
 

  
Abstract— This paper demonstrates a mathematical 

model of a repairable spinning solution preparation 

system, a part of an acrylic yarn manufacturing plant 

with an attempt to improve its availability. The 

methodology for determining the availability of the 

system is based on Markov Modeling.  The failure rates 

of the different subcomponents of the system are taken 

as constant while their repair times are arbitrarily 

distributed. Probability considerations and 

supplementary variable technique are used in 

formulation of the problem. Lagrange’s method for 

partial differential equations is used to solve system 

governing equations. The reliability characteristics are 

evaluated in accordance with practical situation and 

operational behavior of the system is analyzed.  

Availability analysis of the system helped in identifying 

the contributing factors and assessing their impact on 

the system availability.  

 

Index Terms— availability, steady state availability, 

maintainability, mission reliability 

 

I. INTRODUCTION 

ODAY with competition in industry at an all time high, 

reliability of process plants has become a big concern 

for the manufacturers. Process reliability and availability 

gives us the necessary information for improving the system 

productivity and optimizing the cost of production and 

maintenance. 

 In recent past, researchers have recognized to derive more 

benefits in terms of higher productivity and lower 

maintenance costs with the application of 

reliability/availability/maintainability engineering in 

manufacturing industries. Dyer D. [1] analyzed the 

unification of Reliability/Availability/ Repair-ability models 

for Markov system. Kumar D. et all [2] used Markovian 

approach to model the process of feeding system a 

component of sugar industry for its production improvement. 

Islamov R. T. [3] proposed a general method for 

determining the reliability of multiple repairable systems. 

The kolmogorov equations with a large number of 

differential equations are transformed into integral 

differential equations to obtain solutions. Microelsen Q. [4] 

has described the status of the use of reliability technology 

in the process industry for the present time and how to 

proceed for future. Tsai Y. et al [5] presented a method to 
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study the effect of three types of PM actions – mechanical 

service, repair and replacement on availability of a multi-

component system. Gupta P. et al [6] derived some 

interesting reliability characteristics and obtained optimum 

number of maintainers to maintain 14 spinning cells of a 7-

Out-of-14: G chemical system. Sharma R.K. and Kumar S. 

[7] used RAM analysis on a urea production process plant 

with an aim to minimize its failures, plant maintainability 

requirements and optimize equipment availability. Guo H. et 

al [8] applied a more general mathematical model and 

algorithms for the reliability analysis of wind turbines. A 

three parameter weibull failure rate function is used to model 

the problem and the parameters are estimated by maximum 

likelihood and least squares. Umemura and T. Dohi [9] 

analyzed the stochastic behavior of an electronic system 

through an embedded Markov Chain approach in 

continuous-time and discrete-time scales with the purpose to 

maximize its steady-state availability. Several methods have 

been proposed by reliability practitioners for 

reliability/availability analysis of industrial systems under 

different working conditions which can benefit the industry 

in a number of ways. 

In this paper a real life and complex repairable spinning 

solution preparation system, a part of an acrylic yarn 

manufacturing plant is considered for the availability 

analysis. Probability considerations and supplementary 

variable technique are used in formulation of the problem. 

Lagrange’s method for partial differential equations is used 

to solve system governing equations. Numerical results 

based upon the true data collected from industry are 

presented to illustrate the steady state behavior of the system 

under different plant conditions. The results obtained are 

very informative and can also help in improving the 

operational availability of the system.   

II. SYSTEM DESCRIPTION 

The spinning solution preparation system consists of five 

subsystems: A, B, C, D, & E working in series. This system 

prepares spinning solution from dry polymer powder which 

is supplied to it by Polymer Powder Production System. The 

flow diagram representing working of this system is shown 

in figure-1. The variable screw feeder discharges dry 

polymer powder to mass flow meter and this regulates the 

polymer powder flow. This powder flows by gravity to a 

spray chamber, where polymer powder is wetted by a 

metered flow of Dimethyl Formamide (DMF) containing 

DTPA & TiO2 as desired. A heater is provided on the DMF 

line to achieve the desired mixing temperature. The polymer 

wetted out with solvent then passes through a screw type 

mixer for thorough mixing, which also transfer this well 

mixed solution to a jacketed blend tank where an agitator 

blends out mixing irregularities before it discharged into the 
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solution storage tank. This solution storage tank serves the 

dual purposes: it supplies the solution continuously, and 

goes on accumulating buffer solution which it can supply for 

about four hours in case any unit/subsystem poisoned prior 

to the solution storage tank breaks down. The solution from 

storage tank is pumped to solution heater with the help of 

gear pumps. Next the solution from solution heater goes to 

the filter presses (FPs), which are six units working in 

parallel for removing impurities and un-reacted polymer. 

