

Abstract—This paper suggests an embedded analysis method

to estimate the complexities of problems. It is generally difficult
to estimate tight lower bounds for many problems and
algorithms. Traditionally, lower bounds are obtained either by
reduction or by a direct analysis. In this paper, a new idea is
presented for estimating the lower bounds of problems and
algorithms. In conjunction with two algorithm design
paradigms divide and conquer and incremental construction, we
can derive good lower bounds from the lower bounds of the
corresponding sub-problems.

Index Terms—algorithm, computational complexity, lower
bounds

I. INTRODUCTION
he lower bounds of problems are generally obtained by
the following two ways:

(1) By means of a direct argument on the height of the
computation/decision tree[1];

(2) By means of transformations of the problem [1, 5].

In this paper, a new train of thought is introduced.

Suppose we want to estimate the lower bound of problem Q .
We may first find another problem P such that problem Q
is contained in problem P as its sub-problem when we solve
problem P by a certain algorithm. If problem P exists, the
lower bound of problem Q may be obtained by taking
advantage of the relation between Q and P if the lower
bound of problem P is known so far or it is easier to
estimate.

We shall show the power of the technique to analyze the lower
bound of a problem in this manner later. We are interested in
the asymptotic analysis, i.e., the behavior of the algorithm as
the input size approaches infinity. Since expected case
analysis is usually harder to tackle, and moreover the
probabilistic assumption is sometimes difficult to justify, our
emphasis will only be placed on the worst case analysis.

Manuscript received January 10, 2011. This work was supported in part

by the Natural Science Foundation of Fujian under Grant No.2009J01295
and the Haixi Project of Fujian under Grant No.A099.

Xiaodong Wang is with College of Mathematics & Computer Science,
Quanzhou Normal University, Quanzhou 362000, China (phone:
+86-595-22916878; fax: +86-595-22916879; e-mail: wangxiaodong@
qztc.edu.cn).

Weibin Wu and Daxin Zhu are with College of Mathematics &
Computer Science, Quanzhou Normal University, Quanzhou 362000,
China (e-mail: dex@qztc.edu.cn).

In the following 4 sections we describe our new ideas on
obtaining the lower bounds of problems.

In section 2 we describe the notation and definitions
necessary for following discussions. In section 3 we provide a
novel idea for embedding analysis with divide-and-conquer
algorithm design paradigm. In section 4 another idea for
estimating the lower bounds of problems in conjunction with
algorithm design paradigm incremental construction is
presented. Finally some concluding remarks are in section 5.

II. NOTATION AND DEFINITIONS

Let)(PA represent the set of all the algorithms for solving
the problem P . If)(PAA∈ and the size of the problem
P is n , the corresponding ADT (Algebraic Decision Tree)
or ACT (Algebraic Computation Tree) is denoted by

)(nPAT and the height of)(nPAT denoted by
))((nPATH .

Definition 2.1 For any)(PAA∈ , if there exists a real

function)(nfP such that))(())((nfnPATH PΩ= ,

then)(nfP is said to be an asymptotic lower bound of the
problem P [1].

Definition 2.2 If)(nfP is an asymptotic lower bound of the
problem P and there exists)(PAA∈ such that

))(())((nfOnPATH P= , then A is said to be an
asymptotically optimal algorithm to solve the problem P
and)(nfP is called the asymptotic infimum of P [1].

Definition 2.3 If there exist a real function)(nfP and

positive constants c and 0n independent of)(PAA∈

such that for any)(PAA∈ ,)())((ncfnPATH P≥ ,

when 0nn ≥ , then)(nfP is called a strong asymptotic

lower bound of P [1].

Proposition 2.4 If problem P has a strong asymptotic
infimum then it has an asymptotic infimum too, and the strong
asymptotic infimum of P is the asymptotic infimum of P .
Any strong asymptotically optimal algorithm to solve
problem P is also asymptotically optimal[1].

Definition 2.5 For a problem of size n , we can partition the
problem into a sub-problems, each of size bn /
(1>≥ ba), and recursively solve each sub-problem and

An Embedded Analysis Method for
Complexities of Problems

Xiaodong Wang, Weibin Wu, and Daxin Zhu

T

Proceedings of the World Congress on Engineering 2011 Vol I
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

mailto:dex@qztc.edu.cn)

then combine the solutions of the a sub-problems to obtain
the solution of the original problem. This type of problem
solving techniques is called a),(ba divide-and-conquer
algorithm or an),(ba -DAC for short.

