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Optimization of Prediction Intervals for Order
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value distributions (see Patel [1]). Mann and Saunders [3]

Abstract—Prediction intervals for order statistics are widely —proposed prediction limits for the Weibull which make use
used fqr rgliability problems. and other related problems. The of only two or three order statistics (see also Mann [4]).
determination of these intervals has been extensively apie and Rademaker [5] used simulation to produce a table

investigated. But the optimality property of these intervals has . . . .
not been fully explored. In this paper, in order to discuss this of factors to use with ML estimates to obtain prediction

problem, a risk function is introduced to compare prediction limits. Lawless [6] proposed prediction limits based on a
intervals. In particular, new-sample prediction based on a conditional confidence approach; his limits require both
previous sample (i.e., when for predicting the future determination of the ML estimates and numerical
observation in a new sample there are available the data only integration. Engelhardt and Bain [7], [8] and Fertig, Meyer
from a previous sample), and within-sample prediction based and Mann [9] have proposed various approximate prediction

on the early observed data from a current experiment (i.e., . . . .
when for predicting the future observation in a sample there limits for the Weibull. Mee and Kushary [10] provided a

are available the early observed data only from that sample). Simulation based procedure for constructing prediction
We restrict attention to families of distributions invariant intervals for Weibull populations for Type Il censored case.
under location and/or scale changes. The technique used hereThis procedure is based on maximum likelihood estimation
for optimization of prediction intervals based on censored data angd requires an iterative process to determine the percentile
emphasizes pivotal quantities relevant for obtaining ancillary - qints Bhaumik and Gibbons [11] and Krishnamoorthy et
statistics. It allows one to solve the optimization problems in a ) .
simple way. An illustrative example is given. al. [12] pr_op_oseq _approxmate met_hoFis _for constructing
upper prediction limits for a gamma distribution.
Index Terms—Order statistic, prediction interval, risk Consider the following examples of practical problems
function, optimization which often require the computation of prediction bounds
and prediction intervals for future values of random
guantities: (i) a consumer purchasing a refrigerator would
. INTRODUCTION like to have a lower bound for the failure time of the unit to
REDICTION of an unobserved random variable is &€ purchased (with less interest in distribution of the
fundamental problem in statistics. Patel [1] provides apopulation of units purchased by other consumers); (ii)
extensive survey of literature on this topic. In the areas #ihancial managers in manufacturing companies need upper
reliability and life-testing, lifetime data are often modeledrediction bounds on future warranty costs; (i) when
via the Exponential and the Weibull in order to mak@lanning life tests, engineers may need to predict the number
predictions about future observations. Prediction intervaf¥ failures that will occur by the end of the test to predict the
are constructed to have a reasonably high probability amount of time that it will be take for a specified number of
containing a specified number of such future observationgnits to fail.
These limits may be helpful in establishing warranty policy, Some applications require a two-sided prediction interval
determining maintenance schedules, etc. For a very readalbiat will, with a specified high degree of confidence, contain
discussion of prediction limits and related intervals, sei@e future random variable of interest. In many applications,
Hahn and Meeker [2]. however, interest is focused on either an upper prediction
Many authors have reported their efforts for constructingound or a lower prediction bound (e.g., the maximum
prediction limits for the Weibull and for the related extremavarranty cost is more important than the minimum, and the
time of the early failures in a product population is more
important than the last ones).
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future events in a sample or process based on early dataction
from that sample or process. If, for exampheunits are _(x-u

followed untilt. and there ar& observable failures{; < X, Fx|uo)= F( ]

< [I& X, one could be interested in predicting the time of the

next failure, Xy:1y; time until | additional failures Xu; (o )u<x<e, —0<y<c, g>0. (1)

number of additional failures in a future intervialt(). . . .
. - If Y is an independent future observation from the same
In general, to predict a future realization of a random

