
 

  
Abstract—Prediction intervals for order statistics are widely 

used for reliability problems and other related problems. The 
determination of these intervals has been extensively 
investigated. But the optimality property of these intervals has 
not been fully explored. In this paper, in order to discuss this 
problem, a risk function is introduced to compare prediction 
intervals. In particular, new-sample prediction based on a 
previous sample (i.e., when for predicting the future 
observation in a new sample there are available the data only 
from a previous sample), and within-sample prediction based 
on the early observed data from a current experiment (i.e., 
when for predicting the future observation in a sample there 
are available the early observed data only from that sample). 
We restrict attention to families of distributions invariant 
under location and/or scale changes. The technique used here 
for optimization of prediction intervals based on censored data 
emphasizes pivotal quantities relevant for obtaining ancillary 
statistics. It allows one to solve the optimization problems in a 
simple way. An illustrative example is given.  
 

Index Terms—Order statistic, prediction interval, risk 
function, optimization 
 

I. INTRODUCTION 

REDICTION of an unobserved random variable is a 
fundamental problem in statistics. Patel [1] provides an 

extensive survey of literature on this topic. In the areas of 
reliability and life-testing, lifetime data are often modeled 
via the Exponential and the Weibull in order to make 
predictions about future observations. Prediction intervals 
are constructed to have a reasonably high probability of 
containing a specified number of such future observations. 
These limits may be helpful in establishing warranty policy, 
determining maintenance schedules, etc. For a very readable 
discussion of prediction limits and related intervals, see 
Hahn and Meeker [2]. 

Many authors have reported their efforts for constructing 
prediction limits for the Weibull and for the related extreme 
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value distributions (see Patel [1]). Mann and Saunders [3] 
proposed prediction limits for the Weibull which make use 
of only two or three order statistics (see also Mann [4]). 
Antle and Rademaker [5] used simulation to produce a table 
of factors to use with ML estimates to obtain prediction 
limits. Lawless [6] proposed prediction limits based on a 
conditional confidence approach; his limits require both 
determination of the ML estimates and numerical 
integration. Engelhardt and Bain [7], [8] and Fertig, Meyer 
and Mann [9] have proposed various approximate prediction 
limits for the Weibull. Mee and Kushary [10] provided a 
simulation based procedure for constructing prediction 
intervals for Weibull populations for Type II censored case. 
This procedure is based on maximum likelihood estimation 
and requires an iterative process to determine the percentile 
points. Bhaumik and Gibbons [11] and Krishnamoorthy et 
al. [12] proposed approximate methods for constructing 
upper prediction limits for a gamma distribution. 

Consider the following examples of practical problems 
which often require the computation of prediction bounds 
and prediction intervals for future values of random 
quantities: (i) a consumer purchasing a refrigerator would 
like to have a lower bound for the failure time of the unit to 
be purchased (with less interest in distribution of the 
population of units purchased by other consumers); (ii) 
financial managers in manufacturing companies need upper 
prediction bounds on future warranty costs; (iii) when 
planning life tests, engineers may need to predict the number 
of failures that will occur by the end of the test to predict the 
amount of time that it will be take for a specified number of 
units to fail. 

Some applications require a two-sided prediction interval 
that will, with a specified high degree of confidence, contain 
the future random variable of interest. In many applications, 
however, interest is focused on either an upper prediction 
bound or a lower prediction bound (e.g., the maximum 
warranty cost is more important than the minimum, and the 
time of the early failures in a product population is more 
important than the last ones). 

Conceptually, it is useful to distinguish between ‘new-
sample’ prediction and ‘within-sample’ prediction. For new-
sample prediction, data from a past sample are used to make 
predictions on a future unit or sample of units from the same 
process or population. For example, based on previous 
(possibly censored) life test data, one could be interested in 
predicting the time to failure of a new unit, time until r 
failures in a future sample of m units, or number of failures 
by time t• in a future sample of m units. 

