
 

  
Abstract—This paper suggests an embedded analysis method 

to estimate the complexities of problems. It is generally difficult 
to estimate tight lower bounds for many problems and 
algorithms. Traditionally, lower bounds are obtained either by 
reduction or by a direct analysis. In this paper, a new idea is 
presented for estimating the lower bounds of problems and 
algorithms. In conjunction with two algorithm design 
paradigms divide and conquer and incremental construction, we 
can derive good lower bounds from the lower bounds of the 
corresponding sub-problems. 
 

Index Terms—algorithm, computational complexity, lower 
bounds 
 

I. INTRODUCTION 
he lower bounds of problems are generally obtained by 
the following two ways:  

(1) By means of a direct argument on the height of the 
computation/decision tree[1];  

(2) By means of transformations of the problem [1, 5].  

In this paper, a new train of thought is introduced. 

Suppose we want to estimate the lower bound of problem Q . 
We may first find another problem P  such that problem Q  
is contained in problem P  as its sub-problem when we solve 
problem P  by a certain algorithm. If problem P  exists, the 
lower bound of problem Q  may be obtained by taking 
advantage of the relation between Q  and P  if the lower 
bound of problem P  is known so far or it is easier to 
estimate. 

We shall show the power of the technique to analyze the lower 
bound of a problem in this manner later. We are interested in 
the asymptotic analysis, i.e., the behavior of the algorithm as 
the input size approaches infinity. Since expected case 
analysis is usually harder to tackle, and moreover the 
probabilistic assumption is sometimes difficult to justify, our 
emphasis will only be placed on the worst case analysis.  
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In the following 4 sections we describe our new ideas on 
obtaining the lower bounds of problems.  

In section 2 we describe the notation and definitions 
necessary for following discussions. In section 3 we provide a 
novel idea for embedding analysis with divide-and-conquer 
algorithm design paradigm. In section 4 another idea for 
estimating the lower bounds of problems in conjunction with 
algorithm design paradigm incremental construction is 
presented. Finally some concluding remarks are in section 5. 
 

II. NOTATION AND DEFINITIONS  

Let )(PA represent the set of all the algorithms for solving 
the problem P . If )(PAA∈  and the size of the problem 
P  is n , the corresponding ADT (Algebraic Decision Tree) 
or ACT (Algebraic Computation Tree) is denoted by 

)(nPAT and the height of )(nPAT  denoted by 
))(( nPATH . 

Definition 2.1  For any )(PAA∈ , if there exists a real 

function )(nfP  such that ))(())(( nfnPATH PΩ= ,   

then )(nfP  is said to be an asymptotic lower bound of  the 
problem P [1]. 

Definition 2.2 If )(nfP  is an asymptotic lower bound of the 
problem P  and there exists )(PAA∈  such that 

))(())(( nfOnPATH P= , then A  is said to be an 
asymptotically optimal algorithm to solve the problem P  
and )(nfP  is called the asymptotic infimum of P [1]. 

Definition 2.3 If there exist a real function )(nfP  and 

positive constants c  and 0n  independent of )(PAA∈  

such that for any )(PAA∈ , )())(( ncfnPATH P≥ , 

when 0nn ≥ , then )(nfP  is called a strong asymptotic 

lower bound of P [1]. 

Proposition 2.4 If problem P  has a strong asymptotic 
infimum then it has an asymptotic infimum too, and the strong 
asymptotic infimum of P  is the asymptotic infimum of P . 
Any strong asymptotically optimal algorithm to solve 
problem P  is also asymptotically optimal[1]. 

Definition 2.5 For a problem of size n , we can partition the 
problem into a  sub-problems, each of size bn /  
( 1>≥ ba ), and recursively solve each sub-problem and 
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then combine the solutions of the a  sub-problems to obtain 
the solution of the original problem. This type of problem 
solving techniques is called a ),( ba   divide-and-conquer 
algorithm or an ),( ba -DAC for short.  