guantity one needs the following: sample of sizen, then W=(Y=X)/S, (or W=
1) A statistical model to describe the population or(Y=X,)/X\) is an invariant statistic, the distribution of
process of interest This model usually consists of awhich does not depend om,6); S is a sufficient statistic
distribution depending on a vector of paramerén this  (or a maximum likelihood estimatey) for o based on
paper, attention is restricted to families of distributiong(:(xl, Xoy.. ey X)-
which are invariant under location and/or scale changes. In
particular, the case may be considered where a previousl- Piecewise-Linear Loss Function
available complete or type Il censored sample is from aWe shall consider the interval prediction problem for the
continuous distribution with cdF((x-£)/0), where F(QJ is  rth order statisticx;, k<r<n, in the same sample of sindor
known but both the location) and scaled) parameters are the situation where the firgtobservations{; < X, < & X,
unknown. For such family of distributions the decisioni<k<n, have been observed. Suppose that we assert that an
problem remains invariant under a group of transformationsterval d=(d,,d,) containsX,. If, as is usually the case, the
(a subgroup of the full affine group) which takes (the purpose of this interval statement is to convey useful
location parameter) and (the scale) intey + b andco, information we incur penalties i, lies aboveX; or if d,
respectively, wherd lies in the range of, ¢ > 0. This falls belowX,. Suppose that these penalties exe;— X)
group acts transitively on the parameter space. and c,(X;—d,), losses proportional to the amounts by which
2) Information on the values of components of th¥, escapes the interval. Sinceandc, may be different the
parametric vecto9. It is assumed that only the functionalpossibility of differential losses associated with the interval
form of the distribution is specified, but some or all of itovershooting and undershooting the tds allowed. In
parameters are unspecified. In such cases ancillary statisticklition to these losses there will be a cost attaching to the
and pivotal quantities, whose distribution does not depetehgth of interval used. For example, it will be more difficult
on the unknown parameters, are used. and more expensive to design or plan when the interval
The technique used here for constructing predictiot=(d,,d,) is wide. Suppose that the cost associated with the
intervals (or bounds) emphasizes pivotal quantities relevanterval is proportional to its length, sayd,—d,). In the
for obtaining ancillary statistics. It represents a simplgpecification of the loss function7 is clearly a ‘nuisance
procedure that can be utilized by non-statisticians, and whiglrameter’ and no alteration to the basic decision problem is
provides easily computable explicit expressions for bofaused by multiplying all loss factors byol/Thus we are

prediction bounds and prediction intervals. The technique |isq to investigate the piecewise-linear loss function
a special case of the method of invariant embedding of

sample statistics into a performance index (see, e.g., Nechval G(d-X) . ad,-d,)
et al. [13]-[20]) applicable whenever the statistical problem o
is invariant under a group of transformations, which acts _ | dd,—-dy)
transitively on the parameter space. r@.d =

X, <dy),
o (r l)

(d <X <dy), (2)

o
((dZ_dl)_'_CQ(Xr_dZ) (Xr>d2).
Il. WITHIN-SAMPLE PREDICTION PROBLEM o o

For within-sample prediction, the problem is to predict . . . .
. The decision problem specified by the informative
future events in a sample or process based on early data . . . .
L experiment density function (1) and the loss function (2) is
from that sample or process. For examplen ifinits are

followed until t, and there ar& observed failuredy, ..., t, In\(l)?arllsr?qti;l:(()j?i:w;rlieggzl;?in?/;::::tsrstreT\?éllonrse' d;lt—:?(l;; fthe
one could be interested in predicting the time of the nelRl P 0

failure t.,q; time until | additional failurest,.,; number of . _
additional failures in a future interval. d”= argminR(8,d), 3)

A. Location-Scale Family of Density Functions where ¥ is a set of invariant interval predictors ¥f,

Consit_jer a sitgation _described by a location-scale famil-*((e,d)=Ee{r(e,d)} is a risk function.
of density functions, indexed by the vector parameter
8=(1,0), wherey and o (>0) are respectively parameters of C. Transformation of the Loss Function
location and scale. For this family, invariant under the group It follows from (2) that the invariant loss functiar{@,d),
G of positive linear transformationz— ax+b with a>0, we can be transformed as follows:
shall assume that there is obtainable (from some informative
experiment) the firsk order statistics,<X,< MIKX, from a r@d)=r(,n), (4)
random sample of sizen with cumulative distribution where
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Vit M, ¥, ALY, (V1 <nV2), oE{r (v, n)}
r(vV,n)=<cne-mV) (7 Vo<V V), o,

V=N, yei,=m Vs, (V1>1,V5), ;'7]\12 vy 3 dydy- (“- ¥ (3, \5) dydv

B\ >
5)
V=(V1,V2), V1=(Xr —Xk)/d, V2=Sk/0', oo
N=(mm). 1=(d= XIS 7=(6 = XIS (6) =[] v Gy v dvduleQm - a2)