For within-sample prediction, the problem is to predict 
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future events in a sample or process based on early data 
from that sample or process. If, for example, n units are 
followed until t• and there are k observable failures, X1 < X2 
< ⋅⋅⋅< Xk, one could be interested in predicting the time of the 
next failure, X(k+1); time until l additional failures, X(k+l); 
number of additional failures in a future interval (t•,t

•). 
In general, to predict a future realization of a random 

quantity one needs the following:  
1) A statistical model to describe the population or 

process of interest. This model usually consists of a 
distribution depending on a vector of parameters θθθθ. In this 
paper, attention is restricted to families of distributions 
which are invariant under location and/or scale changes. In 
particular, the case may be considered where a previously 
available complete or type II censored sample is from a 
continuous distribution with cdf F((x-µ)/σ), where F(⋅) is 
known but both the location (µ) and scale (σ) parameters are 
unknown. For such family of distributions the decision 
problem remains invariant under a group of transformations 
(a subgroup of the full affine group) which takes µ  (the 
location parameter) and σ  (the scale) into cµ + b and cσ, 
respectively, where b lies in the range of µ,  c > 0. This 
group acts transitively on the parameter space.  

2) Information on the values of components of the 
parametric vector θθθθ. It is assumed that only the functional 
form of the distribution is specified, but some or all of its 
parameters are unspecified. In such cases ancillary statistics 
and pivotal quantities, whose distribution does not depend 
on the unknown parameters, are used. 

The technique used here for constructing prediction 
intervals (or bounds) emphasizes pivotal quantities relevant 
for obtaining ancillary statistics. It represents a simple 
procedure that can be utilized by non-statisticians, and which 
provides easily computable explicit expressions for both 
prediction bounds and prediction intervals. The technique is 
a special case of the method of invariant embedding of 
sample statistics into a performance index (see, e.g., Nechval 
et al. [13]-[20]) applicable whenever the statistical problem 
is invariant under a group of transformations, which acts 
transitively on the parameter space. 

II.  WITHIN-SAMPLE PREDICTION PROBLEM  

For within-sample prediction, the problem is to predict 
future events in a sample or process based on early data 
from that sample or process. For example, if n units are 
followed until tk and there are k observed failures, t1, …, tk, 
one could be interested in predicting the time of the next 
failure tk+1; time until l additional failures, tk+l; number of 
additional failures in a future interval. 

A. Location-Scale Family of Density Functions 

Consider a situation described by a location-scale family 
of density functions, indexed by the vector parameter 
θθθθ=(µ,σ), where µ and σ (>0) are respectively parameters of 
location and scale. For this family, invariant under the group 
G of positive linear transformations: x→ax+b with a>0, we 
shall assume that there is obtainable (from some informative 
experiment) the first k order statistics X1<X2< ⋅⋅⋅ <Xk from a 
random sample of size n with cumulative distribution 

function 
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If Y is an independent future observation from the same 
sample of size n, then W= kk SXY /)( −  (or W= 

kk XXY /)( − ) is an invariant statistic, the distribution of 

which does not depend on (µ,σ);  Sk is a sufficient statistic 
(or a maximum likelihood estimatorkσ) ) for σ  based on 

X=(X1, X2,…, Xk). 

B. Piecewise-Linear Loss Function 

We shall consider the interval prediction problem for the 
rth order statistic Xr, k<r≤n, in the same sample of size n for 
the situation where the first k observations X1 < X2 < ⋅⋅⋅< Xk, 
1≤k<n, have been observed. Suppose that we assert that an 
interval d=(d1,d2) contains Xr. If, as is usually the case, the 
purpose of this interval statement is to convey useful 
information we incur penalties if d1 lies above Xr or if d2 
falls below Xr. Suppose that these penalties are c1(d1− Xr) 
and c2(Xr−d2), losses proportional to the amounts by which 
Xr escapes the interval. Since c1 and c2 may be different the 
possibility of differential losses associated with the interval 
overshooting and undershooting the true µ is allowed. In 
addition to these losses there will be a cost attaching to the 
length of interval used. For example, it will be more difficult 
and more expensive to design or plan when the interval 
d=(d1,d2) is wide. Suppose that the cost associated with the 
interval is proportional to its length, say c(d2−d1). In the 
specification of the loss function, σ is clearly a ‘nuisance 
parameter’ and no alteration to the basic decision problem is 
caused by multiplying all loss factors by 1/σ. Thus we are 
led to investigate the piecewise-linear loss function   
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The decision problem specified by the informative 
experiment density function (1) and the loss function (2) is 
invariant under the group G of transformations. Thus, the 
problem is to find the best invariant interval predictor of Xr, 

