
 

 
Abstract—The possible and necessary optimality of a given 

schedule for the problem of minimizing maximum tardiness on 
single machine with imprecisely defined processing times and 
due dates is analyzed. Imprecise processing times and due 
dates are represented by means of interval or fuzzy numbers. 
In the interval case, it is shown that both the problems of 
ascertaining whether a given schedule is possibly and 
necessarily optimal are polynomially solvable. 

The results are extended to the problem with fuzzy 
processing times and due dates. Novel mathematical 
programming formulations are proposed for calculating the 
degree of possibility and necessity that a given schedule for the 
problem is optimal. 
 

Index Terms— Scheduling; Possibility and necessity; Fuzzy 
scheduling; Maximum tardiness 
 

I. INTRODUCTION 

he fuzzy scheduling problem which seems to be an 
interesting alternative to the deterministic and stochastic 
approaches constitutes an important and challenging 

problem. This problem has received intensive attention in 
the recent decade e.g. [15] and [17]. Dubois et al. [6] 
discussed two very distinct approaches of fuzzy scheduling 
in the literature. In the first approach, fuzzy sets are used to 
model local or global requirements in the form of flexible 
constraints. Flexible requirements include due-dates, release 
times, and durations, e.g. [7]. In the second approach, the 
aim is to analyze the main characteristics of a scheduling 
problem when data is ill-known and modeled by fuzzy 
numbers, in the setting of possibility theory [9]. Based on 
second approach in this paper, fuzzy numbers express 
uncertainty connected with the ill-known parameters. 
One of the best known problems in scheduling theory is the 
problem of minimizing maximum tardiness on single 
machine. This problem can be solved optimally in the crisp 
case by EDD rule (Earliest Due Date) [1]. Several fuzzy 
approaches to the single machine scheduling problems were 
appeared. Ishii and Tada investigated a two objective 
problem with fuzzy precedence relation [13]. Han et al. [12] 
provided a generalized problem with fuzzy due dates and 
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controllable machine speeds. Chanas and Kasperski [3] have 
considered a single machine scheduling problem with fuzzy 
processing times and fuzzy due dates and showed that the 
Lawler’s algorithm [14] can be generalized into the fuzzy 
case. They [4] defined the fuzzy tardiness of a job in a given 
sequence as a fuzzy maximum of zero and the difference 
between the fuzzy completion time and the fuzzy due date 
of this job. They [5] introduced the notions of possible and 
necessary optimality of a given schedule and determined the 
possibility and necessity of optimality of a schedule in the 
single machine scheduling problem with the objective of 
minimizing the weighted completion time when the 
processing times are fuzzy numbers. In this paper, the 
problems of determining the possible and necessary 
optimality of a given schedule in the single machine 
scheduling problem with the objective of minimizing the 
maximum tardiness are considered. The literature on this 
realistic generalized problem is completely void. 
After positioning this paper in the scope of the single 
machine scheduling problem under interval processing times 
and due dates, a complete solution to the problem of 
ascertaining whether a given schedule is possibly and 
necessarily optimal schedule are provided. Based on some 
propositions, it is shown that proposed algorithms solve the 
problem in polynomial time. Then, the obtained results are 
generalized to case of fuzzy processing times and due dates 
and the degrees of possible and necessary optimality of a 
schedule are computed. 

II. TERMINOLOGY AND REPRESENTATION 

The scheduling problems to be dealt with throughout this 
paper can be stated as follows. A set J={1,2, …, n} of jobs 
has to be processed on a single machine which can process 
only one job at a time. With each job j, ݆ ∈  we shall ,ܬ
assume a processing time ݌௝ and a due date ௝݀. A given 
schedule ߠ ൌ ሺߠଵ, ,ଶߠ … ,  ௡ሻ denotes a permutation of jobsߠ
where ߠ௝ address the index of the job sitting in position j. It 
is assumed that there is no precedence relation between jobs, 
no idle time is allowed and all jobs are available at time zero 
(there are no release times in the problem). The objective 
function is minimizing the maximum tardiness defined as 
follows: 
min ௠ܶ௔௫ ൌ minmax୨ୀଵ,…,୬൛ ௝ܶൟ ൌ

minmax୨ୀଵ,…,୬൛maxሺ0, ௝ܥ െ ௝݀ሻൟ  (1) 
where ܥ௝is the completion of job j, ݆ ∈  .leaving the system ,ܬ
Using the three notation ߛ|ߚ|ߙ, the problem is represented 
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as 1|| ௠ܶ௔௫. Proposition 1 characterizes the optimality of a 
given schedule in the problem 1|| ௠ܶ௔௫. 
Proposition 1: The necessary and sufficient condition for 
schedule ߠ to be optimal is that: 
݀ఏೕ ൑ ݀ఏೕశభ   ݆ ൌ 1,… , ݊ െ 1 (2) 

Proof: The proof is based on jobs interchange.∎ 

A. The notion of Configurations 

Assume that each processing time is assigned to a set of 
possible time ௝ܲ under the form of a closed interval. 

