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Abstract—Least stable mode of convective flow, in-
duced by external pressure gradient and buoyancy
force in the vertical pipe filled with porous medium, is
investigated. Non-Darcy Brinkman-extended model
has been considered. To study least stable mode of
the fully developed flow linear theory of stability anal-
ysis has been used for an wide range [0.01, 100] of
Prandtl number (Pr). To this end, coupled ordinary
differential equations obtained from linear theory of
stability analysis, have been solved numerically us-
ing Spectral collocation method. Four different val-
ues 10−1, 10−2, 10−3, and 10−4 of Darcy number (Da)
have been considered to study the impact of perme-
ability of the medium on the flow stability. Present
study on the least stable mode analysis discloses that
when fluid is gas (Pr = 0.7) or water (Pr = 7.0),
for relatively large values of Darcy number (i.e. Da
= 10−1 and 10−2), first azimuthal mode is the least
stable mode of the basic flow in the entire range of
Reynold’s number (Re) considered in this manuscript.
However, when Pr = 70, based on the values of Da,
there exist a minimum value of Re beyond it the least
stability of the fluid is achieved for zero azimuthal
number. Further, it was found that for Da equal to
10−3 or 10−4 the instability boundary curves in the
(Re, Ra)-plane, for all above three fluids, are almost
equal.

Keywords: Porous media, mixed convection, linear sta-

bility.

1 Introduction

The research work in the area of convective heat trans-
fer in fluid saturated porous media has substantially in-
creased during recent years due to its many practical ap-
plications encountered in engineering and sciences. Most
of the available studies are restricted to natural or forced
convection, and are well documented in the book of Nield
and Bejan [1]. The convection due to external pressure
gradient and buoyancy forces (i.e mixed convection) in
a porous media is a fundamental problem in fluid dy-
namics and still a field of active and ongoing research.
For example, convection in permeable sediment due to
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hot spring/hydrothermal vent is a combination of forced
and natural convection [2]. Understanding the dynamic
behavior of fluid flow through porous media, especially
flow-transition, is still a challenge in fluid dynamics re-
search.

Few investigations in wall bounded mixed convection
through vertical annuli and channel have been reported
by different researchers, which are well documented in
the works of Chen [3], as well as in the recent paper of
Kumar and Bera [5].

It is well established [6, 7, 8, 9, 10] that stability of the
fully developed one dimensional (1D) flow due to external
pressure gradient and thermal buoyancy force in a ver-
tical channel, is sensitive to wall temperature. Beyond
a certain wall temperature, the 1D flow does not remain
stable. Based on the nature of buoyancy force, in favor or
against the flow, the basic flow profile may contain point
of inflection or separation which accelerates/decelerates
the flow instability. It is then natural to ask how these
flow dynamics, especially flow transition, will be modu-
lated when vertical channel is replaced by vertical pipe
filled with a porous medium.

From the best knowledge of us, no one has attempted to
answer the above question.

For fluid environments, however, there are some papers
([6], [11], [12], [13]) which deal with mixed convection.
Among them, Su and Chung [13] have presented the nu-
merical study on the linear stability of mixed convective
flow in a vertical pipe in both the cases: buoyancy as-
sisted and opposed and found that the most unstable flow
pattern is double spiral i.e. the most unstable azimuthal
wave number is unity.

In the present manuscript we have investigated the least
stability mode of the fully developed flow in a vertical
pipe filled with porous medium.

2 Mathematical Formulation

We consider a fully developed mixed convection flow
caused by an external pressure gradient and a buoy-
ancy force in a vertical pipe filled with porous medium.

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



Isotropic
Porous
Media

T w
=
T 0
+
C
1R
0
z*

Flow

R0

ψ
r*

z*

g

Figure 1: Sketch of physical model.

The wall temperature is linearly varying with z∗ as
Tw = T0 + C1R0z

∗, where C1 is a constant and T0 is
upstream reference wall temperature and R0 is radius of
the pipe. The gravitational force is aligned in the nega-
tive z∗-direction. As shown schematically in figure 1. The
thermo-physical properties of the fluid are assumed to be
constant except for density dependency of the buoyancy
term in the momentum equations. The porous medium
is saturated with a fluid that is in local thermodynamic
equilibrium with the solid matrix. The medium is as-
sumed to be isotropic in permeability.

Using non-dimensional quantities
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the non-dimensional governing equations are given by
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where,

J = u
∂

∂r
+

v

r

∂

∂ψ
+w

∂

∂z
, and D2 =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ψ2
+

∂2

∂z2

In the above equations the dimensionless parameters are

the Rayleigh number, Ra =
gβT C1

∗R0
∗4

ν̃α
, and the Prandtl

number, Pr =
ν̃

α
, Λ =

μf

μ̃
.

