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I. INTRODUCTION 
he critical path method (CPM)  [17] has become one of 
the tools that is the most useful in practice and control 
of complex projects. The critical path analysis is based 

on the computation of latest starting times of activities from 
the knowledge of the earliest ending time of the project. 
Then paths containing critical activities, that are activities 
with zero floats, are identified. What is essential in the CPM 
method is that the activity durations are deterministic and 
known. However, the operation time for each activity is 
usually difficult to define and estimate precisely in a real 
situation. 

Program Evaluation and Review Technique (PERT) 
 [21] which tries to deal with uncertainty assumes that the 
durations of the activities are random variable with the beta 
distribution, aim at providing the distribution function of the 
total duration . So far, in the literature, hundreds of papers 
have used this stochastic approach and search on this area is 
still carried out (e.g.  [13],  [14]). Anyway, these stochastic 
methods rely on statistical data which are out of reach in 
many cases  [20], and on dubious independence assumptions 
 [9]. 

Since the pioneering work of Zadeh  [32], other 
researchers in this field have recommended the use of fuzzy 
numbers for modeling activity durations rather than 
stochastic variables. Fuzzy critical path methods and fuzzy 
PERT have been proposed since the late 1970s (e.g. 
 [16], [23]). The possible values of the earliest starting times 
can be computed by means of a forward recursion procedure 
comparable to the one used in traditional CPM problems. 
Unfortunately, the backward recursion issued from CPM is 
indeed not sound if durations are described by means of 
fuzzy intervals, in fact, the backward recursion takes the 
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imprecision of some duration twice into account  [11]. 
Zielinski  [33] completely determined the possible values of 
the latest starting times of a given activity. Fortin et al.  [15] 
proposed an algorithm for determining the minimal latest 
starting times of activities and computed the maximal float 
of an activity. Yakhchali and Ghodsypour  [27] suggested a 
hybrid genetic algorithm for the minimal float of an activity. 
Dubois et al.  [10] have proposed an efficient algorithm 
based on path enumeration to compute optimal intervals for 
latest starting times and floats of activities. 

The criticality concept in networks with interval (fuzzy) 
activities durations is a more realistic approach than the 
traditional ones. Instead of being critical or not, the 
activities or paths that are for sure critical despite 
uncertainty is called necessarily critical, those that are for 
sure not critical is called necessarily noncritical and those 
whose criticality is unknown, called possibly critical  [3]. 
The idea of partitioning is used by Yakhchali and 
Ghodsypour  [29] to develop an algorithm for determining 
these three type of critical activity. The possibilistic 
criticality analysis is carried out by Chanas and Zielinski  [5] 
for interval-valued durations, and Chanas and Zielinski  [4] 
for fuzzy durations. The problems of the necessarily and 
possibly critical paths in the networks with imprecise 
activity and time lag durations have been discussed by 
Yakhchali et al.  [25],  [26]. 

The traditional precedence relation, suggested by the 
CPM model, is the finish-start precedence relation with zero 
time lag. In practice it is often necessary to specify other 
than this precedence relation. In accordance with  [12], we 
will refer to the resulting types of precedence relations as 
generalized precedence relations (GPRs). We distinguish 
between four types of GPRs: start-start (SS), start-finish 
(SF), finish-start (FS) and finish-finish (FF). GPRs can 
specify a minimal or a maximal time lag between a pair of 
activities. A minimal time lag specifies that an activity can 
only start (finish) when the predecessor activity has already 
started (finished) for a certain time period. A maximal time 
lag specifies that an activity should be started (finished) at 
the latest, within a certain number of time periods beyond 
the start (finish) of another activity  [6]. GPRs can be used to 
model a wide variety of specific problem characteristics, 
including: activity ready times and deadlines, activities that 
have to start or terminate simultaneously, non-delay 
execution of activities, several types (total or strong/week 
partial) of mandatory activities overlaps, fixed activity start 
times, time-varying resource requirement and availabilities, 
time-windows for resources, inventory restrictions, set-up 
times, overlapping production activities, assembly line 
zoning constraints, etc  [8] and  [22]. 
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Yakhchali and Ghodsypour proposed a series studies on 
the topic of the project scheduling problems in the networks 
with GPRs and imprecise durations. They have completely 
solved the problem of determining the possible value of the 
latest starting time of an activity in acyclic networks  [28] 
and cyclic networks  [30] with GPRs and imprecise 
durations. They suggested an algorithm for computing both 
the possible values of the latest starting times and the floats 
of all activities in networks with generalized precedence 
relations and imprecise durations  [31]. In this paper, We 
complete these researches by proposing a novel polynomial 
algorithm for computing the minimal latest starting times of 
all activities in general networks with GPRs and interval 
durations. 