௝ܲ ൌ ሾ݌௝,  ௝ of the݌ ௝ሿ means that the real processing time݌

job j is not precisely known, but lies between ݌௝ and ݌
௝
 

௝݌) ∈ ௝ܲ). Each due date is assigned to a set of possible time 

௝݀ under the form of a closed interval, ܦ௝ ൌ ሾ݀௝, ௝݀ሿ. 
Intuitively, if the processing times and due dates are 
interval, then the value of the objective function, ௠ܶ௔௫, will 
be also interval. 
The notation of configuration denoted by Ω has been 
defined by Buckley [2] to relate the interval case to the 
deterministic case of classical problems. We redefine a 
configuration as a tuple of processing times and due datas, 
ሺ݌ଵ, ,ଶ݌ … , ,௡݌ ݀ଵ, ݀ଶ, … , ݀௡ሻ, such that ∀݆ ∈ ,ܬ ௝݌ ∈ ௝ܲ and 

௝݀ ∈  ௜ሺΩሻ and ݀௜ሺΩሻ will denote݌ ,௝. For a configuration Ωܦ
the processing time and due date of job j, respectively. H 
denotes the set of all possible configurations. A 
configuration defines an instance of the deterministic 
scheduling problem (classical single machine scheduling), to 
which the classical methods can be applied. 

B. Notions of Optimality Under Interval Processing 
Times and Due Dates 

Using configurations, the possible and necessary optimality 
of solutions can be defined as follows. 
Definition 1: A schedule ߠ is possibly optimal if and only if 
there exists a configuration Ω, Ω ∈  is optimal ߠ such that ,ܪ
in the usual sense in the configuration Ω. 
Definition 2: A schedule ߠ is necessarily optimal if and only 
if for each configuration Ω, Ω ∈  is optimal in the usual ߠ ,ܪ
sense in the configuration Ω. 
These definitions differ slightly from the ones proposed by 
Chanas and Kasperski [5]. The notions of the possible and 
necessary non-optimality are introduced. The following two 
definitions are complementary to those given in Definition 1 
and Definition 2. 
Definition 3: A schedule ߠ is possibly non-optimal if and 
only if there exists a configuration Ω, Ω ∈  is ߠ such that ,ܪ
not optimal in the usual sense in the configuration Ω. 
Definition 4: A schedule ߠ is necessarily non-optimal if and 
only if for each configuration Ω, Ω ∈  is not optimal in ߠ ,ܪ
the usual sense in the configuration Ω. 
The following statements are obvious. They result from the 
previously given definitions. 
Statement 1: A schedule ߠ is necessarily non-optimal if and 
only if it is not possibly optimal. 
Statement 2: A schedule ߠ is possibly non-optimal if and 
only if it is not necessarily optimal. 
Statement 3: A schedule ߠ is necessarily optimal then it is 
possibly optimal. 
Based on above statements, it is enough to determine the 
possible and necessary optimality of schedule. 

III. OPTIMALITY WITH INTERVAL PROCESSING TIMES AND 

DUE DATES 

In this section, the possible and necessary optimality of a 
given schedule for the problem 1|| ௠ܶ௔௫ is analyzed. 

A. . Possibly Optimal Solutions 

Preposition 2 gives necessary and sufficient conditions for 
establishing the possible optimality of a given schedule ߠ. 
Proposition 2: A given schedule ߠ is possibly optimal in the 
problem 1|| ௠ܶ௔௫ if and only if there exists a 
configuration Ω∗, Ω∗ ∈  such that the following system of ,ܪ
inequalities is feasible for Ω∗:  
௝݌ ൑ ௝ሺΩ݌

∗ሻ ൑ ݌
௝
         ݆ ൌ 1,… , ݊  

݀௝ ൑ ௝݀ሺΩ
∗ሻ ൑ ௝݀         ݆ ൌ 1,… , ݊  

݀ఏೕሺΩ
∗ሻ ൑ ݀ఏೕశభሺΩ

∗ሻ    ݆ ൌ 1,… , ݊ െ 1  (3) 

Proof: The only if direction: Based on Definition 1, there 
exists a configuration Ω′, Ω′ ∈  is optimal in ߠ such that ,ܪ
the usual sense in the configuration Ω′. It yields that 
௝݌ ൑ ௝ሺΩ′ሻ݌ ൑ ݌

௝
 and ݀௝ ൑ ௝݀ሺΩ′ሻ ൑ ௝݀, ݆ ൌ 1,… , ݊. 

