. 2. System response to inputs 
 

                 
Fig. 3. State Trajectories of the stabilized system for case 1 
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Fig. 4. State Trajectories of the stabilized system for case 2 
 

 
Fig. 5.  State Trajectories of the stabilized system for case 3 

 
 

 

B.   Example 2 

    Consider the following pendulum equation in state space 
form with friction and noise: 

 1 2 1x x t   

 2 1 2 210sinx x x u t           (56) 

    This example is a modified benchmark problem which 
can be found in standard control texts and journal papers [7, 
23]. 
 
    When there is no noise signal, and 0u  , the phase 
portrait shows that the equilibrium point (0,0) is a stable 

focus and while the other equilibrium point  ,0  is a 

saddle point. This is shown in Figure 6. 

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5
x 10

-3

x1

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5
x 10

-3

z2

0 2 4 6 8 10 12 14 16 18 20
-6

-4

-2

0
x 10

-3

Time (s)

z3

0 2 4 6 8 10 12 14 16 18 20
-5000

0

5000

10000

x1

0 2 4 6 8 10 12 14 16 18 20
-10000

-5000

0

5000

z2

0 2 4 6 8 10 12 14 16 18 20
0

5000

10000

Time (s)

z3

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 
 

 

 

Fig. 6. Phase Portrait of the Pendulum showing stable focus and saddle point 

With the presence of noise (    1 2 and t t   ) in form of wind, the system, behaves in an unstable manner as shown in  

Figure 7.  

 
Fig. 7. The unstable response of the Pendulum system with noise and friction 

 
 

To stabilize the system 
    Using this method, after some computations for stage 1, 
the virtual control x2 is selected as 

  2 1 1 12 ,x x t                           (57) 

with Lyapunov function: 

 
2
1

1 2

x
V x                              (58) 

The Lyapunov function for stage 2 is:  
2 2
1 2

2 2 2

x z
V x      

 
and the controller designed using this method is given as:  

  
     

1 1 2 2 2

1 1 1 1

10sin 2 ,

     , ,

u x x z t

t t

  

     

   

  
   (59) 

Applying  these controls, the resulting system is given as: 

 1 1 2x x z    

 2 1 2z x z                                      (60) 

This system is then simulated and the response shown in  
Fig, 8.  
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Fig. 8. Trajectory of the stabilized Pendulum 

 

V.    DISCUSSION OF RESULTS 

 
   Two (Examples1 and 2) systems were simulated on a 
computer using SIMULINK™ software of MATLAB™. 
The responses are shown in Figs. 1-5, for the first system, 
while Figs. 6-8 shows the response of the second system. In 
Fig.1, the systems control (input) signals in this case a 
sinusoidal wave and disturbance (White noise with Limited 
bandwidth) are outputted. 
    The time response of the states of the original system, for 
Example1, is shown in Fig. 2. This is a highly unstable 
motion. The deviations from the equilibrium position are so 
large, in the order of 103 in 18 seconds for all the states. This 
is due to the presence of disturbance (noise). In Figs. 3-5, 
the system’s response under the designed stabilizing 
controller shows a stabilized trajectory that converges fast 
(about 8 seconds) to the equilibrium. 
    For the second system considered, the phase portrait of 
the undisturbed system is shown in Fig. 6, in which the 

system for the equilibrium points (0, 0) and  ,0 behaves 

as a stable focus and a saddle point respectively. However, 
the inclusion of noise bombardment in form of wind, causes 
the system to produce a highly unstable trajectory as shown 
in Fig. 7. Upon application of the controller designed using 
our method, the system’s motion is a stabilized trajectory as 
shown in Fig. 8. The system converges (within 4 seconds) to 
the equilibrium. 

VI. CONCLUSION 

    A recursive technique based on Integrator backstepping 
coupled with saturation functions has been developed and 
implemented for robust stabilization of nonlinear feedback 
systems. The systems considered were subjected to 
disturbance (noise) signals at each subsystem 

    The noise in the systems used as benchmark examples, 
was effectively controlled using saturation functions, with 
an appropriate saturation level. The use of saturators 
effectively dampens and to a great extent eliminates the 
effect of the noise so as to achieve stability. 
    The computer simulation of the resulting systems (the 
implementation of the developed controller on the original 
systems), showed stabilized trajectory of the system’s states 
that were previously noisy and unstable. The trajectory of 
the stabilized systems shows fast response in approaching 
equilibrium. Thus it is clear that stabilization was achieved 
when the developed controllers were implemented on the 
systems considered. 

 

APPENDIX: NOMENCLATURE 

,  t T   Time 

u        control variable 

 V    Lyapunov function 

x        state variables 

        saturation function 

        saturation level 
        noise or disturbance signal 

        Trajectory 
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