II. THE PROJECT SCHEDULING PROBLEMS IN INTERVAL-
VALUED NETWORKS WITH GPRS 

A network G=<V, E> with node set V, arc set E, being 
a project activity-on-node (AON) model, is given. A set 
V={1,2, …, n} of activities has to be executed where activity 
durations i∈ V are chosen from intervals ],[ iii ddD = , 

0d i ≥ . The non-preemptable activities are numbered from 1 
to n, where the dummy activities 1 and n represent the 
beginning and the termination of the project, respectively. 
Dummy activities are only needed to satisfy the requirement 
that the network possesses only one initial and one terminal 
node. 

The arc set or generalized precedence relations, E, 
consist of minimal or maximal time lag. If between two 
activities i and j a minimal or maximal time lag is 
prescribed, we introduce an arc (i, j) from node i to node j 
weighted by an interval number which have the forms: 

max
ijij

min
iji SSssSSs +≤≤+  

max
ijij

min
iji SFsfSFs +≤≤+  

max
ijij

min
iji FSfsFSf +≤≤+  

max
ijij

min
iji FFffFFf +≤≤+  

where the start of an activity is given by is and its 

finishing time denoted by if . min
ijSS  represents a minimal 

time lag between the start time of activity i and the start time 
of activity j and the value of min

ijSS  are chosen from 

intervals ][
min
ij

min
ij

min
ij ss,ssSS =  (similar definition apply for 

max
ijSS , min

ijSF ,…). 
The various time lags can be represented in a 

standardized form by transforming them to, for instance, 
minimal SS precedence relation, using the transformation 
rules  [30] as following: 

jijij
min
iji sLssSSs ≤+⇒≤+  ][with 

min
ij

min
ijij ss,ssL =  

ijijj
max
iji sLssSSs ≤+⇒≤+  ],[with max

ij
max
ijji ssssL −−=  

jijij
min

iji sLsfSFs ≤+⇒≤+  ][with j
min
ijj

min
ijij dsf,dsfL −−=  

ijijj
max

iji sLsfSFs ≤+⇒≤+  ],[with max
ijj

max
ijjji sfdsfdL −−=  

jijij
min
iji sLssFSf ≤+⇒≤+  ],[with 

min
iji

min
ijiij fsdfsdL ++=  

ijijj
max
iji sLssFSf ≤+⇒≤+  ],[with max

iji
max
ijiji fsdfsdL −−−−=  

jijij
min
iji sLsfFFf ≤+⇒≤+  ],[with 

min
ijji

min
ijjiij ffddffddL +−+−=  

ijijj
max
iji sLsfFFf ≤+⇒≤+  ],[with max

ijij
max
ijijji ffddffddL −−−−=  

In this way, all GPRs are consolidated in the 
expression jiji sLs ≤+ . Project networks with GPRs can be 
represented as cyclic networks. A positive path length from 
a node to itself indicates the existence of a cycle of positive 
length, and consequently, the non-existence of a time 
feasible schedule. 

To clarify the transformation rules, we provide an 
example. Fig. 2 shows the standardized form of a network in 
Fig. 1 that was proposed by De Reyck  [7]. In Fig. 1, the 
interval number adjacent to each node represents the 
corresponding activity duration and the labels associated 
with the arcs indicate the interval GPRs  

1 2

3

4

5

6

7

8

9

10]00[ ,SS min =

]32[ ,SS min =

]32[ ,SS min =

]64[ ,FS min = ]21[ ,SS min =
]32[ ,FS min =

]00[ ,FS min =

,2]1[=minFF
]43[ ,FS max =

]86[ ,SF max =

]86[ ,SF min =

]32[ ,SS min =]53[ ,FS max =

]21[ ,SS min =

]76[ ,FF max = ]32[ ,FF min =
]86[ ,FS max =

]65[ ,FF max =
[0,0] [0,0][2,3]

