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Abstract—In this paper, we employ the construction of topo-
logical horseshoes to study the pattern of the soliton solutions to
the discrete nonlinear Schrödinger (DNLS) equations in a two-
dimensional lattice. The spatial disorder of the DNLS equations
is the result of the strong amplitudes and stiffness of the
nonlinearities. The complexity of this disorder is determined by
the oscillations (number of turning points) of the nonlinearities.
Nonnegative soliton solutions of the DNLS equations with a
cubic nonlinearity is also discussed.

Index Terms—discrete nonlinear Schrödinger equation,
horseshoe, soliton solution, spatial disorder

I. INTRODUCTION

OUR principal focus in this paper is to study the soli-
ton solutions of the time-dependent discrete nonlinear

Schrödinger (DNLS) equation with the cubic nonlinearity
ι ddtφm,n =

−φm,n+1 − φm,n−1 + 4φm,n − φm+1,n − φm−1,n

+ν|φm,n|2φm,n,
m, n ∈ Z,

(1)

where ι =
√
−1. Equation (1) is a discretization of the

nonlinear Schrödinger (NLS) equation

ι
∂

∂t
φ = −∇2φ+ ν|φ|2φ,

where φ = φ(t,x), t ∈ R and x ∈ R2. The connection with
the NLS equations is clearer from the alternative form of (1):
ι ddtφm,n =

− 1
h2 (φm,n+1 + φm,n−1 − 4φm,n + φm+1,n + φm−1,n)

+ν|φm,n|2φm,n,
m, n ∈ Z.

Systems of NLS equations arise in many fields of physics,
including condensed matter, hydrodynamics, optics, plasmas,
and Bose-Einstein condensates (BECs) (see e.g. [1], [4], [12],
[23]). In the presence of strong periodic trapped potentials,
a NLS equation can be approximated by a DNLS equation
by using the “tight binding approximation” [24]. Equation
(1) describes a large class of discrete nonlinear systems such
as optical fibers [5], [6], small molecules such as benzene
[7], and, more recently, dilute BECs trapped in a multiwell
potential [2], [3], [25], [24].

The interplay between disorder and nonlinearity is a
central topic of nonlinear science. This raises a number
of mathematical questions related to the behavior of many
physical systems. In the context of ultracold atomic gases,
disorder may result from the roughness of a magnetic trap
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[9] or a magnetic microtrap [27]. This motivates us to
study the spatial disorder of the soliton solutions of the
DNLS equation (1). To obtain such soliton solutions, we set
φm,n(t) = e−ιλtum,n, λ, um,n ∈ R, and transform (1) into
the time-independent discrete nonlinear Schrödinger equation

− um,n+1 − um,n−1 + 4um,n − um+1,n

− um−1,n + νu3
m,n = λum,n. (2)

Here, (φm,n) is called a “soliton solution” if um,n → 0
exponentially as max{|m|, |n|} → ∞. By nature, discrete
solitons represent self-trapped wavepackets in nonlinear pe-
riodic structures and result from the interplay between lattice
diffraction (or dispersion) and material nonlinearity. Discrete
solitons in one-dimensional lattices were first experimentally
observed in a nonlinear AlGaAs array by the groups of
Silberberg and Aitchison [8]. In subsequent investigations,
discrete soliton transport dynamics were studied by [18] in
such arrays and it was observed in [21] that the nonlinearly
induced escape from a waveguide defect. Optical discrete
solitons in two-dimensional nonlinear waveguide arrays were
first observed in biased photorefractive crystals by Segev’s
and Christodoulides’s groups [11], [10]. Please refer to the
survey article [17] for more details in the developments in
the observation of discrete solitons.