In divide-and-conquer algorithms, the proto typical
recurrence has the form

)()/()(ndbnaTnT += (1.1)

where 0>a and 1>b are arbitrary real numbers, and
1)(≥nd is the driving function. Examples include the case
2== ba , nnd =)((Mergesort [7]), and 7=a ,

2=b , 2)(nnd = (Strassen’s matrix multiplication [1]). In
the spirit of improving Strassen’s algorithm, many similar
recurrences have appeared in matrix multiplication, e.g.,

143640=a , 70=b , 2)(nnd = in an algorithm of Pan
[8].

Recurrences arise naturally in computer science from the
analysis of algorithms, combinatorial analysis. Techniques
for solving recurrences are among the standard repertoire of
algorithmic textbooks (e.g., [4, 6, 8]).

In an influential note, Bentley, Haken and Saxe proved a
master theorem for the divide-and-conquer algorithms [3]
under a fairly general hypothesis on)(nd .

The master recurrence can be generalized to

)()/()(
1

ndbnTanT
k

i
ii += ∑

=

 (1.2)

Wang and Fu [11, Theorem 3.5] gave an integral bound on
solutions to a parametric form of (1.1) in which the constants

ba, are now functions of n . Roura [9] and Verma [10]
provide the general theorems for the multi-term recurrences
(1.2).

The ideas of the above techniques for solving master
recurrences will be useful in the following discussion.

III. EMBEDDED ANALYSIS WITH DIVIDE-AND-CONQUER

Let problem Q be the merge step problem of the problem

P if),(ba -DAC algorithm is employed to solve problem

P . For convenience, suppose a unit time is needed for
solving problem P of size 1. If)(nTP denotes the total

time spent by the),(ba -DAC algorithm in solving problem

P of size n and)(nM Q denotes the time spent in solving

problem Q of size n , then)(nTP satisfies the following
recursive equation:





>+
=

=
1)()/(
11

)(
nnMbnaT
n

nT
Qp

P (3.1)

Without loss of generality, let kbn = , then nk blog= .

Since 1)1()/(== P
k

P TbnT , we can easily derive from

recursive equation (3.1) that)(nTP , the total time spent by

the),(ba -DAC algorithm is









+= ∑

=

i
k

i

i
Q

k
P abManT /)(1)(

1

 (3.2)

Let)(nfP be an asymptotic lower bound of P . Without
loss of generality, assume that

 ∞↑)(nfP when ∞↑n (3.3)

 Set nk blog= , a
P

kk
PP

bnnfabfkg log/)(/)()(==

and α=)(suplim kgP , then α may be one of the
following three cases:

(1) 0=α , (2) +∞<< α0 , (3) +∞=α .

Now let us examine the efficiency of the),(ba -DAC
algorithm for solving problem P in the three cases
respectively.

A. The results with 0=α

When 0)(suplim =
+∞→

kgPk
, 0)(lim =

+∞→
kgPk

 due to

0)(≥kgP .

Theorem 3.1 Let 0/)(lim log =
∞→

a
Pn

bnnf ,then

))(()(nTonf PP = .

Proof. It follows from (3.2) that

0)(

/)(

)(
)(
)(0 log

0

→≤=<

∑
=

a
P

k

i

ii
Q

k

P

P

P
bn
nf

baMa

nf
nT
nf

When ∞→n .

Thus 0)(/)(lim =
∞→

nTnf PPn
.

That is))(()(nTonf PP = .■

Theorem 3.1 indicates that if 0=α then any),(ba -DAC
algorithm to solve problem P cannot reach the order of

)(nfP . Therefore, if)(nfP is the asymptotic infimum of
the problem P , then any),(ba -DAC algorithm to solve the
problem P is not optimal.

B. The results with +∞<< α0

Theorem 3.2 Let +∞<=
∞→

αa
Pn

bnnf log/)(suplim , then

))(()(nfnT PP Ω= .