D. Risk Function and

It follows from (5) that the risk associated withand 0
can be expressed as

r(v n) =[] v ty v dydyul-6@-Qu,) +cl
R(,d) = Eo{r 8,d)} = E{r (v, n)} e

0 /7\Vp (13)
where
= ¢f [ w719 f(y wdudv, ]
00 Q) = [ waw, (14)
0 o0 0
+of [(4m72%) (4 v dudy, .
02tz [ ¢ f(ww, v,)dv,
+c( ])TI (%, ) dyd ) =z ’ )
Cv7 217 V% 10V, 5) Ovav;,
) [ % 0% w) dydv,
which is constant on orbits when an invariant predictor 00
(decision rule)d is used, wherd(vy,v,) is defined by the W=V, /V,. (16)
joint probability density of the firgt observation; < X, <
& X, andX;, Now oE{ i (V,n)} an, = 0E{ I (V,n)} an, = Oif and only
nl if (10) hold. ThusE{ i’ (V,n)} provided (10) has a solution
fO 2% XX |N’U)=m with 77:<n7, and this is so if 4c/c,>clcy. It is easily
confirmed that thim=(77.,/7,) gives the minimum value of
x[F |1,0)-FX | 1,0 - Fx, | o)™ E{ ¥ (V,n)}. Thus (i) is established.
) If clci+c/c,=21 then the minimum oE{ i (v,n)} in the
x |_| f o5 |1.o)f (% |u,0). (8) region7zzr; occurs wherep,=n,=17. , /7. being determined
= by setting
E. Risk Minimization and Invariant Prediction Rules OE{ ¥ (V,(n.,n. )} on.=0 a7)
The following theorem gives the central result in this
section. and this reduces to
Theorem 1 (Optimal Predictor of X Based onX). GQM.) - [1-Q(.)]1=0, (18)
Suppose thatug, u,) is a random vector having density
function which establishes (ii).0]

o0 - Corollary 1.1 (Minimum Risk of the Optimal Invariant
y (4 y ” Y f(y,)dydy, | (,u;>0), (9) Predictor of X Based orX). The minimum risk is given by
00

wheref is defined byf(vi,v;), and letQ be the probability R(@.d") = Eqfr 0.} = E{r(v.n)}
distribution function ofu,/u,.
(i) If clci+cle,<l then the optimal invariant linear-loss <k
interval predictor o, based oiX is d"=(X+7:Sq X175, § J vy Y dvdy+ CZI I v\ w) dudv,
where 07122
(19)
QfL)=ck, Q@)=1-clc,. (10)

for case (i) withn=(71,77,) as given by (10) and for case (i)
(i) If cletc/c1 then the optimal invariant linear-losswith 7,=r,=n. as given by (11).
interval predictor o, based orX degenerates into a point  proof. These results are immediate from (7) when use is
predictorXc+7. S, where made ofE{ i (V,n)}dn, = 0E{ ¥ (V.n)H a7, = 0 in case (i)
andoE{ 1" (V,(n.,n. )} on. =0 in case (ii). [

Qn.) = /(e +¢y). (11)
2 The underlying reason wigfc;+c/c, acts as a separator of
Proof. From (7) interval and point prediction is that fafc,+clc,21 every
ISBN: 978-988-18210-6-5 WCE 2011

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the World Congress on Engineering 2011 Vol I
WCE 2011, July 6 - 8, 2011, London, U.K.

interval predictor is inadmissible, there existing some point Pr{d”: d < X, <d,| 4 o}
predictor with uniformly smaller risk.
Theorem 2(Optimal Invariant Predictor of XBased on = HQ'(L- ¢ ¢)] - HQ ' (c/c)]. (26)

Xy). Suppose tha#=0 and
Proof. The confidence coefficient fat” corresponding to

V=(ViVo), Vi=(X, =X )/o, V=X, /0, (1,0) is given by
N=(70172), 1= (0= Xi) X 7727 (dy = X))/ X Pr{( % 9 %+m < X < X +1S| 4 0}
(20)
Let us assume thatiy( u,) is a random vector having density =Pr{( vy v i< vyl v, <175}
function

= Hmp) - Hm) = HQ'(L- d ¢)] - HQ™(c/ey)]. (27)

00 00 -1
B By, w{jj " B(q,ug)dqdbb] (.U, >0), (21) This is independent ofd).
00 Theorem 4 (Equivalent Confidence Coefficient fat”

wheref, is defined byf,(v1,v5), and letQ, be the probability Based onXy). Suppose that'=(Vy,Vy) is a random vector

distribution function ofi,/u,. having density functionfy(vy,v,) (v, real, v,>0), wheref, is
(i) If clci+clc,<1 then the optimal invariant Iinear-lossdeIned by
interval predictor of X, based onX is d =((1+71)Xk. f (% % | 160) = 1
(1+n72)%), where BK,r —K)B(r,n—r +1)
Q)=ck,, Qr,)=1-clc,. (22) X [F 04 | 14,0 F (% |11,0) = F(x | 1,0)] ™