 

),,( min arg dd
d

θθθθR
D∈

∗ =    (3) 

 

where D is a set of invariant interval predictors of Xr, 
R(θθθθ,d)=Eθθθθ{ r(θθθθ,d)} is a risk function. 

C. Transformation of the Loss Function 

It follows from (2) that the invariant loss function, r(θθθθ,d), 
can be transformed as follows: 
 

),,(),( ηηηηθθθθ Vd rr &&=  (4) 

where 
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V=(V1,V2),   V1= σ/)( kr XX − ,   V2= σ/kS ; 
 

    ηηηη=(η1,η2),   η1= kk SXd /)( 1 − ,   η2= kk SXd /)( 2 − . (6) 

D. Risk  Function 

It follows from (5) that the risk associated with d and θθθθ 
can be expressed as 
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which is constant on orbits when an invariant predictor 
(decision rule) d is used, where f(v1,v2) is defined by the 
joint probability density of the first k observations X1 < X2 < 
⋅⋅⋅< Xk and Xr, 
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E. Risk Minimization and Invariant Prediction Rules 

The following theorem gives the central result in this 
section. 

Theorem 1 (Optimal Predictor of Xr Based on X). 
Suppose that (u1, u2) is a random vector having density 
function 
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where f is defined by f(v1,v2), and let Q be the probability 
distribution function of u1/u2.  

(i) If c/c1+c/c2<1 then the optimal invariant linear-loss 
interval predictor of Xr based on X is d*=(Xk+η1Sk, Xk+η2Sk), 
where 
 

    ./1)Q(     ,/)( 2211 ccccQ −== ηη  (10) 
 

(ii) If c/c1+c/c2≥1 then the optimal invariant linear-loss 
interval predictor of Xr based on X degenerates into a point 
predictor Xk+ •η Sk, where  
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{ }
1

),(

η∂
∂ ηηηηVrE &&

 

∫ ∫∫ ∫
∞ ∞∞

−=
0 0

21212

0 0

212121 ),(),(
21

dvdvvvfvcdvdvvvfvc
vη

 

 

  ],)([),( 11

0 0

21212 cQcdvdvvvfv −= ∫ ∫
∞ ∞

η  (12) 

and  
 

{ }
,]))(1([),(

),(

0

22

0

21212
2

∫ ∫
∞ ∞

+−−=
∂

∂
cQcdvdvvvfv

rE η
η

ηηηηV&&
 

(13) 
where 

  ∫=
η

η
0

,)()( dwwqQ  (14) 

 

,

),(

),(

)(

0 0

21212

0

222
2
2

∫ ∫

∫
∞ ∞

∞

=

dvdvvvfv

dvvwvfv

wq  (15) 

 

./ 21 VVW =  (16) 
 

Now ∂E{ r&& (V,ηηηη)}/ ∂η1 = ∂E{ r&& (V,ηηηη)}/ ∂η2 = 0 if and only 
if (10) hold. Thus, E{ r&& (V,ηηηη)} provided (10) has a solution 
with η1<η2 and this is so if 1−c/c2>c/c1. It is easily 
confirmed that this ηηηη=(η1,η2) gives the minimum value of 
E{ r&& (V,ηηηη)}. Thus (i) is established.  