Proof. From +∞<=
∞→

αa
Pn

bnnf log/)(suplim , we know

that for a given ε , αε <<0 ,

αεα 2/)(log <+≤a
P

bnnf , when n is sufficiently
large. It follows from (3.2) that

Proceedings of the World Congress on Engineering 2011 Vol I
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

)()(

/)(

)(
)(log

0

nf
n

nf

baMa

nf
nT

P

a

P

k

i

ii
Q

k

P

P
b

≥=
∑

=

Therefore, 0
2
1

)(
)(

>=
αnf

nT
P

P when n is sufficiently large.

This means))(()(nfnT PP Ω= .■

Theorem 3.2 indicates that)(nfP is an asymptotic lower
bound of the),(ba -DAC algorithm if +∞<< α0 .

In other words, we can know nothing about the lower bound
of the problem Q from the lower bound of the problem P if

)(nfP is an asymptotic lower bound of P .

C. The results with +∞=α
In order to obtain meaningful results we make a further
assumption herein that

for 1>≥ ba , there exists an integer 0n such that

0)/()()(>−= bnafnfnd PPP (3.4)

where 0nn ≥ .

In this case we have

a
PP

k

k
P

k
P

PP bn
bnafnf

a
bafbfkgkg log

1)/()()()()1()(−
=

−
=−−

−

Therefore)(lim)(suplim kgkg PkPk +∞→+∞→
===∞+ α .

 Theorem 3.3 Let)(nfP be an asymptotic lower bound of
the problem P and

0)(>ndP , +∞=
∞→

a
Pn

bnnf log/)(lim ,

then)(ndP is an asymptotic lower bound of the problem Q ,

i.e.,))(()(ndnM PQ Ω= .

Proof. Suppose there is an algorithm B to solve problem Q

such that))(()(ndonM PQ = .

)(nTP , the computing time required by the),(ba -DAC
algorithm employing algorithm B , is given by (3.2). Thus,

)(

/)(

)(
)(0 0

nf

baMa

nf
nT

P

k

i

ii
Q

k

P

P
∑

==<
k

k
kk

P

k

i

ii
Q

k

Y
X

abf

baMa
==

∑
=

/)(

/)(
0

Since kk
Qkkk abMXXX /)(1 =−=∆ −

a
PP

k

k
P

k
P

kkk bn
bnafnf

a
bafbfYYY log

1

1
)/()()()(−

=
−

=−=∆
−

−

it follows from 0)(>ndP that 0>∆ kY when k is
sufficiently large.

It follows from the assumption +∞=
∞→

a
Pn

bnnf log/)(lim

that +∞→kY when +∞→k .

By Stolz's theorem [2] we conclude that

kkkkkk
YXYX ∆∆=

∞→∞→
/lim/lim

0
)(
)(

lim
)()(

)(
lim 1 ==

−
=

∞→−∞→ nd
nM

bafbf
bM

P

Q

nk
P

k
P

k
Q

k
.

Therefore, 0
)(
)(lim =

∞→ nf
nT

P

P

n
.

That means))(()(nfonT PP = .

This contradicts the fact that)(nfP is an asymptotic lower
bound of the problem P .

Thus, for any algorithm to solve the problem Q we always

have))(()(ndnM PQ Ω= , i.e.,)(ndP is an asymptotic

lower bound of Q . ■

Theorem 3.4 Under the assumption of Theorem 3.3, for a
given),(ba -DAC algorithm to solve the problem P , if

))(()(ndOnM PQ = , then

 (1) in the),(ba -DAC algorithm, the algorithm to solve the

problem Q is asymptotically optimal and)(ndP is the
asymptotic infimum of the problem Q .

(2) the),(ba -DAC algorithm is asymptotically optimal and

)(nfP is the asymptotic infimum of the problem P .

Proof. Conclusion (1) follows from Theorem 3.3
immediately. So, only conclusion (2) remains to be proved.

From))(()(ndOnM PQ = we know that there exist

positive constants 0>c and 00 >n such that

)()(ncdnM PQ ≤ when 0nn ≥ .

Set   1log 00 += ni b , then 0nb i ≥ when 0ii ≥ .

Thus)()(i
P

i
Q bcdbM ≤ when 0ii ≥ .