Arising from the abundance of physical experiments on
discrete solitons, three relevant mathematical issues are pro-
posed: (i) the existence of soliton solutions to (2), (ii) patterns
of these soliton solutions and (iii) their complexity. To study
the patterns of soliton solutions, the formulation of five-point
difference in (2) enable us to study a more general form of
the second order elliptic partial difference equation (PdE)

− αum,n+1 − βum,n−1 − um+1,n

− γum−1,n + f(um,n) = 0, (3)

where f ∈ C1([a, b]) and α, β, γ ∈ R with γ 6= 0.
We further assume the nonlinearity in f in (3) satisfies the
following:

(A1) Denote c1 < c2 < · · · < cN the turning points of
f in the interval [a, b]. Let c0 = a, cN+1 = b; δ1
and δ2, respectively, be the minimal and maximal value
of {αx + βy + γz| a ≤ x, y, z ≤ b}; and δ3 and
δ4, respectively, be the minimal and maximal value of
{(αx+βy+z)/γ| a ≤ x, y, z ≤ b}. Assume there exist
closed intervals Ii ⊂ [ci, ci+1], for i = 0, . . . , N , such
that

f(Ii) ⊇ [a+ δ1, b+ δ2] and f(Ii)/γ ⊇ [a+ δ3, b+ δ4].

By f(Ii)/γ we mean the closed interval {f(u)/γ| u ∈
Ii}.
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(A2) Let |γ′| = max{1, |γ|}. Assume

|f ′(u)| ≥ |α|+ |β|+
√

5 + 3

2
|γ′|,

for all u ∈ Ii, i = 0, . . . , N .
Our first theorem concerns the spatial disorder of PdE (3).

Theorem I.1. Suppose assumptions (A1)and (A2)hold. For
any k = (km,n)m,n∈Z ∈ {0, . . . , N}Z

2

, there exists a unique
solution (um,n) to PdE (3) such that

um,n ∈ Ikm,n
,

for all m,n ∈ Z.

We see in Theorem I.1 that the strong amplitudes (As-
sumption (A1)) and stiffness (Assumption (A2)) of the
nonlinearities in f lead the PdE (3) to the spatial disorder.
The complexity of this disorder is determined by the os-
cillations (number of turning points) of the nonlinearities.
More precisely, the spatial entropy of the PdE (3) equals to
log(N + 1). By applying Theorem I.1 to (2), we can prove
our second theorem involving the spatial disorder and pattern
of soliton solutions to the DNLS equation (2).

Theorem I.2. Let ω∗ denote the largest value of real roots
of

2ω + ∆̃

12
=

√
3ω

ω − ∆̃
and

2ω − ∆̃

12
=

√
3ω

ω + ∆̃
,

where ∆̃ = (7+
√

5)/2. Suppose ν < 0 and 4−λ > ω∗. Then
there exist disjoint closed intervals I0, I1 ⊂ R+, 0 ∈ I0, such
that for every (km,n)m,n∈Z ∈ {0, 1}Z

2

, there exists a unique
nonnegative solution (um,n) to DNLS equation (2) satisfying
um,n ∈ Ikm,n

. In addition, if km,n = 0 for |m|, |n| > N0,
some given positive integer, then

um,n = O(µmax{|m|,|n|}) as |m| or |n| are sufficiently large.

Here 0 < µ < (
√

5− 1)/2 is a constant independent of the
solution (um,n).

The solutions in the second assertion of Theorem I.2 are
referred to as the so-called “bright solitons”. Here both the
existence and the variety of solutions to DNLS equation (2)
are presented. Specifically, the state at the (m,n)-th site,
um,n, can be either dark (um,n ∈ I0) or bright (um,n ∈ I1)
that depends on the configuration km,n = 0 or 1, respectively.
Considering only the soliton solutions, the DNLS equation
also exhibits the spatial disorder. For the DNLS equations
in the one-dimensional lattice (i.e., the case α = β = 0
and γ = 1 in (3)), soliton solutions were studied in [22]
by the construction of homoclinic/hetronic orbits. In [26],
the spatial disorder in the one-dimensional NLS equations
equipped with periodic/quasiperiodic trapped potentials was
studied, in which a coherent structure ansatz was applied
to reduce the NLS equation to a forced Duffing equation.
In [20], [13], the soliton solutions of DNLS equations in
a two-dimensional lattice was studied in the case |ν| � 1
and λ/ν = O(1) by variational techniques. Our result in
Theorem I.2 is valid for λ and µ = O(1). The chaotic
behavior of DNLS equations in one-dimensional lattice as
well as its synchronization phenomena were studied by [19].
Bifurcation analysis of DNLS equations for the ground state

solutions was studied by [15]. Recently, it was reported by
[16] the occurrence of the phase separation for the ground
state solutions of the DNLS equation in lattices with a
general connection topology.

