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ABSTRACT: A mathematical model is 
constructed with an aim to assist the design 
engineers for the making of various structure 
used in the satellite and aeronautical 
engineering. In this paper effect of exponential 
variation in temperature is premeditated on 
an orthotropic rectangular plate whose 
thickness varies linearly in both directions. 
Rayleigh Ritz approach is applied for the 
solution of the problem. Fundamental 
frequencies and deflection functions are 
calculated for first mode of vibration of a 
clamped plate with diverse values of 
temperature gradient, taper constants and 
non-homogeneity constants. 
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1. INTRODUCTION 
Vibration effects have always been a principle 
concern of engineers. In the epoch of science and 
technologies it is desired to design large machines 
with smooth operation and unwanted vibrations. 
Sometimes unwanted vibration causes fatigues.  
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Unwanted vibration can damage electronic 
components of aerospace system, damage 
buildings by earthquake, bring tsunami, and 
contribute to toppling of tall smokestacks, 
collapse of a suspension bridge in a windstorm. 
There are a multitude of applications where 
vibration effect is required e. g. in string and 
percussion instruments, in the design of 
loudspeakers, space shuttles, satellites where 
discrepancies in the temperature also affects the 
vibration effect. Controlled vibration               
effects are also required in health industry, paper 
industry, design of structures, building 
construction, reducing soil adhesion and many 
more areas engross vibration upshot.  

Hence vibrations totally affect our day-to-day life. 
Thus for design engineers and scientist, it has 
always been a necessity to optimize or to control 
the effect of unwanted vibrations as much as 
possible. Present work is a full-fleshed endeavor 
to assist the design officers, industry people to 
come up to the situation. 

An initial eloquent essence about the subject of 
plate vibration is done by Leissa [1] and Leissa 
[2]. Pradeep and Ganesan [4] worked for thermal 
buckling and vibration behavior of multi-layer 
rectangular viscoelastic sandwich plate. The 
temperature-dependent characteristics of complex 
shear modulus of viscoelastic core were 
accounted. An all side clamped (C–C–C–C) plate 
under thermal loads was analyzed for thermal 
buckling, frequency and damping behavior. An 
efficient controller for vibration reduction in a 
small square plate clamped on all edges was 
developed by Shimon and Hurmuzlu [3]. Tomar 
and Gupta [5] studied the effect of exponential 
temperature variation on frequencies of an 
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orthotropic rectangular plate having bi-directional 
variation in thickness. Effect of thermal gradient 
on vibration of non-homogeneous orthotropic 
rectangular plate having bidirectional 
parabolically varying thickness was estimated by 
Gupta and Johri [6]. A study regarding the static 
deflections and natural frequencies of isotropic, 
orthotropic/laminated composite plates using a 
Levy-type solution was done by Chen [9]. 
Mindlin plate theory is applied in conjunction 
with the state-space concept to find such 
solutions. Sakata [10] worked on the study of 
clamped orthotropic rectangular plates with 
variation in thickness. Singh and Saxena [8] 
studied the transverse vibration of a rectangular 
plate with thickness varying in both the directions. 
Gupta, Johri and Vats [7] studied thermal gradient 
effect on vibration of non-homogeneous 
orthotropic rectangular plate having bi-direction 
linearly variation in thickness. 

2. METHODOLOGY 

Let the plate is subjected to a steady one 
dimensional exponential temperature distribution 
along x- axis, then 
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where T is the temperature excess above the 
reference temperature at a distance x a  and 0T  is 

the temperature excess above the reference 
temperature at the end of the plate i.e. at x=a.  
Expressions for Moduli of elasticity as a function 
of temperature are described as [5], 
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where α is thermal gradient 
parameter. and  are Young’s moduli in x- 
and y- directions respectively and is shear 
modulus, γ is Slope of variation of moduli with 

temperature and , a thermal 
gradient parameter. 
The governing differential equation of transverse 
motion of an orthotropic rectangular plate of 
variable thickness in Cartesian coordinates is  
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A comma followed by a suffix denotes partial 
differential with respect to that variable. 
Deflection function for free transverse vibrations 
of the plate can be written as, in the form of Levy   
type solution,  
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where A1 and  A2 are constants to be evaluated. 
Plate is assumed to have linear variation in 
thickness 
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0
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  and 1  & 2  are two taper 

constants 
Density of the plate is assumed to be varying 
exponentially 

                  
1

0
x ae                                  (7) 

where 0 0x
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  and 1  is non- homogeneity 

constant. 
For plate executing transverse vibration of mode 
shape W(x, y), the Strain and Kinetic energies are, 
respectively  
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To validate Rayleigh Ritz technique, the maximum 
strain energy and maximum kinetic energy must be 
equal i.e. following equation must be satisfied, 