If c/c1+c/c2≥1 then the minimum of E{ r&& (v,η)} in the 
region η2≥η1 occurs where η1=η2= •η , •η  being determined 

by setting  
 

 ∂E{ r&& (V,( •• ηη , ))}/ ∂ •η =0  (17) 
 

and this reduces to 
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which establishes (ii).    

Corollary 1.1 (Minimum Risk of the Optimal Invariant 
Predictor of Xr Based on X). The minimum risk is given by 
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for case (i) with ηηηη=(η1,η2) as given by (10) and for case (ii) 
with η1=η2= •η  as given by (11). 

Proof. These results are immediate from (7) when use is 
made of ∂E{ r&& (V,ηηηη)}/ ∂η1 = ∂E{ r&& (V,ηηηη)}/ ∂η2 = 0 in case (i) 
and ∂E{ r&& (V,( •• ηη , ))}/ ∂ •η =0 in case (ii).    

The underlying reason why c/c1+c/c2 acts as a separator of 
interval and point prediction is that for c/c1+c/c2≥1 every 

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 

interval predictor is inadmissible, there existing some point 
predictor with uniformly smaller risk.  

Theorem 2 (Optimal Invariant Predictor of Xr Based on 
Xk). Suppose that µ=0 and 
 

V=(V1,V2),   V1= σ/)( kr XX − ,   V2= σ/kX ; 
 

ηηηη=(η1,η2),   η1= kk XXd /)( 1 − ,   η2= kk XXd /)( 2 − . 

(20) 
Let us assume that (u1, u2) is a random vector having density 
function 
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where f0 is defined by f0(v1,v2), and let Q0 be the probability 
distribution function of u1/u2. 
 

(i) If c/c1+c/c2<1 then the optimal invariant linear-loss 
interval predictor of Xr based on Xk is d*=((1+η1)Xk, 

(1+η2)Xk), where 
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(ii) If c/c1+c/c2≥1 then the optimal invariant linear-loss 
interval predictor of Xr based on Xk degenerates into a point 
predictor (1+ )•η Xk, where 
 

 )./()( 2120 cccQ +=•η  (23) 
 

Proof. For the proof we refer to Theorem 1.    
Corollary 2.1 (Minimum Risk of the Optimal Invariant 

Predictor of Xr Based on Xk). The minimum risk is given by 
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for case (i) with ηηηη=(η1,η2) as given by (22) and for case (ii) 
with η1=η2= •η  as given by (23). 

Proof. For the proof we refer to Corollary 1.1.    

III.  EQUIVALENT CONFIDENCE COEFFICIENT 

For case (i) when we obtain an interval predictor for Xr we 
may regard the interval as a confidence interval in the 
conventional sense and evaluate its confidence coefficient. 
The general result is contained in the following theorem. 

Theorem 3 (Equivalent Confidence Coefficient for d∗ 
Based on X). Suppose that V=(V1,V2) is a random vector 
having density function  f(v1,v2) (v1,v2>0) where f is defined 
by (8) and let H be the distribution function of W=V1/V2, i.e., 
the probability density function of W is given by 
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Then the confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1=Xk+η1Sk,  
d2=Xk+η2Sk, is 
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Proof. The confidence coefficient for d∗ corresponding to 
(µ,σ) is given by 
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This is independent of (µ,σ).    
Theorem 4 (Equivalent Confidence Coefficient for d∗ 

Based on Xk). Suppose that V=(V1,V2) is a random vector 
having density function  f0(v1,v2) (v1 real, v2>0), where f0 is 
defined by 
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and let H0 be the distribution function of W=V1/V2, i.e., the 
probability density function of W is given by 
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Then the confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1=(1+η1) Xk,  
d2=(1+η2)Xk, is 
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Proof. For the proof we refer to Theorem 3.     
The way in which (26) (or (30)) varies with c, c1 and c2, 

and the fact that c1 and c2 are the factors of proportionality 
associated with losses from overshooting and undershooting 
relative to loss involved in increasing the length of interval, 
provides an interesting interpretation of confidence interval 
prediction. 