This paper is organized as follows. In Section 2, we prove
Theorem I.1 by the construction of a horseshoe in l∞ for
the map F introduced in (4). We follow the standard process
for planner maps and generalize it to an infinite dimensional
case. In Section 3, we prove Theorem I.2 by the using of
Theorem I.1.

Throughout this paper, we denote l∞ = {u =
(. . . , u−1, u0, u1, . . .)| supn |uu| < ∞}. For any fi-
nite set {0, . . . , N}, we denote {0, . . . , N}Z = {k =
(kn)n∈Z| kn ∈ {0, . . . , N}} and {0, . . . , N}Z2

= {k =
(km,n)m,n∈Z2 | km,n ∈ {0, . . . , N}}. We use the boldface
alphabets (or symbols) to denote operators (or vectors). We
say u ≤ v if un ≤ vn for all n ∈ Z. We use ‖ · ‖ = ‖ · ‖∞
to denote the infinity norm of an operator or a vector. Note
that for any bounded operator A on l∞, the infinity norm
of A can be computed by ‖A‖ = sup‖u‖=1 ‖Au‖ =
supm∈Z

∑
n∈Z |amn|.

II. CONSTRUCTION OF HORSESHOE AND ITS
HYPERBOLICITY

First, we define the map F : l∞ × l∞ → l∞ × l∞ by

F :

{
ū = g(u)− γv,
v̄ = u,

(4a)

where g : l∞ → l∞ is given by

gn(u) = −αun+1 + f(un)− βun−1, n ∈ Z. (4b)

Considering a bounded solution (um,n)m,n∈Z of (3), let
u(m) = (. . . , um,−1, um,0, um,1, . . .) for all m ∈ Z, that
is, u(m) is the m-th row of (um,n)m,n∈Z. Hence, we see
that (u(m+1),u(m)) = F(u(m),u(m−1)). This means that
(um,n)m,n∈Z forms an orbit of F in the m-direction. In this
section, we shall construct a horseshoe for F and prove the
hyperbolicity of its invariant Cantor set. To this end, we begin
with some basic settings for this construction adopted from
[28]. Let B ⊂ l∞ denote the box B = {u ∈ l∞| a ≤ un ≤
b, for all n ∈ Z}.

Definition II.1. Let µ be a real nonnegative number. A µ-
horizontal surface in B × B is the graph of a differentiable
function v = r(u), u ∈ B, satisfying ‖Dr(u)‖ ≤ µ. A
µ-horizontal strip in B × B is the set

H = {(u,v)|r1(u) ≤ v ≤ r2(u), u ∈ B},

where r1 < r2 are µ-horizontal surfaces. Similarly, a µ-
vertical surface in B × B is the graph of a differentiable
function u = s(v), v ∈ B, satisfying ‖Ds(v)‖ ≤ µ. A
µ-vertical strip in B × B is the set

V = {(u,v)|s1(v) ≤ u ≤ s2(v), v ∈ B},

where s1 < s2 are µ-horizontal surfaces. The widths of the
horizontal and the vertical strips are defined, respectively, as

d(H) = sup
u∈B
||r1(u)− r2(u)|| , d(V) = sup

v∈B
||s1(v)− s2(v)||.

Let E = {0, . . . , N}Z. For a given k ∈ E, let

Bk = {u ∈ B| un ∈ Ikn , n ∈ Z}.
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Here N is the number of turning points of f and Ikn are the
closed intervals given in (A1). We define the horizontal and
vertical strips

Hk = B × Bk = {(u,v) ∈ (B × B)| v ∈ Bk},
Vk = Bk × B = {(u,v) ∈ (B × B)| u ∈ Bk}.