(i) If clcytclc21 then the optimal invariant linear-loss B .
interval predictor ofX, based orX, degenerates into a point x[I=F & .o fx |u.o)fx |1o), (28)

predictor (1+7.) Xy, where o ) .
and letH, be the distribution function dV=V,/V,, i.e., the

Q.)=c,/(c,+c,). (23)  probability density function odV is given by
Proof. For the proof we refer to Theorem 11 :w £ (Wi, v )dv 29
Corollary 2.1 (Minimum Risk of the Optimal Invariant bW ~£\é oW V)V, (29)

Predictor of X Based on . The minimum risk is given by
Then the confidence coefficient associated with the optimum
R©,d) = Eefr 8,7} = E{F (v, m)} prediction interval d'=(dydy), where di=(1+7) X
d=(1+77) Xy, is

oo /71Vo 00 00
== § [ ¥d v ¥ dvay+ of [ vy wdudy, Pr{d”: d, < X, <d| 4 0}
00 07V,

(24) = H{ Q- d o] - HIQ'(c/e)l.  (30)

for case (i) witn=(171,77,) as given by (22) and for case (iij Proof. For the proof we refer to Theorem 3.
with m=r,=1. as given by (23). The way in which (26) (or (30)) varies with ¢; andc,,

and the fact that, andc, are the factors of proportionality
associated with losses from overshooting and undershooting
relative to loss involved in increasing the length of interval,

lll. EQUIVALENT CONFIDENCECOEFFICIENT provides an interesting interpretation of confidence interval
For case (i) when we obtain an interval predictodonve  prediction.

may regard the interval as a confidence interval in the
conventional sense and evaluate its confidence coefficient. IV. NEW-SAMPLE PREDICTION PROBLEM
The general result is contained in the following theorem.
Theorem 3(Equivalent Confidence Coefficient fat”
Based onX). Suppose thaV=(Vy,V,) is a random vector
having density functionf(vy,v,) (v1,v.>0) wheref is defined
by (8) and leH be the distribution function &i&=V,/V,, i.e.,
the probability density function & is given by

Proof. For the proof we refer to Corollary 1.1]

For new-sample prediction, data from a past sample are
used to make predictions on a future unit or sample of units
from the same process or population. For example, based on
previous (possibly censored) life test data, one could be
interested in predicting the time to failure of a new item,
time untill failures in a future sample ofi units, or number
of failures by time. in a future sample af units.

mw:.([ ¥ (W5, 15)av,. (25) A. Location-Scale Family of Density Functions

Consider a situation described by a location-scale family
Then the confidence coefficient associated with the optimust density functions, indexed by the vector parameter
prediction interval d=(dy,d;), where di=X+/mnS, 6=(y,0), wherey and o (>0) are respectively parameters of
=X+ 1S, IS location and scale. For this family, invariant under the group
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of positive linear transformationsc— ax+b with a>0, we is invariant under the group of transformations. Thus, the
shall assume that there is obtainable from some informatipeoblem is to find the optimal interval predictor\af

experiment (the firsk order statistics(;<X,< kX, from a
random sample of sizé) a sufficient statisticN],,S,) (or a
maximum likelihood estimatorf, , &, )) for (1,0) based on

X=(Xg, Xa,..., X) with density function

d” = argminR(8,d), (33)
dOo

where @ is a set of invariant interval predictors ¥
R(8,d)=Eg{r(0,d)} is a risk function.
ome,s, | 1, 0) = o2 pl(m, - )/ o, s/ o] C. Transformation of the Loss Function

It follows from (2) that the invariant loss functiar@,d),
—o<m <o, 0<§, <o, —o< >0, g>0. (31) can be transformed as follows:

We are thus assuming that for the family of density functions r@d)y=rev.n), (34)
an induced invariance holds under the groGp of Where

transformations: my-amdb, s—asc or [ - ay, b, QAN Yo, ALY, V, <nV,),
Oy - ag, (@>0). The family of density functions satisfying POV, ) =4 ¢ -, V) TNV <N,),
the above conditions is, of course, the limited one of normal, V= Ny ¥eiy—m, Vs V, >7\V,),
negative exponential, Weibull and gamma (with known

index) density functions. The structure of the problem is, (35)
however, more clearly seen within the general framework. V=(V,Vo), Vi=(Y,-M) /o, V=S /0;