IV.  NEW-SAMPLE PREDICTION PROBLEM  

For new-sample prediction, data from a past sample are 
used to make predictions on a future unit or sample of units 
from the same process or population. For example, based on 
previous (possibly censored) life test data, one could be 
interested in predicting the time to failure of a new item, 
time until l failures in a future sample of m units, or number 
of failures by time t• in a future sample of m units. 

A. Location-Scale Family of Density Functions 

Consider a situation described by a location-scale family 
of density functions, indexed by the vector parameter 
θθθθ=(µ,σ), where µ and σ (>0) are respectively parameters of 
location and scale. For this family, invariant under the group 
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of positive linear transformations: x→ax+b with a>0, we 
shall assume that there is obtainable from some informative 
experiment (the first k order statistics X1<X2< ⋅⋅⋅ <Xk from a 
random sample of size n) a sufficient statistic (Mk,Sk) (or a 
maximum likelihood estimator (kµ) , kσ) )) for (µ,σ)  based on 

X=(X1, X2,…, Xk) with density function 
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We are thus assuming that for the family of density functions 
an induced invariance holds under the group G of 
transformations: mk→amk+b, sk→ask or kµ) → kaµ) +b, 

kσ) → kaσ)  (a>0). The family of density functions satisfying 

the above conditions is, of course, the limited one of normal, 
negative exponential, Weibull and gamma (with known 
index) density functions. The structure of the problem is, 
however, more clearly seen within the general framework. 

Let Y be an independent future observation from a new 
sample. If Y is invariantly predictable then W=(Y−Mk)/Sk (or 
W= kkY σµ ))

/)( − ) is a maximal invariant pivotal, conditional 

on X. 

B. Piecewise-Linear Loss Function 

We shall consider the interval prediction problem for the 
sth order statistic Ys, 1 ≤ s ≤ m, in a future sample of size m 
for the situation where the first k observations X1 < X2 < ⋅⋅⋅< 
Xk, 1≤k<n, from a past sample of size n have been observed. 
Suppose that we assert that an interval d=(d1,d2) contains Ys. 
If, as is usually the case, the purpose of this interval 
statement is to convey useful information we incur penalties 
if d1 lies above Ys or if d2 falls below Ys. Suppose that these 
penalties are c1(d1− Ys) and c2(Ys −d2), losses proportional to 
the amounts by which Ys escapes the interval. Since c1 and c2 
may be different the possibility of differential losses 
associated with the interval overshooting and undershooting 
the true µ is allowed. In addition to these losses there will be 
a cost attaching to the length of interval used. For example, 
it will be more difficult and more expensive to design or 
plan when the interval d=(d1,d2) is wide. Suppose that the 
cost associated with the interval is proportional to its length, 
say c(d2−d1). In the specification of the loss function, σ is 
clearly a ‘nuisance parameter’ and no alteration to the basic 
decision problem is caused by multiplying all loss factors by 
1/σ. Thus we are led to investigate the piecewise-linear loss 
function   
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The decision problem specified by the informative 
experiment density function (31) and the loss function (32) 

is invariant under the group G of transformations. Thus, the 
problem is to find the optimal interval predictor of Ys, 
 

  ),,( min arg dd
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where D is a set of invariant interval predictors of Ys, 
R(θθθθ,d)=Eθθθθ{ r(θθθθ,d)} is a risk function. 

C. Transformation of the Loss Function 

It follows from (2) that the invariant loss function, r(θθθθ,d), 
can be transformed as follows: 
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V=(V1,V2),   V1= σ/)( ks MY − ,   V2= σ/kS ; 
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(36) 

D. Risk  Function 

It follows from (35) that the risk associated with d and θθθθ 
can be expressed as 
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which is constant on orbits when an invariant predictor 
(decision rule) d is used, where f(v1,v2) is defined by the 
joint probability density of the first k observations X1 < X2 < 
⋅⋅⋅< Xk from the past random sample of size n and the sth 
order statistic Ys in the future sample of size m, 
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E. Risk Minimization and Invariant Prediction Rules 

The following theorem gives the central result in this 
section. 