Now we are ready to construct a horseshoe for F. Before
giving any proof, we note from (4) that the inverse of F is
given by

F−1 :

{
u = v̄,

v = (g(v̄)− ū)/γ.

From Theorem II.2 to Lemma II.5, each result is associated
with a horizontal and a vertical case. Due to the symmetry of
F and F−1, we shall only give the proofs of the horizontal
cases by using the map F. The proofs for the vertical cases
can be similarly verified by using F−1.

Proposition II.1. Let A be a bounded operator on l∞.
Suppose A is diagonal dominant, i.e., there exists ε > 0 such
that |amm| >

∑∞
n=−∞,n6=m |amn| + ε for all m ∈ Z. Then

A is invertible. In addition, if D is an invertible diagonal
bounded operator on l∞ such that ‖D−1(A−D)‖ < 1, then

‖A−1‖ ≤ ‖D−1‖
1− ‖D−1(A−D)‖

. (5)

Proof: Suppose Au = 0 for some u 6= 0. Then we
have ammum =

∑∞
n=−∞,n6=m amnun for all m ∈ Z. Taking

absolute on both sides of the equation and applying the
triangular inequality to the resulting equation, we obtain
|amm||um| ≤

∑∞
n=−∞,n6=m |amn|‖u‖ < (|amm| − ε)‖u‖.

This is a contradiction since ‖u‖ = supn∈Z |un|. The
proof of the first assertion is complete. For the second
assertion, note that A−1 = ‖(I + D−1(A−D))−1D−1‖ ≤
‖(I + D−1(A − D))−1‖‖D−1‖. On the other hand, since
‖D−1(A −D)‖ < 1, we have ‖(I + D−1(A −D))−1‖ ≤∑∞
n=0 ‖D−1(A−D))−1‖n = 1/(1−‖D−1(A−D)‖). This

gives (5).

Theorem II.2. Let ∆ = min1≤i≤N{|f ′(u)|| u ∈ Ii}−(|α|+
|β| + |γ′|) where |γ′| is defined in (A2). Suppose µ is a
constant satisfying

|γ′|
∆

< µ <

√
5− 1

2
.

Let k ∈ E be given. If S is a µ-horizontal surface, then
F(S ∩ Vk)∩ (B ×B) is a µ-horizontal surface contained in
Hk. If S is a µ-vertical surface, then F−1(S∩Hk)∩(B×B)
is a µ-vertical surface contained in Vk.

Here we remark from (A2) that ∆ ≥ (
√

5 + 1)|γ′|/2.
Hence the constant µ in Theorem II.2 is well defined.
Moreover, µ is between 0 and 1.

From Theorem II.2, we see that F(Vk) ∩ (B × B) ⊂ Hk

and F−1(Hk)∩ (B×B) ⊂ Vk form a µ-horizontal strip and
a µ-vertical strip, respectively. Let

H∗k = F(Vk) ∩ (B × B) , V∗k = F−1(Hk) ∩ (B × B).
(6)

Thus the resulting surfaces in Theorem II.2, F(S ∩ Vk) ∩
(B × B) and F−1(S ∩ Hk) ∩ (B × B), can be accordingly

rewritten as F(S)∩H∗k and F(S)∩V∗k, respectively. We have
the following immediate consequence of Theorem II.2.

Corollary II.3. Let µ be the constant given in Theorem II.2
and k ∈ E be given. IfH is a µ-horizontal strip, then F(H)∩
H∗k is also a µ-horizontal strip. If V is a µ-vertical strip, then
F−1(V) ∩ V∗k is also a µ-vertical strip.

In Corollary II.3, we see that F (resp., F−1) maps a µ-
horizontal strip (resp., µ-vertical strip) to an uncountable
number of µ-horizontal strips (resp., µ-vertical strips), in
which exactly one strip is included in H∗k (resp., V∗k) for
each k ∈ E. In the next theorem, we will see that every strip
becomes thinner under the mapping by a factor less than 1.