According to Proposition 1 and ߠ is optimal in Ω′, the 
inequalities ݀ఏೕሺΩ′ሻ ൑ ݀ఏೕశభሺΩ′ሻ for ݆ ൌ 1,… , ݊ െ 1 hold. It 

deduces that Ω′ fulfills the system of inequalities (3), hence 
the system is feasible. 
The if direction: Assume there exists a configuration Ω∗, 
Ω∗ ∈  that fulfills the systems of inequalities (3). Based on ,ܪ
Proposition 1, ߠ is optimal in Ω∗. So there exists a 
configuration Ω∗ such that ߠ is optimal in the usual sense in 
Ω∗. We can conclude that the schedule ߠ is possibly 
optimal.∎ 
The system of linear inequalities is obtained for a given 
schedule ߠ based on Preposition 2. The feasibility of this 
system can be checked in polynomial time. Algorithm1 
checks the feasibility of the system of inequalities (3), thus 
this algorithm determines whether a given schedule, ߠ, is 
possibly optimal or not. 
 

 
 
It is clear that the computational complexity of Algorithm 1 
is ܱሺ݊ሻ. It is worth noticing that the configuration after the 
termination of Algorithm 1 is Ω∗ in Proposition 2. 

B. Necessarily Optimal Solutions 

The possible optimality is a week measure of optimality of a 
given schedule, ߠ, since it is enough that there exists only 
one configuration Ω, Ω ∈  is optimal. On the other ߠ that ,ܪ
hand, ߠ  is not optimal for any configuration, ∀Ω ∈  is ߠ if ,ܪ
not possibly optimal. Thus the possible optimality is deal 
with a strong measure of non-optimality of ߠ, the necessary 
optimality. Proposition 3 gives necessary and sufficient 

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 

conditions for establishing the necessary optimality of a 
given schedule ߠ. 
Proposition 3: A given schedule ߠ is necessarily optimal in 
the problem 1|| ௠ܶ௔௫ if and only if there exists a 
configuration Ω∗, Ω∗ ∈  such that the following system of ,ܪ
inequalities is feasible for Ω∗ 
௝݌ ൑ ௝ሺΩ݌

∗ሻ ൑ ݌
௝
         ݆ ൌ 1,… , ݊  

݀ఏೕ ൑ ݀ఏೕశభ          ݆ ൌ 1,… , ݊ െ 1 (4) 
Proof: The only if direction: Assume that the schedule ߠ is 
necessarily optimal. Based on Definition 2, ߠ is optimal in 
the usual sense for each configuration Ω, Ω ∈  Assume on .ܪ
the contrary that the system of inequalities (4) is not 
feasible. Thus, there exist ݆ ∈ ሼ1,… , ݊ െ 1ሽ such that: 

݀ఏೕ ൐ ݀ఏೕశభ (5) 

A configuration Ω′, Ω′ ∈ with ݀ఏೕሺΩ′ሻ ,ܪ ൌ  ݀ఏೕ   and 

݀ఏೕశభሺΩ′ሻ ൌ  ݀ఏೕశభ is considered. According to Proposition 

1 and (5), it is deduced that ߠ is not optimal in Ω′. This fact 
contradicts the assumption that ߠ is necessarily optimal. 
The if direction: Assume that the system of inequalities (4) 
is feasible. Hence, the following inequalities for each 
configuration Ω′, Ω′ ∈  are fulfilled ܪ

݀ఏೕሺΩ′ሻ ൑ ݀ఏೕ ൑ ݀ఏೕశభ  ൑ ݀ఏೕାଵሺΩ′ሻ  (6) 
According to Proposition 1, ߠ is optimal in the usual sense 
in for each configuration Ω′, Ω′ ∈  The necessary .ܪ
optimality of ߠ is deduced from Definition 2.∎ 
The system of linear inequalities is obtained for a given 
schedule ߠ based on Proposition 3 to ascertain whether ߠ is 
necessarily optimal or not. The feasibility of this system can 
be checked in polynomial time by Algorithm 2. This 
algorithm checks the feasibility of the system of inequalities 
(4). 
 