Finally the filtered spinning solution is pumped to the 

spinning area for its next continued processing.  

 

    Dry Polymer Powder               Dry Polymer Powder 
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                              Spinning solution 

                                Fig. 1.  Process Flow Diagram 

 

The following notations and assumptions are addressed for 

the purpose of mathematical analysis of availability of the 

system.     

III NOTATIONS AND ASSUMPTIONS 

A    NOTATIONS 

Subsystem A: consists of two identical items ( 2,1, =iAi ) 

working in parallel. Each item further consists of two units: 

spray chamber & screw type mixer working in series. On 

failure of its one unit A1 or A2, the full system will work with 

full capacity upto four hours as the storage tank (subsystem-

C) can supply the extra buffer solution for this duration of 

time. But in case the repair is not completed within the target 

time, the system will start working under reduced capacity. 

Subsystem B: consists of one unit namely blend tank 

subjected to major failures only. 

Subsystem C: consists of one unit namely solution storage 

tank which can supply the extra stored solution upto four 

hours and it never fails. 

Subsystem D: consists of two identical solution heaters, one 

is in working state and another is in standby state. Thus this 

subsystem never fails. 

Subsystem E: consists of six identical filter presses (Ei ,i 

=1,2,..,6). Out of six units, normally one press remains under 

either preventive maintenance (PM) or corrective 

maintenance (CM) and the system with the rest of five 

presses works at full capacity.  As timely scheduled PM and 

prompt CM is initiated, it is appropriate to assume that at the 

most two presses may remain under PM and CM in parallel. 

With four presses the system works at reduced capacity.  
o    : subsystem/component is operative. 

g    : subsystem/component is good but not operative.  

d    : subsystem/component is working in degraded state 

on failure of its one unit and the failed unit is under 

repair.  
r     : subsystem/component is under repair. 

mm

iiA
,

3, −  : indicates the working of the parts iA  & iA −3  

pertaining to subsystem A ( i = 1,2 ; m = o, g , r).The 

ordered pairs (
m

i
) and (

m

i−3
) refer the status of the parts 

iA  

&
iA −3
 with respect to m.  

mm

jjA
,

3, −  : identical to 
mm

iiA
,

3, − , and  j = i,  i.e. j is assigned 

the same index as is assigned to i in state-1 
nX : (X = B, E; φ,,,, drgon =  where go,=φ ) represents 

the status of the subsystems B and E with respect to n.  

iλ : refers respective failure rate of items 1A  & 2A . Each 

iA  consists of two units 1iA  & 2iA  (working in series) and 

having failure rates 1iλ  and 2iλ  such that iλ = 1iλ + 2iλ , ( i 

= 1, 2) . 

kλ : refers respective failure rate of the units B and E, (k=3, 

4). 

( )xiµ , ( )xiη :  refer respective repair rate and pdf of repair 

time of the units/subsystems A1,  A2,  B and E, and has an 

elapsed repair time x ,  ( i = 1,2, 3, 4). 

( )tP0
 :  probability that the system  is operating with full 

capacity at time ‘t’. 

( )txPi ,  : probability that the system is in  state ‘i’ at time 

‘t’ , and has an elapsed  repair time x, ( i = 1,2,…., 8).  

( )tQ  : probability of the system being in failed state at 

time ‘t’ conditioned that t › τ, where τ is the mission repair 

time. 

M ( )t;τ  : mission reliability function.    

B ASSUMPTIONS 

i     All the units are initially operating and are in good state. 

ii)   Each unit has two states viz., good and failed 

iii)  Each unit is as good as new after repair. 

iv)  The failure rates are constant and the repair times are     

       arbitrarily distributed. 

v)   Failure and repair events are statistically independent. 

vi)  Whenever a unit fails its repair begins immediately. 

vii) Concurrent repair can takes place when more than two  

       subsystems are in failed states as independent repair     

       facilities are available for individual subsystems. 

viii) Maximum two subsystems will come to failed states at  

       the same time because repair of failed units begins   

       immediately and is carried out quickly.  
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The state transition diagram as shown in Fig. 2 is established 

using the above notations and assumptions, see Annexure-I  

 