Let Y be an independent future observation from a new
sample.f Y is invariantly predictable theWwW=(Y-M)/S (or N=(1u7), m=(d-M)/S., m=(d—-M.)/S,.
W= (Y - 1)/ o) is a maximal invariant pivotal, conditional (36)

onX. ] ]
D. Risk Function

. ) o It follows from (35) that the risk associated witrand©
We shall consider the interval prediction problem for thga pe expressed as

sth order statisticY;, 1 < s<m, in a future sample of siza

B. Piecewise-Linear Loss Function

for the situation where the firktobservation; < X, < & R(8.d) = Eq{r (0.0)} = E{r (v, m)}
X, 1=k<n, from a past sample of sinehave been observed. 1y
Suppos_e that we assert that an intedet,;,d,) contglns_YS. — 9J‘ J‘ (= v+71%) (¥, W) dvdv,
If, as is usually the case, the purpose of this interval 0

statement is to convey useful information we incur penalties

if d; lies abovey; or if d, falls belowYs. Suppose that these P

penalties are;(d;— Ys) andcy(Ys —dy), losses proportional to * CQ.[ J (4=772) T \p) dudv,

the amounts by whicl; escapes the interval. Sinceandc, 0712V

may be different the possibility of differential losses w o

associated with the interval overshooting and undershooting +c(7 ,—n ])J _[ V% f( v, W) dudv,, (37)
the trueu is allowed. In addition to these losses there will be 0-c

a cost attaching to the length of interval used. For examplﬁhich is constant on orbits when an invariant predictor

it will be more _difficult and more (_expensive to design O(decision rule)d is used, wherd(v.,v,) is defined by the
plan when the intervali=(d;,d) is wide. Suppose that the ioint hrohability density of the firsk observations(; < X, <

cost associated with the interval is proportional to its lengt X, from the past random sample of sizaand thesth

say c(d,~dy). In the specification of the loss functiom,is  order statisticY, in the future sample of size,
clearly a ‘nuisance parameter’ and no alteration to the basic | m

decision problem is caused by multiplying all loss factors by (& % ,....X,Ys | #,0) = (n—.k)' (sDi(m=9)
1/0. Thus we are led to investigate the piecewise-linear loss ' ’ '

function k »
(=Y ody—dy) [ f 65 140t Fx | o)

: g = 20' : (YS < dl), =

- S—1 q_ m-s
r(e,d) - qu dl) (dl SYS < dz), x [F (ys |,U,U)] [1 F (ys |/u!0-)] f (ys |/'Ila-) (38)

o

ad,—d;) . 6(Y;-dy) E. Risk Minimization and Invariant Prediction Rules

+ > (Ys >d,). , . . .

o o The following theorem gives the central result in this

(32) section. _ _ _
Theorem 5Optimal Invariant Predictor of yBased on
The decision problem specified by the informativex). Suppose thatuf, u,) is a random vector having density
experiment density function (31) and the loss function (32)inction
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© o -1 We shall consider the prediction problem Xf for the

W (Y, u )‘H‘ y f(y,u)dydy, | @ real,u, >0), situation where the firdt observations Y& X,< KX, 1< k
0-co < r < n, have been observed. L& be the group of
(39) transformationss=ax (i=1, ...,k r, n, a>0) We are now

. ) .. concerned with optimization of the prediction interval Xpr
wheref is defined byf(vy,v,), and letQ be the probability under the loss function (2)

distribution function ofu,/u,. -
. . _ . _ Let X=(Xg, Xz ..., Xi) andX; > X, for r < n. Then the joint
(i) If clc;+clo<l then the optimal invariant “near'lossprobability density function oX andX, is given by