 
 
It is obvious that the complexity of Algorithm 1 is ܱሺ݊ሻ. 

IV. OPTIMALITY WITH FUZZY PROCESSING TIMES AND DUE 

DATES 

Let us focus on the fuzzy case. All the elements of the 
problem are the same as in the interval case except for the 
processing times and due dates, determined by means of 
fuzzy numbers. A fuzzy number is a normal convex fuzzy 
set in the space of real numbers with an upper semi-
continuous membership function. ݌෤௝ imprecisely determine 
the processing time of job j, ݆ ∈  and ሚ݀௝ determine the due ,ܬ
date of j. Intuitively, if any processing time or due date is 
fuzzy, the objective function becomes fuzzy as well (its 
value can be calculated by means of the Zadeh’s extension 
principle [20]). In such a situation This is not possible to 
calculate the optimal schedule unless an order on the set of 
fuzzy numbers is defined. It is not an easy task since there is 

no such a natural order and a lot of orders are considered in 
the literature devoted to fuzzy sets [3]. The obtained optimal 
schedule depends on the choice of this order, which is a 
disadvantage of this approach. 
Fuzzy numbers ݌෤௝ and ሚ݀௝ express uncertainty connected 
with the ill-known processing time and due date modeled by 
these numbers, respectively. These fuzzy numbers generate 
possibility distributions for the sets of values containing the 
unknown processing time and due date. More formally, the 
assertion of the form “ߜ௝ is ሚ݀௝”, where ߜ௝ is a variable and ሚ݀௝ 
is a fuzzy number, generates the possibility distribution of ߜ௝ 
with respect to the following formula: 
௝ߜሺݏݏ݋ܲ ൌ ሻݔ ൌ ݔ     ,ሻݔௗ෨ೕሺߤ ∈ ࣬ା  (7) 

Let Ω be a configuration of processing times and due dates, 
௜ܽ݊݀ ݀௜݌ ∈ ࣬ା, ݆ ∈  denote the set of all ܪ and ܬ
configurations. Hence, the joint possibility distribution over 
configurations, induced by the ݌௜ and  ݀௜, is obtain by the 
following formula: 
πሺΩሻ ൌ min ሼmin୨∈௃ ሻݔ௣෤ೕሺߤ ,min୨∈௃ ሻሽ     Ωݔௗ෨ೕሺߤ ∈ ࣬ା

௡ା௡ 

(8) 
Thus, the following formula determines the possibility that a 
schedule ߠ is optimal: 
ሻ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሺݏݏ݋ܲ ൌ supஐ: ஘ ୧ୱ ୭୮୲୧୫ୟ୪ ୧୬ ஐ  ሺΩሻ (9)ߨ
Due to possibility-necessity relations (see [8]) a necessity 
measure of optimality can be obtain by the following 
formula: 
ܰ݁ܿሺ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሻ ൌ 1 െ ሻ݈ܽ݉݅ݐ݌݋ ݐ݋݊ ݏ݅ ߠሺݏݏ݋ܲ ൌ
infஐ: ஘ ୧ୱ ୬୭୲ ୭୮୲୧୫ୟ୪ ୧୬ ஐሺ1 െ  ሺΩሻሻ (10)ߨ
Before we pass on to the basic consideration let us define 
some sets of notations, which will be helpful in formulating 
and proving propositions.  
A fuzzy number ܣሚ is called a trapezoidal fuzzy number if its 
membership function ߤ஺෨ has the following form: 

ሻݔ஺෨ሺߤ ൌ

ە
ۖ
۔

ۖ
ۓ

1 

1 െ
௔ି௫

ఈ
  

1 െ
௫ି௔

ఉ

0

 

ݔ ݎ݋݂  ∈ ൣܽ, ܽ൧                                  

ݔ ݎ݋݂   ∈ ൣܽ െ ,ߙ ܽ൯                            

ݔ ݎ݋݂ ∈ ሺܽ, ܽ ൅                             ሿߚ

ݔ ݎ݋݂ ∈ ൫െ∞, ܽ െ ൯ߙ ∪ ሺܽ ൅ ሻ∞,ߚ

Where ܽ ൑ ܽ and ߙ, ߚ ൐ 0. 
A trapezoidal fuzzy number is denoted by ܣሚ ൌ ሺܽ, ܽ, ,ߙ  .ሻߚ
A trapezoidal fuzzy number is positive if an only if ܽ െ ߙ ൒