Theorem II.4. Let µ be be the constant given in Theorem
II.2 and k ∈ E be given. Suppose H is a µ-horizontal strip
and V is a µ-vertical strip. If H̄ = F(H) ∩ H∗k and Ṽ =
F−1(V) ∩ V∗k, then

d(H̄) ≤ µ

1− µ2
d(H) , d(Ṽ) ≤ µ

1− µ2
d(V).

Here we remark that the factor µ/(1 − µ2) < 1 by the
assumption that µ < (

√
5 − 1)/2. Before proving Theorem

II.4, we first prove the following lemma.

Lemma II.5. Let µ be be the constant given in Theorem II.2
and k ∈ E be given. Suppose (u,v) is a point in B × B,

ζ =

[
ξ
η

]
∈ l∞ × l∞, ζ̄ =

[
ξ̄
η̄

]
:= DF(u,v)ζ, and

ζ̃ =

[
ξ̃
η̃

]
:= DF−1(u,v)ζ.

(a) Suppose (u,v) ∈ Vk and ‖η‖ ≤ µ‖ξ‖. If {nj}∞j=0 ⊂ Z
is any sequence such that |ξnj | → ‖ξ‖ as j →∞, then
there exists N0 > 0, independent of the choice of (u,v),
such that

µ|ξ̄nj | > ‖ζ‖

for j > N0.
(b) Suppose (u,v) ∈ Hk and ‖ξ‖ ≤ µ‖η‖. If {nj}∞j=0 ⊂ Z

is any sequence such that |ηnj
| → ‖η‖ as j →∞, then

there exists N0 > 0, independent of the choice of (u,v),
such that

µ|η̃nj
| > ‖ζ‖

for j > N0.

Later we will see that Lemma II.5 plays an important role
in the proof of the hyperbolicity of F. Now we are in position
to prove Theorem II.4.

Now, we are ready to prove Theorem I.1.
Proof of Theorem I.1: Let µ be the constant defined in

Theorem II.2. Define

Λ−1 =
⋃

k−1∈E
H∗k−1

, Λ0 =
⋃

k0∈E
V∗k0

,

where H∗k−1
and V∗k0

are defined in (6). Note that B × B
is not only a µ-horizontal strip, but also a µ-vertical strip.
This implies that each H∗k−1

and V∗k0
are, respectively, a

µ-horizontal strip and a µ-vertical strip. Let

Λ−n−1 = Λ−1 ∩ F(Λ−1) ∩ · · · ∩ Fn(Λ−1),

Λn = Λ0 ∩ F−1(Λ0) ∩ · · · ∩ F−n(Λ0).
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Hence, we may set

Λ−n−1 =
⋃

k−j∈E
j=1,...,n+1

H∗k−1,k−2,...,k−n−1

and

Λn =
⋃
kj∈E

j=0,...,n

V∗k0,k1,...,kn
,

where

H∗k−1,...,k−n−1
=

{(u,v) ∈ B × B| F−j(u,v) ∈ H∗k−j−1
, j = 0, . . . , n}

and

V∗k0,k1,...,kn
= {(u,v) ∈ B × B| Fj(u,v) ∈ V∗kj

, j = 0, . . . , n}.

Note that H∗k−1,...,k−n−1
= H∗k−1

∩ F (H∗k−2,...,k−n−1
) and

V∗k0,k1,...,kn
= V∗k0

∩ F−1(V∗k1,...,kn
). By Corollary II.3,

an inductive argument shows that each H∗k−1,...,k−n−1
and

V∗k0,k1,...,kn
are, respectively, a µ-horizontal and a µ-vertical

strip. In addition, it follows from Theorem II.4 that

d
(
H∗k−1,k−2,...,k−n−1

)
≤
(

µ

1− µ2

)n
d(B)

d
(
V∗k0,k1,...,kn

)
≤
(

µ

1− µ2

)n
d(B).