interval predictor of Y; based onX is d*:(Mk+01&,

Myt h n!
*H1712S), where f (4 X X X |0) = T
Q@ )=cle, Qrp)=1-clc,. (40) . '
(i) If clci+clc,21 then the optimal invariant linear-loss x[F(x 10) = F(x | o)™ - F(x | o)™
interval predictor ofYs based orX degenerates into a point
predictorM,+77. S, where K
‘ x[] 05 19)1 (x 19)
Q7.) = S (6 + ). (42) =1
k
Proof. For the proof we refer to Theorem 1. Z % +(n=K)X,
Corollary 5.1 (Minimum Risk of the Optimal Invariant _ n! 1 oxp — 1=
Predictor of ¥ Based orX). The minimum risk is given by (r=k=-D!(n-r)! gkt o
Oy — Ky oo
R©,d) = Eefr 0,7} = E{F (v, n)} ) " R
X{l—ex;(— r kﬂ {ex;{— r kﬂ . (46)
o0 /]1Vp co 00 o
=- f d , ) dyd
$[ vEy 9 dvdy+ of [wiywaudy,
0 - 01722 X =X
(42) (VAE R SRALS (47)
o
for case (i) withn=(71,/7,) as given by (40) and for case (ii) and
with 7,=n,=n, as given by (41). k
2% +(n=k)X,
Proof. For the proof we refer to Corollary 1.1] s, &
Theorem 6(Equivalent Confidence Coefficient fat” Vo R p : (48)

Based onX). Suppose thaV=(V3,V,) is a random vector

having density functionf(vy,vz) (v real, v,;>0) wheref is yging the invariant embedding technique [13]-[20], we then

defined by (38) and leH be the distribution function of gy iy a straightforward manner that the joint density/gf
W=V4/V,, i.e., the probability density function ¥ is given V, is

by . vy, vo) = f1(vy) f5(vy), (49)
t W=J ¥ (W, v)dv,. (43)  where
0 . (V ) _[1 _ e—vl] r—k—l[e—vl]n—r+l
Then the confidence coefficient associated with the optimum nr= B(r—k,n—-r+1)
prediction interval d'=(d;,d;), where di=M+7:S.
d=M+12,S,, is ) 1 ril r-k-1 (c1)] 07T 34D)
Pr{d”:d < X, <d,| 4 g} T B(r-k,n-r+1) = ‘ ’
= HQ'(L- d o)l - HQ(c/c)l. (44) v, >0, (50)
and
Proof. For the proof we refer to Theorem 31 1 4
f(v,) =——v'e™2, v,>0. (51)

(k)
V. EXAMPLE
It follows from (16) and (49) that
A. Within-Sample Prediction of Based orX

Exponential Distribution Let X;< X,< MI<X, be order ]2‘5 (W v,)cy
statistics of sizer from the exponential distribution with the . 1 Y2/7R2 1%
density o) =<3 =1 ] E fwe) f(v)av,
0
f(x|o) == e{rlj x>0, 0>0.  (45) J] % 4 v dydv,
o o 00
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_ k+1
B(r—-k,n-r+1) [1]
&k r-k-1) 1 2]
T e —
U [L+w(n -r +1+ j)] (3]
It follows from (25) and (49) that "
Oy=[ v €wy W dy= [y f(ww) f(w)dv, o
0 0
-k
B(r—-k,n-r+1) (6l
r=k=1/ ¢ — I — .
xz(r K 1)(‘1)' o 63
o\ [L+wn -1 +1+j)]

If clci+c/c,<1 then the optimal invariant linear-loss!él
interval predictor o, based orX is given by

(9]

d' =Xt S Xt 7259, (54)
where
n (10]
c
m=arg [ qwdw=— (55)
0 4 [11]
and
m c [12]
n, =ar f gwdw=1-—|. (56)
0 C2

The confidence coefficient associated
prediction interval d'=(dy,d,),
d=X+17,S, is given by

with the optimuHsl
where  di=X+mS,

Iy
Pr{d”: d < X, <dp| 440} = Hrpol = Hml = [ wdw 11
i

(57) 1%

VI.

- . L é16]

In many statistical decision problems it is reasonable co
confine attention to rules that are invariant with respect to a
certain group of transformations. If a given decision problem
admits a sufficient statistic, it is well known that the class of
invariant rules based on the sufficient statistic is essentialtyr]
complete in the class of all invariant rules under some
assumptions. This result may be used to show that if there
exists a minimax invariant rule among invariant rules based
on sufficient statistic, it is minimax among all invariant
rules. In this paper, we consider statistical prediction
problems which are invariant with respect to a certain gr015|108]
of transformations and construct the optimal invariant
interval predictors. The method used is that of the invariant
embedding of sample statistics in a loss function in order
form pivotal quantities which allow one to eliminate
unknown parameters from the problem. This method is a
special case of more general considerations applicaEE%]
whenever the statistical problem is invariant under a group
of transformations, which acts transitively on the parameter
space.

CONCLUSION
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