2.1 Basic Flow

The basic flow is a steady, unidirectional fully developed
flow. Therefore, the above governing differential equa-
tions (1) - (5) are reduced into the following set of coupled
differential equations.
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accompanied with boundary condition
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= 0 at r = 0, (8)

W0 = Θ0 = 0 at r = 1 (9)

The analytical solution of the above equations are given
bellow.
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J0 and I0 are zeroth order first and second kind of Bessel
functions respectively.
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2.2 Disturbance

In linear stability analysis, infinitesimal disturbances are
imposed on the base flow. Thus the velocity, pressure
and temperature fields can be written as

(u, v, w, θ, p) =
(
ũ, ṽ, W0(r) + w̃, Θ0(r) + θ̃, P0(z) + p̃

)
(12)

where the tilde quantities denote the infinitesimal distur-
bances to the corresponding term. By using the normal-
mode analysis, the disturbance can be expressed by

(
ũ, ṽ, w̃, θ̃, p̃

)
=

(
û(r), v̂(r), ŵ(r), θ̂(r), p̂(r)

)
e
[iα(z−ct)+nψ]

where, α is the wave number, n is integer azimuthal wave
number and c = ĉr + iĉi is complex wave speed. The
growth and decay of the disturbances depend on ĉi. De-
pending on whether ĉi < 0, ĉi = 0 or ĉi > 0, three differ-
ent possibilities stable, neutrally stable or unstable may
be distinguished. Following the standard linear stabil-
ity method [8], the governing linear equations for the in-
finitesimal disturbances can be written as
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The required boundary conditions accompanying the
above equations (13)-(17) are specified at the wall and
center. At the wall all disturbances must vanish. This
implies

û = v̂ = ŵ = θ̂ =
dp̂

dr
= 0, at r = 1 (18)

At the center of the pipe, the boundary conditions are as
follows:⎧⎨
⎩

û = v̂ = dŵ
dr

= dθ̂
dr

= dp̂
dr

= 0, at r = 0 , n = 0,

û + iv̂ = 2 dû
dr

+ dv̂
dr

= ŵ = θ̂ = p̂ = 0, at r = 0 , n = 1,

û = v̂ = ŵ = θ̂ = p̂ = 0, at r = 0 , n ≥ 2.

(19)

The spectral collocation method has been used to solve
above set of ordinary differential equations.

3 Results and Discussion

Linear stability analysis has been performed here to an-
swer the question of the condition for the occurrence of
the maximum stability of fluid in the vertical pipe filled
with porous medium. Main emphasis is given on the de-
pendency of the stability boundaries on the azimuthal
wave numbers (n) for gas (Pr = 0.7), water (Pr = 7.0)
and oil (Pr = 70). To give a thorough study in the highly
porous media, four different Darcy numbers, i.e., 10−1,
10−2, 10−3 and 10−4 are used. Throughout this section,
critical Ra and critical α have been represented by Ra
and α respectively. Before discussing the effect of the
azimuthal wave number on stability of the system a ver-
ification of the code is given via grid Independence and
by comparison with published results. Table 1 shows the
convergence of Spectral collocation method at Re = 1000,
Ra = 100, α = 1, Pr = 7, Da = 10−2, F = 0, and az-
imuthal mode = 1. With an order of polynomial (N) of 19
and 25 already a 6-digit point accuracy can be obtained.
As the number of terms in the approximations increases,
the results remain consistent and accuracy improved too.
Similar satisfactory results were obtained for other sets
of input parameters. In all computations reported, it was
found that accurate solutions could be reached by taking
50 terms of the Spectral approximation. A severe test
(see Table 2) for linear stability calculation is provided
by calculating the first eigen-mode for isothermal flow
with Prandtl numbers, at Re = 100, n = 1, ε = 1, F =
0, Da = 1012 and comparing the same with the results
of Su and Chung [13] as particular case of our results. It
has been found that the obtained eigenvalues are agreed
well. The dependency of the stability boundaries on the
azimuthal wave numbers, (n = 0,1) for gas, water and oil,
is plotted in figures 2, 3 and 4 respectively for different
Darcy number (Da). It can be observed from figure 2
(a)-(d) that, when Da equal to 10−1 and 10−2, the first
azimuthal mode i.e n = 1, is least stable mode in the en-
tire range, [0,1000], of Re. But for Da equal to 10−3, the
first azimuthal mode will be the least stable mode pro-
vided the value of Re is ≥ 600. Of course, both curves
(obtained for n = 0,1) almost coincide each other.