[4,5]

[3,4]

[4,6]

[7,8]

[4,5]

[7,9]

[3,4]

]9[8,SF min =

 
 

Fig. 1. An activity network with GPRs (De Reyck  [7] 
 
In Fig. 2, the interval number along each arc denotes the 

interval time lag. If there is more than one time lag between 
two activities i and j, only the maximal time lag is retained. 
For example, there are two time lags between activities 5 
and 7, so the maximal time lag, [2,5]=7,5l , is considered 
(the other is shown in a dash line). 
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Fig. 2. A The standardized form of the network in Fig. 1  

 
As far as the standardized form is concerned, the 

minimum time lag, denoted by ],[ ijijij llL = , i, j∈ V, implies 

that j can start ijl which is chosen from intervals ],[ ijij ll  units 

of time after the start of i at the earliest. In the remainder of 
this paper, the network G is assumed in its standardized 
form. 

The notation of configuration denoted by Ω  has been 
defined by Buckley  [2] to relate the interval case to the 
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deterministic case of classical PERT/CPM problems. We 
redefine a configuration as a tuple of time lag durations, 
( ij12 l,...,l ), such that Ej,i ∈∀ )( , ijij Ll ∈ . For a configuration 
Ω , )( Ωijl  will denote the duration of time lag (i, j). The 

pessimistic configuration, denoted by Ω , is a configuration 
ω∈Ω  that ijij ll =Ω)(  for all Ej,i ∈)(  and similarly Ω , 

called the optimistic configuration, is a configuration ω∈Ω  
that ijij ll =Ω)(  for all Ej,i ∈)( . 

Let us denote the set of all paths in G from node “1”to 
“n” by P. )( j,iP  will denote the set of all paths in the 
subnetwork )( j,iG . A subnetwork of G, )( j,iG , composes 
of nodes succeeding i and preceding j, Vj,i ∈ . 

The configuration related to a path, p, will defined as 
the formula (1). We call this configuration a path-induced 
configuration, denoted by pΩ . 

⎪⎩

⎪
⎨
⎧

∉
∈

=Ω
pj,il
pj,il

l
ij

ij
ij )(for

)(for
)(  (1) 

)( jedPr is the set of immediate predecessors of an 
activity j, j∈V: { }Ej,i|ijedPr ∈= )()(  and )(iSucc is the set 
of immediate successors of an activity i, i∈V: 

{ }Ej,i|jiSucc ∈= )()( . 
)(se

i Ω and )(sl
i Ω  will denote the earliest starting time 

and the latest starting time of activity i in the configuration 
Ω , respectively. The value of )(se

i Ω  can be calculated by 
finding the longest path from node ‘1’ to node ‘i’. So 
standard graph algorithms for computing the longest paths 
in networks, for example Floyd-Warshall algorithm (time 
complexity )(| 3|VO ), can be used (see  [19]). The earliest 
starting time can be computed more efficiently by using the 
Modified Label Correcting Algorithm  [1] (MLCA) whose 
complexity is )(| |E||VO . 

Proposition 1 ( [28]): The optimistic configuration, Ω , 
minimizes the earliest starting time of all the activities, 

Vk ∈ , and the pessimistic configuration, Ω , maximizes 
their earliest starting times.  

Thus, it is enough to use the Modified Label Correcting 
algorithm to compute the bounds on the earliest starting 
times of all activities. Unfortunately the optimistic and 
pessimistic configurations fail to compute the minimal and 
maximal of the latest starting times of activities. The trouble 
with computing the possible values of the latest starting 
times is explained by several authors (e.g. Dubois et al. 
 [11], [10] and Zielinski  [33]) 

In the following section a polynomial algorithm is 
proposed for computing the minimal latest starting times of 
all activities. 

III. THE POLYNOMIAL ALGORITHM FOR COMPUTING THE 
MINIMAL LATEST STARTING TIMES 

In the case of interval durations, the minimal latest 
starting times for a given activity. denoted by l

ks , is equal 

)(Ω= ∈Ω
l
k

l
k smins ω  where ω  is the set of possible 

configurations of time lag durations 

Proposition 2 ( [31]): There exists a path p, )( n,kPp ∈ , 
that the path-induced configuration, pΩ , minimizes the 

latest starting time of k, )( p
l
k

l
k ss Ω= . 