                        1 0V T                         (10) 

For clamped plate, the boundary conditions are, 

(2) 
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, 0xW W   at x=0, a  and  

, 0yW W   at y=0, b  

Using eqn (1), (5),(6),&(7) in eqn (10), after 
calculating V and T1 from eqn (8) &(9),one has,                  
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is a frequency parameter and 

Equation (12) contains two unknowns 1A & 2A  

evaluated in the following manner, 
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On simplifying equation (13), one gets,  

      1 1 2 2 0s sc A c A                                        (14) 

where 1sc  & 2sc  involves the parametric 
constants and the frequency parameter. 
For a non - zero solution, determinant of 
coefficients of equation (14) must vanish. In 
this way frequency equation comes out to be, 
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3. RESULT AND DISCUSSION 

Frequency equation (15) is quadratic in 2 so it will 
give two roots. But it had already been observed that 
Rayleigh Ritz method gives best approximation for 
first mode of vibration as compared to further higher 
modes of vibrations if two-term deflection function is 
used. So the frequency parameter and deflection 
function, both are calculated for the first mode of 
vibration of the plate. The parameters for orthotropic 
material have been taken as [7],  
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Results are plotted in Fig. 1,2,3,4 and 5. Fig 1 depicts 
the variation of frequency parameter  with the 
thermal gradient parameter ‘’ for the following two 
cases: 
       α1 =0.0, β1= 0.0, β2=0.0  
and α1 =0.0, β1= 0.2, β2=0.6. 
Fig.2, demonstrates the variation of frequency 
parameter with non-homogeneity of the plate 
material.  Following two cases are taken into 
consideration: 
α =0.0, β1= 0.0, β2=0.0 and α =0.0, β1= 0.2, β2=0.6 

Fig. 3 and 4 display the variation of taper 
constant ‘β1’ and ‘β2’ with frequency parameter 
‘λ’, respectively, for the following cases: 

For β1                                                                   For β2 

α1 =0.0, α = 0.0, β2=0.0          α1 =0.0, α = 0.0, β1=0.0 
α1 =0.0, α = 0.0, β2=0.6          α1 =0.0, α = 0.0, β1=0.6 
α1 =0.0, α = 0.4, β2=0.0          α1 =0.0, α = 0.4, β1=0.0                     
α1 =0.0, α = 0.4, β2=0. 6         α1 =0.0, α = 0.4, β1=0.6                     
α1 =0.8, α = 0.0, β2=0.0          α1 =0.8, α = 0.0, β1=0.0 
α1 =0.8, α = 0.0, β2=0.6          α1 =0.8, α = 0.0, β1=0.6 
α1 =0.8, α = 0.4, β2=0.0          α1 =0.8, α = 0.4, β1=0.0 
α1 =0.8, α = 0.4, β2=0.6          α1 =0.8, α = 0.4, β1=0.6 
        
Fig.5 displays the variation of deflection 
function W with X for the following cases: 
For Y=0.2 and 0.4 
α1 =0.0, α = 0.0, β1 =0.0, β2=0.0, a/b=1.5  
For Y=0.2 and 0.4 
α1 =0.8, α = 0.4, β1 =0.2, β2=0.6, a/b=1.5  
Authenticity of result is confirmed by comparing 
them with those of Tomar and Gupta [5] under 
following conditions: 
 α1 =0.0, α = 0.0, β1 =0.0, β2=0.0  and    
 α1 =0.0, α = 0.2, β1 =0.0, β2=0.0. 

4. CONCLUSION 

From the above results it is seen that the frequency of 
vibration reduces on increasing thermal gradient and 
non-homogeneity, whereas increase in taper 
constants increases the frequency of vibration. A 
comparative study was done for the plates in which 
temperature was varying linearly and exponentially 
respectively. Thickness of the plate was assumed to 
be varying linearly in both directions. It was found 
that plate undergoing linear variation in temperature 
was more stable as compared to those undergoing 
exponential variation in temperature, to bear up the 
thermally induced vibration effects. But in those 
cases where exponential variation in thickness is a 
restriction, above said conditions can make them 
most stable in those situations. 
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Fig 1: Frequency parameter ‘λ’ Vs.  ‘α’   
              

  
Fig 2: Frequency parameter ‘λ’ Vs.  ‘α1' 

 

       Fig. 3: ‘λ’ Vs. taper constant ‘ 1  
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        Fig. 4: ‘λ’ Vs. taper constant ‘ 2  

 

         Fig 5: Deflection Vs. X (=x/a)             
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