Hence, for any sequences (k−1,k−2 . . .) and (k0,k1, . . .) ∈
EN, ⋂∞

n=1H∗k−1,k−2,...,k−n⋂∞
n=0 V∗k0,k1,...,kn

(7)

are decreasing to two surfaces, say H∗k−1,k−2,...
= {v =

r(u)} and V∗k0,k1,...
= {u = s(v)}. Here we note that

r and s may not be differentiable. However, the uniform
convergency of the upper and lower surfaces in (7) implies
they satisfy a Lipschitz condition with Lipschitz constant µ;
i.e., for any u1,u2,v1,v2 ∈ B,

‖r(u1)− r(u2)‖ ≤ µ‖u1 − u2‖, ‖s(v1)− s(v2)‖ ≤ µ‖v1 − v2‖.

Since |µ| < 1, by the contraction mapping theorem, the
equation {

v = r(u)

u = s(v)

has a unique solution in B × B. This means H∗k−1,k−2,...
=

{v = r(u)} and V∗k0,k1,...
= {u = s(v)} have a unique

intersection. Hence, the invariant set Λ = Λ−∞ ∩ Λ∞
is a Cantor set. Denote Σ the symbolic space Σ =
{(. . . ,k−1|k0,k1, . . .)| kn ∈ E, n ∈ Z}. To see F|Λ is
topological conjugate to the full shift σ on Σ, we define the
function

φ(p) = (. . . ,k−1|k0,k1, . . .),

where p = Hk−1,k−2,... ∩ Vk0,k1,.... It is easy to verify that
φ is a homeomorphism from Λ to Σ. We only need to show
that φ(F(p)) = σ(φ(p)). From the construction of V∗k0,k1,...

,
we have

F(V∗k0,k1,...) = V∗k1,k2,.... (8)

On the other hand, p ∈ H∗k−1,k−2,...
∩ V∗k0

⊂ H∗k−1,k−2,...
∩

Vk0 . From Theorem II.2, it implies F(p) ∈ H∗k0,k−1,k−2,...
.

Together with (8), this shows

φ(F(p)) = φ(H∗k0,k−1,k−2,... ∩ V
∗
k1,k2,...)

= (. . . ,k−1,k0|k1, . . .) = σ(φ(p)).

Before proving the hyperbolicity of Λ, we shall adopt the
following theorem in [14, p. 266].

Theorem II.6. A compact F-invariant set Λ is hyperbolic
if there exists κ > 1 such that for every p ∈ Λ there is
a decomposition TpM = Sp ⊕ Tp (in general, not DF
invariant), a family of the horizontal cones Hp ⊃ Sp, and
a family of vertical cones Vp ⊃ Tp associated with the
decomposition such that

DF(p)Hp ⊂ Int HF(p), DF−1(p)Vp ⊂ Int VF(p), (9)

and

‖DF(p)ζ‖ ≥ κ‖ζ‖ for ζ ∈ Hp, (10)

‖DF−1(p)ζ‖ ≥ κ‖ζ‖ for ζ ∈ VF(p). (11)

Proof of Theorem I.1: The hyperbolicity of Λ: We
shall prove the hyperbolicity by verifying the conditions in
Theorem II.6. First, let

Sp = {
[

0
η

]
∈ l∞ × l∞| η ∈ l∞},

Tp = {
[

ξ
0

]
∈ l∞ × l∞| ξ ∈ l∞},

and

Hp = {
[

ξ
η

]
∈ l∞ × l∞| ‖η‖ ≤ µ‖ξ‖},

Vp = {
[

ξ
η

]
∈ l∞ × l∞| ‖ξ‖ ≤ µ‖η‖}.

Here we see that Sp ⊂ Hp and Tp ⊂ Vp. Now, let p =

(u,v) ∈ Λ and ζ =

[
ξ
η

]
∈ Sp be given. Hence, p ∈ Vk

for some k ∈ E. Moreover, there exists a µ-horizontal surface
S = {v = r(u)} containing p such that ζ is a tangent vector
to S at p, i.e. η = Dr(u)ξ. Since F(p) ∈ Λ ⊂ B × B, it
follows from Theorem II.2 that the connected component of
F(S) ∩ (B × B) containing F(p), denoted by S̄, is also a
µ-horizontal surface. Suppose S̄ is the graph of v̄ = r̄(ū).