In divide-and-conquer algorithms, the proto typical 
recurrence has the form 

)()/()( ndbnaTnT +=             (1.1) 

where 0>a  and 1>b  are arbitrary real numbers, and 
1)( ≥nd  is the driving function. Examples include the case 
2== ba  , nnd =)(  (Mergesort [7]), and 7=a , 

2=b , 2)( nnd =  (Strassen’s matrix multiplication [1]). In 
the spirit of improving Strassen’s algorithm, many similar 
recurrences have appeared in matrix multiplication, e.g., 

143640=a , 70=b , 2)( nnd =  in an algorithm of Pan 
[8]. 

Recurrences arise naturally in computer science from the 
analysis of algorithms, combinatorial analysis. Techniques 
for solving recurrences are among the standard repertoire of 
algorithmic textbooks (e.g., [4, 6, 8]). 

In an influential note, Bentley, Haken and Saxe proved a 
master theorem for the divide-and-conquer algorithms [3] 
under a fairly general hypothesis on )(nd .  

The master recurrence can be generalized to 

)()/()(
1

ndbnTanT
k

i
ii += ∑

=

           (1.2) 

Wang and Fu [11, Theorem 3.5] gave an integral bound on 
solutions to a parametric form of (1.1) in which the constants 

ba,  are now functions of n . Roura [9] and  Verma [10] 
provide the general theorems for the multi-term recurrences 
(1.2). 

The ideas of the above techniques for solving master 
recurrences will be useful in the following discussion.  

III. EMBEDDED ANALYSIS WITH DIVIDE-AND-CONQUER  

Let problem Q  be the merge step problem of the problem 

P  if ),( ba -DAC algorithm is employed to solve problem 

P . For convenience, suppose a unit time is needed for 
solving problem P  of size 1. If )(nTP  denotes the total 

time spent by the ),( ba -DAC algorithm in solving problem 

P  of size n  and )(nM Q  denotes the time spent in solving 

problem Q  of size n , then )(nTP  satisfies the following 
recursive equation: 

  




>+
=

=
1)()/(
11

)(
nnMbnaT
n

nT
Qp

P       (3.1) 

Without loss of generality, let kbn = , then nk blog= .   

Since 1)1()/( == P
k

P TbnT , we can easily derive from 

recursive equation (3.1) that )(nTP , the total time spent by 

the ),( ba -DAC algorithm is 









+= ∑

=

i
k

i

i
Q

k
P abManT /)(1)(

1

          (3.2) 

Let )(nfP  be an asymptotic lower bound of P . Without 
loss of generality, assume that 

 ∞↑)(nfP   when  ∞↑n               (3.3) 

 Set nk blog= , a
P

kk
PP

bnnfabfkg log/)(/)()( ==  

and α=)(suplim kgP , then α  may be one of the 
following three cases: 

(1) 0=α , (2) +∞<< α0 , (3) +∞=α .  

Now let us examine the efficiency of the ),( ba -DAC 
algorithm for solving problem P  in the three cases 
respectively. 

A. The results with 0=α  

When 0)(suplim =
+∞→

kgPk
, 0)(lim =

+∞→
kgPk

 due to 

0)( ≥kgP . 

Theorem 3.1 Let 0/)(lim log =
∞→

a
Pn

bnnf  ,then 

))(()( nTonf PP = . 

Proof.  It follows from (3.2) that 

0)(

/)(

)(
)(
)(0 log

0

→≤=<

∑
=

a
P

k

i

ii
Q

k

P

P

P
bn
nf

baMa

nf
nT
nf

 

When ∞→n . 

Thus 0)(/)(lim =
∞→

nTnf PPn
.  

That is ))(()( nTonf PP = .■ 

Theorem 3.1 indicates that if 0=α  then any ),( ba -DAC 
algorithm to solve problem P  cannot reach the order of 

)(nfP . Therefore, if )(nfP  is the asymptotic infimum of  
the problem P , then any ),( ba -DAC algorithm to solve the 
problem P  is not optimal. 

B. The results with +∞<< α0  

Theorem 3.2 Let +∞<=
∞→

αa
Pn

bnnf log/)(suplim , then 

))(()( nfnT PP Ω= . 