IV. MATHEMATICAL ANALYSIS OF THE SYSTEM 

Probability considerations give the following differential-

difference equations associated with the transition diagram: 

( ) ( ) ( )tStPTtP
dt

d
ii 0000 =+                (1) 

( ) ( ) ( )txStxPxT
tx

ii ,, 111 =




 +
∂
∂

+
∂
∂

       (2) 

( ) ( ) ( )txStxPx
tx

i ,, 223 =




 +
∂
∂

+
∂
∂

µ        (3) 

( ) ( ) ( )txStxPxT
tx

ii ,, 332 =




 +
∂
∂

+
∂
∂

       (4) 

( ) ( ) ( )txPtxPxT
tx

ii ,, 1343 −=




 +
∂
∂

+
∂
∂

λ      (5) 

( ) ( ) ( )txPtxPxT
tx

i ,, 1354 λ=




 +
∂
∂

+
∂
∂

      (6) 

( ) ( ) ( ) ( )txPtxPtxPxT
tx

ii ,,, 31465 λλ +=




 +
∂
∂

+
∂
∂

 (7) 

( ) ( ) ( ) ( )txPxtxPx
tx

ii ,, 473 µµ =




 +
∂
∂

+
∂
∂

−     (8) 

( ) ( ) ( )txPtxPxT
tx

,, 3386 λ=




 +
∂
∂

+
∂
∂

      (9) 

( )
0=

dt

tdQ
   for     t ‹ τ   

= ( ) ( ) ( )∫ ∫∑∫ ++
=

t t

k

k

t

dxtxPdxtxPdxtxP
τ ττ

,,, 8

5

4

2                                         

    for     t › τ                                             (10) 

With initial and boundary conditions: 

( ) 100 =P   ( ) 00, =xPj   for   8,.......,2,1=j     

( ) ( )tPtP i 01 ,0 λ=    ( ) ( )tPtP 032 ,0 λ=  

( ) ( )tPtP 043 ,0 λ=   ( ) ( )dxtxPtP i ∫−= ,,0 134 λ  

( ) ( )dxtxPtP ∫= ,,0 135 λ

( ) ( ) ( )dxtxPdxtxPtP i ∫∫ += ,,,0 3146 λλ   

( ) 0,07 =tP    ( ) ( )dxtxPtP ∫= ,,0 338 λ      (11) 

Where 

( ) ( ) ( ) ( ) ( ) ( ) ( )dxtxPxdxtxPxdxtxPxtS ii ∫∫∫ ++= ,,, 342310 µµµ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )txPxtxPxtxPxtPtxS iii ,,,, 64534301 µµµλ +++= −

( ) ( ) ( ) ( ) ( ) ( )txPxtxPxtPtxS ii ,,, 845032 µµλ ++=  

( ) ( ) ( ) ( ) ( ) ( )txPxtxPxtPtxS ii ,,, 836043 µµλ ++=  

430 λλλ ++= iiT  

( ) ( )xxT iii µλλλ +++= − 4331

( ) ( )xxT ii 432 µλλ ++=  

( ) ( ) ( )xxxT iii −+= 33 µµ    

( ) ( ) ( )xxxT ii 34 µµ +=  

( ) ( ) ( )xxxT ii 45 µµ +=     

( ) ( ) ( )xxxT i 436 µµ +=  

2,1=i  for all the above equations. 

 

A SOLUTION OF EQUATIONS: 

Equation (1) is a linear differential equation of first order 

and other equations (2) - (9) are linear partial differential 

equations of first order. Solving the above system of 

equations yield the state probabilities: 
 

( ) ( )[ ]∫+= −
dtetSetP
tT

i

tT ii 00

00 1               (12) 

( ) ( ) ( ) ( ) ( )





 ∫+−∫= ∫

−
dxetxSxtPetxP

dxxT

ii

dxxT ii 11

,, 101 λ      (13) 

( ) ( ) ( ) ( ) ( )





 ∫+−∫= ∫

−
dxetxSxtPetxP

dxx

i

dxx 33

,, 2032

µµ
λ    (14) 

( ) ( ) ( ) ( ) ( )





 ∫+−∫= ∫

−
dxetxSxtPetxP

dxxT

i

dxxT ii 22

,, 3043 λ (15) 

 ( ) ( ) ( ) ( ) ( )





 ∫+−∫= ∫−−

−
dxetxPxtPetxP

dxxT

ii

dxxT ii 33

,, 13134 λλ  (16) 