As the value of Re is decreased below 600, the zero az-
imuthal mode becomes least stable mode. As can be seen
from figure 2 (c) that the range of Re, in which zero az-
imuthal mode is least stable, is function of media per-
meability as well as fluid. For Da equal to 10−4, zero
azimuthal mode is least stable for the entire range of Re.
Similar results can also be seen for fluid as water (see fig-
ure figure 3 (a)-(d)). In this case, zero azimuthal mode is
least stable for Re ≤ 400 at Da = 10−3. Judging from fig-
ures 2 (c) and 3 (c) it can be conclude that enhancement
of Pr from 0.7 to 7 reduces the range of Re in which zero
azimuthal mode is the least stable mode. In contrast to
purely viscous fluid flow [13] in which the first azimuthal
mode is the least stable mode, in porous media, zero az-
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Table 1: Convergence of Chebyshev collocation methods,
at Ra = 100, Re = 1000, α = 1, Pr = 7.0, n=1 and Da
= 10−2.

N(terms) Most unstable mode
15 0.5971472994381 - 0.0088745541020i
17 0.5971530076879 - 0.0088863797381i
19 0.5971510023715 - 0.0088843473069i
25 0.5971511828890 - 0.0088846738378i
31 0.5971511802630 - 0.0088846753046i
40 0.5971511795755 - 0.0088846760288i
50 0.5971511796095 - 0.0088846758491i
60 0.5971511796249 - 0.0088846757865i
70 0.5971511796327 - 0.0088846757598i

Table 2: Comparison of first eigen-mode with the pub-
lished results [13] at Da = 1012, Ra = 0, n = 1, Re = 100
and α = 1.

Pr Su and Chung Present
0.01 0.57256-0.14713i 0.5725629 - 0.1471366i
0.1 0.57256-0.14713i 0.5725629 - 0.1471366i
1 0.57256-0.14713i 0.5725629 - 0.1471366i
10 0.91055-0.09044i 0.9105573 - 0.0904427i
100 0.97171-0.02838i 0.9717157 - 0.0283842i

imuthal mode is the least stable mode for fluid like heavy
oil (Pr = 70) beyond a certain value of Re (which is also
function of Da). As a result, two azimuthal modes: n =
0 and 1, in buoyancy assisted case, are used to find the
least stable mode of basic flow.

To shed some more light on the dependency of the least
stable mode as a function of Prandtl number instability
boundary curves for n equal to 0 and 1 are plotted in
(Pr, Ra)-plane for Re = 1000, which is shown in Fig.
5. As can be observed from above figure that the zero
azimuthal mode is the least stable mode for Pr> 10.

4 Conclusions

We have attempted to gain an understanding of instabil-
ity of pressure gradient driven buoyancy assisted mixed
convection in a vertical pipe filled with fluid-saturated
porous medium. To this end, we adopted Non-Darcy
Brinkman-extended model. By means of linear theory,
we were able to extract detailed information of transition
of basic flow through a porous medium for different fluids.
The Spectral Collocation Method is used to solve the set
of linear ordinary differential equations. The main objec-
tive in this study was to investigate the dependency of
the stability boundaries on the azimuthal wave numbers
(n) for gas (Pr = 0.7), water (Pr = 7.0) and oil (Pr =
70). Four different values (10−1, 10−2, 10−3 and 10−4)
of Da were considered. Throughout the study, porosity
(ε), viscosity ratio (Λ) and heat capacity ratio (σ) were
given constant values of 0.9, 1 and 1, respectively. In
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Figure 2: Effect of azimuthal wave number (n) on the
stability map of assisted flow for (a) Da = 10−1, (b) Da
= 10−2, (c) Da = 10−3 and (d) Da = 10−4 at Pr = 0.7.
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Figure 3: Effect of azimuthal wave number (n) on the
stability map of assisted flow for (a) Da = 10−1, (b) Da
= 10−2, (c) Da = 10−3 and (d) Da = 10−4 at Pr=7.
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Figure 4: Effect of azimuthal wave number (n) on the
stability map of assisted flow for (a) Da = 10−1, (b) Da
= 10−2, (c) Da = 10−3 and (d) Da = 10−4 at Pr=70.
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Figure 5: Influence of Prandtl number (Pr) on the stabil-
ity map of basic flow for (a) Da = 10−1, (b) Da = 10−2,
(c) Da = 10−3 and (d) Da = 10−4 for Re = 1000.

this study we have found that depending on the values of
media permeability as well as Reynolds number, the flow
will be least stable under either first azimuthal mode or
zero azimuthal mode.
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