The key to constructing the algorithm for computing the 
minimal latest starting times of activities is Proposition 3. 
The idea of Algorithm 1 is based on this proposition. It 
consists in finding path p, )( n,lPp ∈  that added to )( l,k  
build a configuration pΩ which =l

ks  )( p
l
ks Ω . 

Proposition 3: )}({ )}{()( pl,k
l
kkSuccl

l
k smins ∪∈ Ω=  where 

)( n,lPp ∈  and )( p
l
l

l
l ss Ω= . 

Proof: Based on Proposition 2, there exists a path p, 
)( n,kPp ∈ , that the path-induced configuration, pΩ , 

minimize the latest starting time of k, )( p
l
k

l
k ss Ω= . It is 

worth pointing out that p is one of the longest paths from k 
to n in pΩ . According Proposition 2, there exists a 'p , 

)( n,lP'p ∈  and )(kSuccl ∈  which path-induced 
configuration by 'p , 'pΩ , minimizes the latest starting time 

of l, )( p
l
l

l
l ss Ω=  and 'p  is one of the longest paths from l to 

n in 'pΩ . Thus, the path p consists of )( l,k , )(kSuccl ∈ , and 
'p , )( n,lP'p ∈ , in fact 'pn,lp ∪=  )}{( .  

 
Algorithm 1: Computing the minimal latest starting times of activities 

Input: A network E,VG = , time lag intervals ][ ijijij l,lL =  Ej,i ∈∀ )(   
Output: The minimal latest starting times of all the activities in G 
 

1: for Vi ∈  do  
2: ... +∞←l

is  
3: end for 
4: Call MCLA and compute the )(Ωl

ns  

5: )(Ω= l
n

l
n ss  

6: {}←np  
7: }{nList ←  
8: while φ≠List  do 
9: ...for Listj ∈  do 
10: ......for )( jedPri ∈  do 
11: ......... jpj,i'p ∪← )}{(  
12: .........Call MCLA and compute the )( p

l
is Ω  

13: .........if l
ip

l
i ss <Ω )(  then 

14: ............ )( p
l
i

l
i ss Ω←  

15: ............ 'ppi ←  
16: .............if Listi ∉  then }{iListList ∪←  end if 
17: .........end if 
18: ......end for 
19: ...... }{ jListList −←  
20: ...end for 
21: end while  

 
Algorithm 1 computes the minimal latest starting times 

of activities by using MCLA on each path-induced 
configuration based on Proposition 3. At each iterations, the 
algorithm assigns tentative minimal latest starting times to 
activities. These values are estimates of the longest path 
length and are considered as temporary until the final 
iteration, where φ=List . 
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IV. COMPLEXITY 
Proposition 4 shows that the proposed algorithm is 

polynomial. 
 
Proposition 4: The running time of Algorithm 1 is 

)( 22 |E|.|V|O  
Proof: The running times of Modified Label Correcting 

Algorithm (MLCA), the best known algorithm for temporal 
analysis in cyclic project networks, is )(| |E||VO . The line 8 
to 21, while loop, executed |V|  times and the line 10 to 18, 
for-for end, executed |E|  times, so the overall running time 

is )( 22 |E|.|V|O .  
 
Table 1 represent the summary of the complexity of the 

different problems in networks with generalized precedence 
relations and interval activity and time lag durations. 

 
TABLE 1  

THE RUNNING TIMES OF THE BEST KNOWN ALGORITHMS FOR INTERVAL 
PROJECT SCHEDULING IN NETWORKS WITH GPRS 

Problems Minimal/Maximal Running time Ref.
Minimal
Maximal
Minimal
Maximal
Minimal
Maximal

Latest starting time (all activities) Minimal Algorithm 1

Earliest starting times (all activities)

Latest starting time (an activity)

Total floats (all activities)

[30]

[28]

[31]

)( 33 |E|.|V|O
)( 22 |E|.|V|O

)( 22 |E|.|V|O

)( |P|.|E|.|V|O 2

)( |E|.|V|O

 
 
 
It is worth noticing that some algorithm, e.g. Algorithm 

1, need only one execution for computing a given 
characteristic for all activities of a network. On the other 
hand, others need to be executed for each activity. 