Theorem 5 (Optimal Invariant Predictor of Ys Based on 
X). Suppose that (u1, u2) is a random vector having density 
function 
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(39) 
 

where f is defined by f(v1,v2), and let Q be the probability 
distribution function of u1/u2.  

(i) If c/c1+c/c2<1 then the optimal invariant linear-loss 
interval predictor of Ys based on X is d*=(Mk+η1Sk, 
Mk+η2Sk), where 
 

  ./1)(     ,/)( 2211 ccQccQ −== ηη  (40) 
 

(ii) If c/c1+c/c2≥1 then the optimal invariant linear-loss 
interval predictor of Ys based on X degenerates into a point 
predictor Mk+ •η Sk, where 
 

 )./()( 212 cccQ +=•η  (41) 
 

Proof. For the proof we refer to Theorem 1.    
Corollary 5.1 (Minimum Risk of the Optimal Invariant 

Predictor of Ys Based on X). The minimum risk is given by 
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for case (i) with ηηηη=(η1,η2) as given by (40) and for case (ii) 
with η1=η2= •η  as given by (41). 

Proof. For the proof we refer to Corollary 1.1.    
Theorem 6 (Equivalent Confidence Coefficient for d∗ 

Based on X). Suppose that V=(V1,V2) is a random vector 
having density function  f(v1,v2) (v1 real, v2>0) where f is 
defined by (38) and let H be the distribution function of 
W=V1/V2, i.e., the probability density function of W is given 
by 
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Then the confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1=Mk+η1Sk,  
d2=Mk+η2Sk, is 
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Proof. For the proof we refer to Theorem 3.    

V. EXAMPLE 

A. Within-Sample Prediction of Xr Based on X 

Exponential Distribution. Let X1< X2< ⋅⋅⋅ <Xn be order 
statistics of size n from the exponential distribution with the 
density  
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We shall consider the prediction problem of Xr for the 
situation where the first k observations X1< X2< ⋅⋅⋅ <Xk, 1≤ k 
< r ≤ n, have been observed. Let G be the group of 
transformations xi=axi (i=1, …, k, r, n,  a>0) We are now 
concerned with optimization of the prediction interval for Xr 
under the loss function (2). 

Let X=(X1, X2,…, Xk) and Xr > Xk for r ≤ n. Then the joint 
probability density function of X and Xr is given by 
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Using the invariant embedding technique [13]-[20], we then 
find in a straightforward manner that the joint density of V1, 
V2 is 
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It follows from (16) and (49) that 
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It follows from (25) and (49) that 
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If c/c1+c/c2<1 then the optimal invariant linear-loss 
interval predictor of Xr based on X is given by 
 

  d*=(Xk+η1Sk, Xk+η2Sk), (54) 
where 
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The confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1=Xk+η1Sk,  
d2=Xk+η2Sk, is given by 
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VI.  CONCLUSION 

In many statistical decision problems it is reasonable co 
confine attention to rules that are invariant with respect to a 
certain group of transformations. If a given decision problem 
admits a sufficient statistic, it is well known that the class of 
invariant rules based on the sufficient statistic is essentially 
complete in the class of all invariant rules under some 
assumptions. This result may be used to show that if there 
exists a minimax invariant rule among invariant rules based 
on sufficient statistic, it is minimax among all invariant 
rules. In this paper, we consider statistical prediction 
problems which are invariant with respect to a certain group 
of transformations and construct the optimal invariant 
interval predictors. The method used is that of the invariant 
embedding of sample statistics in a loss function in order to 
form pivotal quantities which allow one to eliminate 
unknown parameters from the problem. This method is a 
special case of more general considerations applicable 
whenever the statistical problem is invariant under a group 
of transformations, which acts transitively on the parameter 
space.  
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