Proof.  From +∞<=
∞→

αa
Pn

bnnf log/)(suplim , we know 

that for a given ε , αε <<0 ,  

αεα 2/)( log <+≤a
P

bnnf , when n  is sufficiently 
large.  It follows from (3.2) that 
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)()(

/)(

)(
)( log

0

nf
n

nf

baMa

nf
nT

P

a

P

k

i

ii
Q

k

P

P
b

≥=
∑

=  

Therefore, 0
2
1

)(
)(

>=
αnf

nT
P

P  when n  is sufficiently large. 

This means ))(()( nfnT PP Ω= .■ 

Theorem 3.2 indicates that )(nfP  is an asymptotic lower 
bound of the ),( ba -DAC algorithm if +∞<< α0 .  

In other words, we can know nothing about the lower bound 
of the problem Q  from the lower bound of the problem P  if 

)(nfP  is an asymptotic lower bound of P . 

C. The results with +∞=α  
In order to obtain meaningful results we make a further 
assumption herein that 

for 1>≥ ba , there exists an integer 0n  such that 

0)/()()( >−= bnafnfnd PPP               (3.4) 

where 0nn ≥ . 

In this case we have 

a
PP

k

k
P

k
P

PP bn
bnafnf

a
bafbfkgkg log

1 )/()()()()1()( −
=

−
=−−

−

 

Therefore )(lim)(suplim kgkg PkPk +∞→+∞→
===∞+ α . 

 Theorem 3.3 Let )(nfP  be an asymptotic lower bound of 
the problem P  and 

0)( >ndP ,  +∞=
∞→

a
Pn

bnnf log/)(lim , 

then )(ndP  is an asymptotic lower bound of the problem Q , 

i.e., ))(()( ndnM PQ Ω= . 

Proof. Suppose there is an algorithm B  to solve problem Q  

such that ))(()( ndonM PQ = . 

)(nTP , the computing time required by the ),( ba -DAC 
algorithm employing algorithm B , is given by (3.2). Thus, 

)(

/)(

)(
)(0 0

nf

baMa

nf
nT

P

k

i

ii
Q

k

P

P
∑

==<
k

k
kk

P

k

i

ii
Q

k

Y
X

abf

baMa
==

∑
=

/)(

/)(
0  

 

Since kk
Qkkk abMXXX /)(1 =−=∆ −  

a
PP

k

k
P

k
P

kkk bn
bnafnf

a
bafbfYYY log

1

1
)/()()()( −

=
−

=−=∆
−

−

 

it follows from 0)( >ndP  that 0>∆ kY  when k  is 
sufficiently large. 

It follows from the assumption +∞=
∞→

a
Pn

bnnf log/)(lim  

that +∞→kY  when +∞→k . 

By Stolz's theorem [2] we conclude that 

kkkkkk
YXYX ∆∆=

∞→∞→
/lim/lim  

0
)(
)(

lim
)()(

)(
lim 1 ==

−
=

∞→−∞→ nd
nM

bafbf
bM

P

Q

nk
P

k
P

k
Q

k
. 

Therefore, 0
)(
)(lim =

∞→ nf
nT

P

P

n
.  

That means ))(()( nfonT PP = .   

This contradicts the fact that )(nfP  is an asymptotic lower 
bound of the problem P .  

Thus, for any algorithm to solve the problem Q  we always 

have ))(()( ndnM PQ Ω= , i.e., )(ndP  is an asymptotic 

lower bound of Q . ■ 

Theorem 3.4 Under the assumption of Theorem 3.3, for a 
given ),( ba -DAC algorithm to solve the problem P , if 

))(()( ndOnM PQ = , then 

 (1) in the ),( ba -DAC algorithm, the algorithm to solve the 

problem Q  is asymptotically optimal and )(ndP  is the 
asymptotic infimum of the problem Q . 

(2) the ),( ba -DAC algorithm is asymptotically optimal and 

)(nfP  is the asymptotic infimum of the problem P . 

Proof. Conclusion (1) follows from Theorem 3.3 
immediately. So, only conclusion  (2) remains to be proved.  

From ))(()( ndOnM PQ =  we know that there exist 

positive constants 0>c  and 00 >n  such that 

)()( ncdnM PQ ≤  when 0nn ≥ . 

Set   1log 00 += ni b , then 0nb i ≥  when 0ii ≥ .  