( ) ( ) ( ) ( ) ( )





 ∫+−∫= ∫

−
dxetxPxtPetxP

dxxTdxxT ii 44

,, 13135 λλ  (17) 

( ) ( ) ( ) ( )[ ]xtPxtPetxP i

dxxT i −+−∫=
−

3146

5

, λλ         

 
( ) ( ) ( )( ) ( )





 ∫+∫+ ∫

−
dxetxPtxPe

dxxT

i

dxxT ii 55

,, 313 λλ     (18) 

( ) ( ) ( ) ( ) ( )





 ∫∫= ∫

−−−
dxetxPxetxP

dxx

i

dxx Ii 33

,, 47

µµ
µ         (19) 

( ) ( ) ( ) ( ) ( )





 ∫+−∫= ∫

−
dxetxPxtPetxP

dxxTdxxT 66

,, 33338 λλ   (20) 

 

In the above state probabilities obtained, probabilities P4(.), 

P5(.), P6(.) are given in terms of P1(.) & P3(.),and P7(.) and 

P8(.) are given in terms of P4(.) & P3(.) respectively. After 

substituting the values of P6(.) and P8 (.), equation (15) gives 

the probability P3(.) in terms of P0(.) and P1 (.). On solving 

equations (16)-(20) yield probabilities Pi (.), ( i = 4,5,…,8) 

in terms of P0(.) and P1 (.). With substituting the values of P4 

(.), P5 (.), and P6 (.) in terms of P0(.) and P1 (.), the equation 

(13) gives the value of P1 (.) in terms of P0(.). Again on 

solving the above equations, all probabilities Pi (.), ( i = 

2,3,…,8) are obtained in terms of P0(.) which is given by 

integral equation (12). 

 

Equation-(10) on integration yields: 

( ) ( ) ( ) ( )∫ ∫∫ ∫∑∫ ∫ 









+










+










=

=

t tt t

k

k

t t

dtdxtxPdtdxtxPdtdxtxPtQ
0

8

0

5

40

2 ,,  ,
τττ

The expressions to determine mission reliability function  

M (τ ; t) and availability function A(t) are obtained as: 

M (τ ; t)   =    ( )tQ−1     

( ) ( ) ( )∫ ∫∫ ∫ ∑∫ ∫ 







−








−








−=

=

t tt t

k

k

t t

dtdxtxPdtdxtxPdtdxtxP
0

8

0

5

40

2 ,,  ,1
τττ

                                                                                                    

                                                                                          (21) 
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A (t)        =    1     if  t ‹ τ  

   =  ( ) ( )dxtxPtP
i

i∫ ∑
=

+
7,6,3,1

0 ,  if  t ›τ            (22) 

The Mission Repairability Function (
iMR ) i.e. the 

probability of a system returning to operative state from 

critical states (i = 2,5,8) & 4 in some specified time ‘τ ’ are 

given by relations 23 & 24 respectively. 

( )∫=
τ

η
0

3 dxxMRi ,  i = 2,5,8                (23) 

( )∫ −=
τ

η
0

34 dxxMR i ,  i = 1,2           (24) 

B SPECIAL CASES: 
 

a) STEADY STATE AVAILABILITY: 

When t → ∞, 0→
∂
∂
t

and
dt

d
 equations (1) – (9) reduces to: 

ii SPT 000 =                                  (25) 

( ) ( ) ( )xSxPxT
x

ii 111 =




 +
∂
∂

             (26) 

( ) ( ) ( )xSxPx
x

i223 =




 +
∂
∂

µ              (27) 

( ) ( ) ( )xSxPxT
x

ii 332 =




 +
∂
∂

         (28) 

( ) ( ) ( )xPxPxT
x

ii 1343 −=




 +
∂
∂

λ         (29) 

( ) ( ) ( )xPxPxT
x

i 1354 λ=




 +
∂
∂

         (30) 

( ) ( ) ( ) ( )xPxPxPxT
x

ii 31465 λλ +=




 +
∂
∂

    (31) 

( ) ( ) ( ) ( )xPxxPx
x

ii 473 µµ =




 +
∂
∂

−        (32) 

( ) ( ) ( )xPxPxT
x

3386 λ=




 +
∂
∂

         (33) 

Solving recursively the above system of equations, we get 

the state probabilities: 

( ) ( ) ( ) ( )