 

V. COMPUTATIONAL EXPERIENCE 
Let us clarify the utility of the proposed algorithm on 

some realistic project networks. For this reason, the minimal 
latest starting times of activities of project networks that 
have been generated by ProGenMax  [24]. Schwindt  [24] 
developed ProGenMan based on the problem generator 
ProGen  [18]. Kolisch and Sprecher  [18] are supposed to be 
representative of real project scheduling problems. On those 
problems, activities durations are precisely defined, thus we 
have added a relative uncertainty range of 20% to obtain 
intervals. 

Table 2 presents the performance of the proposed 
algorithm on libraries of project networks, with 
respectively, 12, 22, 32, 52, 102 and 202 activities (on 360, 
360, 270, 1170, 90 and 90 instances of project networks, 
respectively). Hence, we have determined the interval of the 
latest starting times of 163080 activities in 2340 project 
networks. The proposed algorithm has been programmed in 
MATLAB (R2006b) and run on a personal computer with 
1.60 GHz processor (Intel Centrino 1.7) and 512 MB of 
RAM. The overall execution times, expressed in seconds, 
are measured. The tested networks can be downloaded from 
the web site  

http://www.wior.uni-
karlsruhe.de/LS_Neumann/Forschung/ProGenMax/rcpspma
x.html. 

 

TABLE 2  
THE EXECUTION TIMES OF ALGORITHM 1 

Testsets name Nb of act. Nb of net. Min. Ave Max.
SM-J10 12 270 0.0732 0.1892 1.5185
SM-J20 22 270 0.1024 0.3823 1.4913
SM-J30 32 270 0.2696 1.2074 4.1159
UBO10 12 90 0.1001 0.175 0.345
UBO20 22 90 0.373 1.1739 2.64
UBO50 52 90 1.8006 8.9072 28.21
UBO100 102 90 30.91 190.42 930.63
UBO200 202 90 598.6 1942.7 8566.3

Testsets C 102 540 4.1714 39.1126 289.0019
Testsets D 102 540 6.2319 29.2679 150.1842

Execution time

 
 
In Table 2, the test sets name, number of activities in 

each test sets, number of tested networks, minimal, average 
and maximal execution times of the algorithm in second are 
shown in columns, respectively. Table 3 compares the 
performance of proposed algorithm with the recent path- 
algorithm proposed by Yakhchali and Ghodsypour  [31] in 
the same test problems.  

 
TABLE 3  

THE COMPARISON BETWEEN EXECUTION TIMES OF ALGORITHM 1 AND 
ALGORITHM IN  [31] 

Testsets name Min. Ave. Max. Min. Ave. Max.
SM-J10 0.0732 0.1892 1.5185 0.0322 0.2238 4.3486
SM-J20 0.1024 0.3823 1.4913 0.1271 37.5291 1348.26
SM-J30 0.2696 1.2074 4.1159 0.3378 543.534 32526.7
UBO10 0.1001 0.175 0.345 0.0364 0.1714 0.9273
UBO20 0.373 1.1739 2.64 0.1599 23.2574 374.063
UBO50 1.8006 8.9072 28.21 9.7412 2586.38 23476.4

Algorithm 1 execution Path algorithm excution

 
 
There is no doubt that the proposed algorithm should be 

better. 
 

VI. CONCLUSION 
This paper aims at computing the minimal latest starting 

times of all activities in networks with generalized 
precedence relations and interval activity and time lag 
durations. After transforming the interval-valued network 
into standardized form, the proposed algorithm can be used 
for determining the minimal latest starting times of all 
activities. Extensive computational results are reported 
using a problem set consisting of 2340 instances with up to 
200 activities. The experimental results have been compared 
with the former algorithms. Hence, the proposed algorithm 
can be used in future project planner software that will cope 
with uncertainty. 

As mentioned by several authors, the main difficulty of 
determining fuzzy project characteristics is the interval 
valued case and does not lie on the introduction of fuzzy 
sets. Thus, the proposed algorithm can be extended to 
networks with fuzzy durations. 
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