Thus )()( i
P

i
Q bcdbM ≤ when 0ii ≥ . 

Consequently, when 0ik ≥ , 

i
k

ii

i
Q

i
i

i

i
Q

i
k

i

i
Q abMabMabM /)(/)(/)(

0

0 1

00
∑∑∑
=

−

==

+=  

i
k

ii

i
P abdcc /)(

0

1 ∑
=

+≤  
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a
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







−+= −

−

1

1

1 0

0 )()(
i

i
P

k

k
P

a
bf

a
bfcc  

kk
P abcfc /)(2 +≤  

It follows from (3.2) that when 0nn ≥ , 

)()/)(()( log
22 ncfncabcfcanT P

akk
P

k
P

b +=+≤ . 

Noticing ))((log nfon P
ab = ,  

we have ))(()( nfOnT PP = . 

Therefore, the ),( ba -DAC algorithm is asymptotically 

optimal and )(nfP  is the asymptotic infimum of the problem 
P .■ 

Especially, given 1>≥ ba , ablog≥β  and 1≥γ , we 
have the following corollary. 

Corollary 3.5 Let nn γβ log  be an asymptotic lower bound 
of the problem P  and the problem Q  be the merge step 
problem of the ),( ba -DAC algorithm to solve the problem 
P , then 

(1)  )(nh  is an asymptotic lower bound of problem Q ; 

(2) the algorithm to solve problem Q  in ))(( nhO  time is 
asymptotically optimal. 

In this situation, )(nh  is the asymptotic infimum of Q ; 

nn γβ log  is the asymptotic infimum of P  and the 
corresponding ),( ba -DAC algorithm to solve the problem 
P   is asymptotically optimal, where 





=
<

=
− βγβ

βγβ

bann
bann

nh 1log
log

)(  

Proof. Taking nnnfP
γβ log)( =  in Theorem 3.3 and 

Theorem 3.4 one can see immediately that +∞↑)(nfP  

and +∞== −

∞→∞→
nnnnf a

n

a
Pn

bb γβ loglim/)(lim loglog . 

)/()()( bnafnfnd PPP −=  

)/(log)/(log bnbnann γβγβ −=  

)log(logloglog1 11 nnonn
b

bann
b
a −− +−






 −= γβγβ

β

γ
γβ

β

Thus, 0)( >ndP when n  is sufficiently large. This yields 
that all of the conditions of Theorem 3.4 and Theorem 3.5 are 
satisfied. Noticing ))(()( nhndP Θ= , we finish the proof 
from Theorem 3.3 and Theorem 3.4. ■ 

It is a more special case when 1=β   and 1=γ in Corollary 
3.5.  

In this case ba = . 

Corollary 3.6 Let nn log  be an asymptotic lower bound of 
problem P and the problem Q  be the merge step problem of 
the ),( ba -DAC algorithm to solve the problem P , then 

 (1) n  is an asymptotic lower bound of problemQ ; 

 (2) the algorithm to solve the problem Q  in )(nO  time is 
asymptotically optimal. 

In this situation, the corresponding ),( ba -DAC algorithm 
to solve the problem P  is asymptotically optimal; n  is the 
asymptotic infimum of Q  and nn log  is the asymptotic 
infimum of P . 

 

IV. THE INCREMENTAL CONSTRUCTION 
Now let us consider another type of algorithm, the so-called 
incremental construction. The main idea of the algorithm of 
this type is that the solution is constructed or computed in an 
iterative manner. For a problem )(nP  with size n , the 
solution of )1(P  is constructed first, and then the solution of 

)1( +iP  is recursively constructed from the solution of 
)(iP , 1,,2,1 −= ni L . 

Let the problem )(nQ  connected with the problem )(nP  

be the iterative computation of )(nP . Let )(nRQ  be the 

time spent in solving the problem )(nQ  and )(nTP  be the 
time spent in solving the problem )(nP  by the 

corresponding incremental algorithm, then )(nTP  satisfies 
the following equation: 

∑
−

=

=
1

1
)()(

n

i
QP iRnT  

For this type of algorithm construction we have the following 
results. 