 ∫∫= ∫

−
dxexSexP

dxxT

i

dxxT ii 11

11      (34) 

( ) ( ) ( ) ( )





 ∫∫= ∫

−
dxexSexP

dxx

i

dxx 33

22

µµ
     (35) 

( ) ( ) ( ) ( )





 ∫∫= ∫

−
dxexSexP

dxxT

i

dxxT ii 22

33      (36) 

( ) ( ) ( ) ( )





 ∫∫= ∫−

−
dxexPexP

dxxT

i

dxxT ii 33

134 λ     (37) 

( ) ( ) ( ) ( )





 ∫∫= ∫

−
dxexPexP

dxxTdxxT ii 44

135 λ     (38) 

( ) ( ) ( ) ( )( ) ( )





 ∫+∫= ∫

−
dxexPxPexP

dxxT

i

dxxT ii 55

3136 λλ    (39) 

( ) ( ) ( ) ( ) ( )





 ∫∫= ∫

−−−
dxexPxexP

dxx

i

dxx Ii 33

47

µµ
µ         (40) 

( ) ( ) ( ) ( )





 ∫∫= ∫

−
dxexPexP

dxxTdxxT 66

338 λ             (41) 

Arranging as in previous section , all the probabilities Pi(.) , i 

= 1,2,…,8  are obtained in terms of ‘P0’ which can be 

obtained using the normalizing condition i.e., the sum of all 

the probabilities is equal to one. The steady state availability 

of the system ( SSA ) in case repair time of subsystem-B 

exceeds mission time is given by: 
 

( )∫ ∑
=

+=
7,6,3,1

0

i

iSS dxxPPA             (42) 

b)  STEADY STATE AVAILABILITY WITH CONSTANT 

TRANSITION RATES: 

 

The state probabilities are obtained as: 

0PMP ii =   For    i = 1, 2,…,8 

Where 

430 λλλ ++= iiT  

iiiT µλλλ +++= − 4331
   

432 µλλ ++= iiT  

iiiT −+= 33 µµ         

34 µµ += iiT  

45 µµ += iiT         

436 µµ +=iT  

6

33

5

21
TT

TK
i

ii
i

µλµλ
−−=    









++−−= −−

i

i

ii
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i

i

i
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4

4

33

3
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5

44
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µλµλµλµλµλ
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4

4
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3
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1
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M

i

i

i

i µλλµµ
µ
λ
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i

i
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M
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M

5

1

1

4
3 1
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i

i

T

M
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3

33

4
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λ

  

iT

M
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4

33

5

λ
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( )314

5
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1
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T
M i

i
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i

iMM
−
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4
7 µ

µ
   

6

33
8

T

M
M

λ
=  

2,1=i  for the above equations.   
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Using normalizing condition: ∑
=

=
8

0

1
i

iP , we get: 

∑
=

+
=

8

1

0

1

1

i

iM

P  

Availability (
VA )  obtained under constant transition rates 

is given as: 

( ) 152 =SSA   if repair time of subsystem-B ‹  τ    

 

( )

∑

∑

=

=

+

+

=
8

1

7,6,3,1

52

1

1

i

i

i

i

SS

M

M

A  if repair time of subsystem-B ›  τ 

                  = .9515 

Taking 

001.4321 ==== λλλλ and 02.4321 ==== µµµµ  

 

VI OPERATIONAL ANALYSIS 

The effect of failure rates and repair rates of various 

components comprising the system is examined and it is 

found of failure rate (λ3) and repair rate (µ3) of the 

subsystem-B highly affects the long run availability of the 

system. Their impact is shown in figures 3 & 4. 
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Fig. 3. Availability vs. Failure rate of subsystem-B 
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Fig. 4. Availability vs. Repair rate of subsystem-B 

 

VII CONCLUSION 

Expressions for mission reliability function, mission 

repairability and availability of spinning solution preparation 

system are derived. Determining mission reliability function 

is quite useful when quantifying workloads for repair 

facilities assuming that active repair time and total down 

time are approximately the same. The results of Process 

availability analysis highlight that the failure and repair rates 

of the subsystem-B (blend tank) highly affect the long run 

availability of the system. On failure of the blend tank the 

process availability will decrease by 4.85 percent if its repair 

will not be completed in the target time of four hours. 

Therefore it is recommended that a standby blend tank must 

be introduced in the existing system to run the system 

continuously without any interruption. This will also 

facilitate to avoid storage of high volume of buffer stock of 

spinning solution.  
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