Consequently, ζ̄ =

[
ξ̄
η̄

]
:= DF(p)ζ is a tangent vector to

S̄ at F(p). Hence η̄ = Dr̄(ū)ξ̄. From the result of Step 2
in the proof of Theorem II.2, we conclude that

‖η̄‖ = ‖Dr̄(ū)ξ̄‖ < µ‖ξ̄‖.

This proves the first invariance condition in (9). The second
can be similarly obtained. Letting κ = 1/µ, the Contraction
and Expansion condition (10) follows from Lemma II.5
directly. This completes the proof.
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III. APPLICATION TO THE CUBIC NONLINEARITIES

In this section, we shall give the proof of Theorem I.2.
Proof of Theorem I.2: Let ω = 4−λ and define f(u) =

ωu + νu3. To prove the first assertion of Theorem I.2, it
suffices to apply Theorem I.1 by verifying assumptions (A1)
and (A2) for f . Now let a = 0 and b =

√
−ω/ν. Here a

and b are zeros of f in R+. Denote u1 =
√

(∆̃− ω)/3ν,

u2 =
√
−(∆̃ + ω)/3ν and ε > 0 sufficiently small. Hence,

the constants δ1 and δ2 are given by

δ1 = 0 and δ2 = 3b.

Let I0 = [a, u1− ε] and I1 = [u2 + ε, b]. Since α = β = γ =
1, it is easy to verify that f ′(u1) = ∆̃ = (

√
5 + 3)|γ′|/2 +

(|α| + |β|) and f ′(u2) = −∆̃. This implies f ′(u) > ∆̃ for
u ∈ I0 and f ′(u) < −∆̃ for u ∈ I1 because u1 < c < u2

and f ′ is quadratical, where c denotes the positive turning
point of f . Hence, (A2) is satisfied. To prove the validity of
(A1), we first show that

f(I0) ⊇ [a+ δ1, b+ δ2]. (12)

It is easily seen that f(a) ≤ a + δ1. Since f is monotonic
on I0, if we can show that

f(u1) > b+ δ2, (13)

then (12) holds true. A calculation leads to that (13) is
equivalent to the inequality 2ω + ∆̃ > 12

√
3ω/(ω − ∆̃).

This is true due to the assumption of this theorem. The
conclusion f(I1) ⊇ [a+ δ1, b+ δ2] can also be shown by a
similar argument. Hence, by Theorem I.1 the first assertion
is proven.

Now, we show the second assertion of Theorem I.2. Let
(km,n) ∈ {0, 1}Z2

satisfying km,n = 0 for |m|, |n| > N .
From the first assertion, there exists a solution (um,n) to
DNLS equation (2) such that um,n ∈ Ikm,n

for all m, n ∈ Z.
Let F be the map given in (4) with α = β = γ = 1. Let
u(m), u′(m) ∈ l∞ and k(m), k′(m) ∈ {0, 1}Z be given by

u(m) = the m-th row of (um,n),

u′
(n)

= the n-th column of (um,n),

k(m) = the m-th row of (km,n),

u′
(n)

= the u-th column of (um,n).

Using (2), we see that (u(m+1),u(m)) = F(u(m),u(m−1))
for all m ∈ Z. Since k(m) → 0 as |m| → ∞, the
topological conjugacy between F and the full shift σ leads
to (u(m),u(m−1)) → (0,0) as m → ∞. However, F is
hyperbolic. We conclude that

‖u(m)‖ = O(µ|m|) for |m| sufficiently large. (14)

A similar argument shows that

‖u′(n)‖ = O(µ|n|) for |n| sufficiently large. (15)

Combination of (14) and (15) leads to the assertion of this
theorem.
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