Theorem 4.1 Let )(nfP  be an asymptotic lower bound of 

)(nP  and )(xfP  be a continued differentiable function on 

),0( +∞ , and +∞↑)(' xf P  when +∞↑x , then 

)(' nf P  is an asymptotic lower bound of )(nQ . 

Proof. It is easily seen from Lagrange's mid-value theorem 
and the properties of )(xfP  that 

)(')()1()1(' xfxfxfxf PPPP >−+>+               (4.1) 

)1()()(')()1( −−>>−+ xfxfxfxfxf PPPPP (4.2
) 

if ),1( +∞∈x . 
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If there is an algorithm to solve the problem )(nQ  such that 

))('()( nfonR PQ = , the corresponding incremental 

construction algorithm to solve the problem )(nP  will spend 

a computing time of ∑
−

=

=
1

1
)()(

n

i
QP iRnT . 

Thus, 
n

n

P

n

i
Q

P

P

Y
X

nf

iR

nf
nT

==≤
∑

−

=

)(

)(

)(
)(0

1

1  

)1(1 −=−=∆ − nRXXX Qnnn  

)1(')1()( −>−−=∆ nfnfnfY PPPn  

 

Therefore, when n  is sufficiently large, 0>∆ nY  and 

+∞=
+∞→ nn

Ylim . 

It follows from Stolz's theorem [2] that 

nnnnnn
YXYX ∆∆=≤

+∞→+∞→
/lim/lim0  

0
)1('
)1(

lim
)1()(

)1(
lim =

−

−
≤

−−

−
=

+∞→+∞→ nf
nR

nfnf
nR

P

Q

n
PP

Q

n
 

Thus 0)(/)(lim =
+∞→

nfnT PPn
, i.e., ))(()( nfonT PP = . 

This is a contradiction. Therefore ))('()( nfnR PQ Ω= . 

This means that )(' nf P  is an asymptotic lower bound of 
)(nQ . ■ 

Theorem 4.2 Under the assumption of Theorem 4.1, if there 
is an algorithm to solve the problem )(nQ  such that 

))('()( nfOnR PQ = , then 

(1) the algorithm to solve the problem )(nQ  is 

asymptotically optimal and )(' nf P  is the infimum of 
)(nQ ; 

(2) the corresponding incremental algorithm to solve the 
problem )(nP  is asymptotically optimal and )(nfP  is the 
asymptotic infimum of )(nP . 

Proof. The conclusion (1) follows from Theorem 4.1 
immediately. So only the conclusion (2) remains to be proved. 
From ))('()( nfOnR PQ =  we know that there exist 

positive constants 0>c  and 00 >n  such that 

)(')( ncfnR PQ ≤ when 0nn ≥ .  According to (4.2), 

 ))1()(()( −−≤ nfnfcnR PPQ  when 0nn ≥ . 

Thus, when n  is sufficiently large, 

∑∑∑
−

=

−

=

−

=

+==
11

1

1

1 0

0

)()()()(
n

ni
Q

n

i
Q

n

i
QP iRiRiRnT  

( )∑
−

=

−++≤
1

1
0

)()1(
n

ni
PP ififcc  

( ) ))(()()( 01 nfOnfnfcc PPP =−+=  

Therefore, the corresponding incremental algorithm is 
asymptotically optimal and )(nfP  is the asymptotic 
infimum of )(nP . ■ 

Corollary 4.3 Let 1≥β   and 0>γ  and nn γβ log  be an 

asymptotic lower bound of )(nP , then nn γβ log1−  is an 
asymptotic lower bound of )(nQ . 

V. CONCLUDING REMARKS 
Lower bound problems are generally concerned in the field of 
design and analysis of algorithms. It is difficult however to 
estimate their tight lower bounds for many algorithms. 
Traditionally, lower bounds are obtained either     by 
reduction or by a direct analysis. In this paper, a new idea is 
presented for estimating the lower bounds of problems.  

In conjunction with two algorithm design paradigms divide 
and conquer and incremental construction, we can derive 
good lower bounds from the lower bounds of the 
corresponding sub-problems. This is a powerful tool for 
design and analysis of algorithms.  
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