0. Let ܣሚ be a fuzzy number. The following interval is called 
ߣ െ   .ሚܣ of the fuzzy number ݐݑܿ

ሚఒܣ ൌ ቂܽఒ, ܽ
ఒ
ቃ ൌ ሼݔ ∈ ሻݔ஺෨ሺߤ|࣬ ൒ ߣ        ሽߣ ∈ ሺ0,1ሿ

The ߣ െ  of a trapezoidal fuzzy number has the ݐݑܿ
following form: 
ሚఒܣ ൌ ൣܽ െ ሺ1ߙ െ ,ሻߣ ܽ ൅ ሺ1ߚ െ ߣ        ሻ൧ߣ ∈ ሺ0,1ሿ

Let us denote by ܪఒ the ߣ െ  i.e. the set of all ,ܪ of the ݐݑܿ

configurations with interval processing times, ݌෤௝
ఒ ൌ ሾ݌௝

ఒ, ݌
௝

ఒ
ሿ, 

and interval due dates,  ሚ݀௝
ఒ ൌ ሾ݀௝

ఒ, ௝݀

ఒ
ሿ. The following 

proposition determines the relationship between indices 
 ሻ and the݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሻ and ܰ݁ܿሺ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሺݏݏ݋ܲ
notions of possible and necessary optimality. 
Proposition 4: For a given schedule, ߠ, the following 
equivalences hold for a fixed ߣ ∈ ሺ0,1ሿ 
ሻ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሺݏݏ݋ܲ ൒ ߣ ⟺ ஛ܪ is possibly optimal in ߠ 

ܰ݁ܿሺ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሻ ൐ ߣ ⟺
 ଵି஛ܪ is necessarily optimal in ߠ 
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Proof: It follows directly from definitions of degree of 
possibility and necessity that a schedule is optimal and the 

fact that if ߙ ൏ ෤௝݌ then ߚ
ఈ ⊆ ෤௝݌

ఉ
 ܽ݊݀  ሚ݀௝

ఈ ⊆ ሚ݀
௝
ఉ.∎ 

Proposition 5 provides a tool for calculating the 
 .ሻ indices݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሻ and ܰ݁ܿሺ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሺݏݏ݋ܲ
Proposition 5: For a given schedule, ߠ, the following 
equalities hold: 
ሻ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሺݏݏ݋ܲ ൌ ሼߠ|ߣ is possibly optimal in ܪ஛ ሽ (16) 
ܰ݁ܿሺ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሻ ൌ ሼߠ|ߣ is necessarily optimal in ܪ஛ ሽ (17) 
Proof: Straightforward. The proposition is a direct 
consequence of the definitions and Proposition 4. ∎ 
There are two effective methods of calculating the values of 
indices ܲݏݏ݋ሺ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሻ and ܰ݁ܿሺ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሻ. The 
first one is adapted to fuzzy numbers given in a general form 
and the second one, based on mathematical programming, is 
valid only for fuzzy processing times and due dates 
determined by trapezoidal fuzzy numbers. The first method 
is based on the idea of bisection of the unit interval of values 
of ߣ to compute the values of indices. This method is used 
by several authors, e.g. [5] and [19]. In this paper for the 
sake of brevity, the second method is only applied to 
calculate the values of indices.  
Additionally, Fortin and Dubois [10] have shown that the 
algorithms in the interval-valued case can be adapted to 
fuzzy intervals considering them as crisp intervals of 
gradual numbers. The notions of gradual numbers are 
introduced by Fortin et al. [11]. This is a topic for future 
research. 