Consequently, when 0ik ≥ ,

i
k

ii

i
Q

i
i

i

i
Q

i
k

i

i
Q abMabMabM /)(/)(/)(

0

0 1

00
∑∑∑
=

−

==

+=

i
k

ii

i
P abdcc /)(

0

1 ∑
=

+≤

Proceedings of the World Congress on Engineering 2011 Vol I
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

∑
=

−

−









−+=

k

ii
i

i
P

i

i
P

a
bf

a
bfcc

0

1

1

1
)()(









−+= −

−

1

1

1 0

0)()(
i

i
P

k

k
P

a
bf

a
bfcc

kk
P abcfc /)(2 +≤

It follows from (3.2) that when 0nn ≥ ,

)()/)(()(log
22 ncfncabcfcanT P

akk
P

k
P

b +=+≤ .

Noticing))((log nfon P
ab = ,

we have))(()(nfOnT PP = .

Therefore, the),(ba -DAC algorithm is asymptotically

optimal and)(nfP is the asymptotic infimum of the problem
P .■

Especially, given 1>≥ ba , ablog≥β and 1≥γ , we
have the following corollary.

Corollary 3.5 Let nn γβ log be an asymptotic lower bound
of the problem P and the problem Q be the merge step
problem of the),(ba -DAC algorithm to solve the problem
P , then

(1))(nh is an asymptotic lower bound of problem Q ;

(2) the algorithm to solve problem Q in))((nhO time is
asymptotically optimal.

In this situation,)(nh is the asymptotic infimum of Q ;

nn γβ log is the asymptotic infimum of P and the
corresponding),(ba -DAC algorithm to solve the problem
P is asymptotically optimal, where





=
<

=
− βγβ

βγβ

bann
bann

nh 1log
log

)(

Proof. Taking nnnfP
γβ log)(= in Theorem 3.3 and

Theorem 3.4 one can see immediately that +∞↑)(nfP

and +∞== −

∞→∞→
nnnnf a

n

a
Pn

bb γβ loglim/)(lim loglog .

)/()()(bnafnfnd PPP −=

)/(log)/(log bnbnann γβγβ −=

)log(logloglog1 11 nnonn
b

bann
b
a −− +−






 −= γβγβ

β

γ
γβ

β

Thus, 0)(>ndP when n is sufficiently large. This yields
that all of the conditions of Theorem 3.4 and Theorem 3.5 are
satisfied. Noticing))(()(nhndP Θ= , we finish the proof
from Theorem 3.3 and Theorem 3.4. ■

It is a more special case when 1=β and 1=γ in Corollary
3.5.

In this case ba = .

Corollary 3.6 Let nn log be an asymptotic lower bound of
problem P and the problem Q be the merge step problem of
the),(ba -DAC algorithm to solve the problem P , then

 (1) n is an asymptotic lower bound of problemQ ;

 (2) the algorithm to solve the problem Q in)(nO time is
asymptotically optimal.

In this situation, the corresponding),(ba -DAC algorithm
to solve the problem P is asymptotically optimal; n is the
asymptotic infimum of Q and nn log is the asymptotic
infimum of P .

IV. THE INCREMENTAL CONSTRUCTION
Now let us consider another type of algorithm, the so-called
incremental construction. The main idea of the algorithm of
this type is that the solution is constructed or computed in an
iterative manner. For a problem)(nP with size n , the
solution of)1(P is constructed first, and then the solution of

)1(+iP is recursively constructed from the solution of
)(iP , 1,,2,1 −= ni L .

Let the problem)(nQ connected with the problem)(nP

be the iterative computation of)(nP . Let)(nRQ be the

time spent in solving the problem)(nQ and)(nTP be the
time spent in solving the problem)(nP by the

corresponding incremental algorithm, then)(nTP satisfies
the following equation:

∑
−

=

=
1

1
)()(

n

i
QP iRnT

For this type of algorithm construction we have the following
results.

Theorem 4.1 Let)(nfP be an asymptotic lower bound of

)(nP and)(xfP be a continued differentiable function on

),0(+∞ , and +∞↑)(' xf P when +∞↑x , then

)(' nf P is an asymptotic lower bound of)(nQ .

Proof. It is easily seen from Lagrange's mid-value theorem
and the properties of)(xfP that

)(')()1()1(' xfxfxfxf PPPP >−+>+ (4.1)

)1()()(')()1(−−>>−+ xfxfxfxfxf PPPPP (4.2
)

if),1(+∞∈x .