A. 4. 1. Calculating the Degree of Possibility That a 
Schedule Is Optimal 

The problem of calculating the degree of possibility that a 
schedule is optimal can be reduced under certain 
assumptions about membership functions of fuzzy 
processing times and due dates, to that of determining the 
optimal solution of a classical linear programming problem. 
It is assumed that ݌෤௝ ൌ ሺ݌௝, ,௝݌ ௝߬ , ௝߭ሻ and ሚ݀

௝ ൌ

ሺ݀௝, ௝݀ , ,௝ߙ ݆ ,௝ሻߚ ∈  ,Based on Proposition 2 .ܬ
 ሻ is equal to the maximal value of the݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሺݏݏ݋ܲ
objective function in the following linear programming 
problem: 
ߣ →   ݔܽ݉
0 ൑ ߣ ൑ 1  
௝݌ െ ௝߬ሺ1 െ ሻߣ ൑ ௝݌ ൑ ݌

௝
൅ ௝߭ሺ1 െ ݆         ሻߣ ൌ 1,… , ݊  

݀௝ െ ௝ሺ1ߙ െ ሻߣ ൑ ௝݀ ൑ ௝݀ ൅ ௝ሺ1ߚ െ ݆         ሻߣ ൌ 1,… , ݊  

݀ఏೕ ൑ ݀ఏೕశభ                                         ݆ ൌ 1,… , ݊ െ 1 (18) 
If ߣ௠௔௫  is the optimal objective value of (18) then the 
ሻ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሺݏݏ݋ܲ ൌ  ௠௔௫ . If problem (18) is infeasibleߣ
then ܲݏݏ݋ሺ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሻ ൌ 0. The standard simplex 
algorithm cab be used to solve the problem (18) [16]. 
 

B. Calculating the Degree of Necessity That a Schedule 
Is Optimal 

Mathematical programming has been used in the literature 
for calculating the degree of necessity, e.g. [18]. In this 
section, a novel mathematical programming is proposed for 
calculating the degree of necessity that of a given schedule 
in the problem 1|| ௠ܶ௔௫. is optimal. Assumed that all the 
fuzzy processing times and fuzzy due dates are positive 
trapezoidal fuzzy numbers, i.e.  ݌෤௝ ൌ ሺ݌௝, ,௝݌ ௝߬ , ௝߭ሻ and 

ሚ݀
௝ ൌ ሺ݀௝, ௝݀, ,௝ߙ ݆ ,௝ሻߚ ∈  The following mathematical .ܬ

programming problem is based on Proposition 3. 
ߣ → ݉݅݊  
0 ൑ ߣ ൑ 1  
௝݌ െ ௝߬ሺ1 െ ሻߣ ൑ ௝݌ ൑ ݌

௝
൅ ௝߭ሺ1 െ ݆                  ሻߣ ൌ 1,… , ݊  

݀ఏೕ െ ఏೕሺ1ߙ െ ሻߣ ൑ ݀ఏೕశభ ൅ ఏೕశభሺ1ߚ െ ݆   ሻߣ ൌ 1,… , ݊ െ 1 

According to Proposition 5, ܰ݁ܿሺ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሻ ൌ 1 െ  ,௠௜௡ߣ
where ߣ௠௜௡ is the minimal value of the objective function of 
problem (19). System (19) is linear for a given schedule ߠ 
and it can be calculated by means of the standard simplex 
algorithm [16]. If problem (19) is infeasible, then 
ܰ݁ܿሺ݈ܽ݉݅ݐ݌݋ ݏ݅ ߠሻ ൌ 0. 

V. CONCLUSIONS 

In this paper the possible and necessary optimality of a 
given schedule for the problem of minimizing maximum 
tardiness on single machine with imprecise processing times 
and due dates (by means of interval and fuzzy interval 
numbers) is discussed. It is assumed that the optimal 
schedule in such a problem cannot be determined precisely, 
thus the processing times and due dates of the single 
machine scheduling problem are imprecise a priori. 
In the interval case, the problems of stating whether a given 
schedule is possibly and necessarily optimal are easy to 
solve. Based on the propositions, it is shown that proposed 
algorithms solve the problems in polynomial time. Instead 
of being optimal or not,, schedules are divided into thee 
groups, those that are for sure optimal despite uncertainty 
(necessarily optimal schedules), those that are for sure not 
optimal (necessarily non-optimal schedules), and schedules 
whose optimality is unknown, called possibly optimal 
schedules.  
Then, the obtained results are generalized to case of fuzzy 
processing times. In this paper, it is shown how to calculate 
the degrees of possible and necessary optimality of a given 
schedule in one of the special cases of the single machine 
scheduling problems. Linear programming formulations are 
proposed for calculating the degree of possibility and 
necessity that of a given schedule is optimal in the problem. 
It seems possible to further develop the problems of 
ascertaining whether a given schedule is possibly and 
necessarily optimal schedule for more than one machine. 
Another research line is the generalization of the calculation 
of degrees of possible and necessary optimality where 
processing times and due dates are represented by gradual 
numbers. 
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