Proceedings of the World Congress on Engineering 2011 Vol I
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

If there is an algorithm to solve the problem)(nQ such that

))('()(nfonR PQ = , the corresponding incremental

construction algorithm to solve the problem)(nP will spend

a computing time of ∑
−

=

=
1

1
)()(

n

i
QP iRnT .

Thus,
n

n

P

n

i
Q

P

P

Y
X

nf

iR

nf
nT

==≤
∑

−

=

)(

)(

)(
)(0

1

1

)1(1 −=−=∆ − nRXXX Qnnn

)1(')1()(−>−−=∆ nfnfnfY PPPn

Therefore, when n is sufficiently large, 0>∆ nY and

+∞=
+∞→ nn

Ylim .

It follows from Stolz's theorem [2] that

nnnnnn
YXYX ∆∆=≤

+∞→+∞→
/lim/lim0

0
)1('
)1(

lim
)1()(

)1(
lim =

−

−
≤

−−

−
=

+∞→+∞→ nf
nR

nfnf
nR

P

Q

n
PP

Q

n

Thus 0)(/)(lim =
+∞→

nfnT PPn
, i.e.,))(()(nfonT PP = .

This is a contradiction. Therefore))('()(nfnR PQ Ω= .

This means that)(' nf P is an asymptotic lower bound of
)(nQ . ■

Theorem 4.2 Under the assumption of Theorem 4.1, if there
is an algorithm to solve the problem)(nQ such that

))('()(nfOnR PQ = , then

(1) the algorithm to solve the problem)(nQ is

asymptotically optimal and)(' nf P is the infimum of
)(nQ ;

(2) the corresponding incremental algorithm to solve the
problem)(nP is asymptotically optimal and)(nfP is the
asymptotic infimum of)(nP .

Proof. The conclusion (1) follows from Theorem 4.1
immediately. So only the conclusion (2) remains to be proved.
From))('()(nfOnR PQ = we know that there exist

positive constants 0>c and 00 >n such that

)(')(ncfnR PQ ≤ when 0nn ≥ . According to (4.2),

))1()(()(−−≤ nfnfcnR PPQ when 0nn ≥ .

Thus, when n is sufficiently large,

∑∑∑
−

=

−

=

−

=

+==
11

1

1

1 0

0

)()()()(
n

ni
Q

n

i
Q

n

i
QP iRiRiRnT

()∑
−

=

−++≤
1

1
0

)()1(
n

ni
PP ififcc

()))(()()(01 nfOnfnfcc PPP =−+=

Therefore, the corresponding incremental algorithm is
asymptotically optimal and)(nfP is the asymptotic
infimum of)(nP . ■

Corollary 4.3 Let 1≥β and 0>γ and nn γβ log be an

asymptotic lower bound of)(nP , then nn γβ log1− is an
asymptotic lower bound of)(nQ .

V. CONCLUDING REMARKS
Lower bound problems are generally concerned in the field of
design and analysis of algorithms. It is difficult however to
estimate their tight lower bounds for many algorithms.
Traditionally, lower bounds are obtained either by
reduction or by a direct analysis. In this paper, a new idea is
presented for estimating the lower bounds of problems.

In conjunction with two algorithm design paradigms divide
and conquer and incremental construction, we can derive
good lower bounds from the lower bounds of the
corresponding sub-problems. This is a powerful tool for
design and analysis of algorithms.

REFERENCES
[1] A. V. Aho, Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, Reading, Massachusetts,
1974.

[2] T. M. Apostol, Mathematical Analysis, Addison-Wesley, Reading,
Massachusetts, Second Edition, 1974.

[3] J. L. Bentley, D. Haken, and J. B. Saxe. A general method for solving
divide-and-conquer recurrences. ACM SIGACT News, 12(1): 36–44,
1980.

[4] G. Brassard and P. Bratley. Fundamentals of Algorithms. Prentice-Hall,
Inc, Englewood Cliffs, 1996.

[5] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press and McGraw-Hill Book Company,
Cambridge, Massachusetts and New York, second edition, 2001.

[6] J. Kleinberg and ´ E. Tardos. Algorithm Design. Addison Wesley,
Boston, 2005.

[7] G. S. Lueker. Some techniques for solving recurrences. Computing
Surveys, 12(4): 419–436,1980.

[8] U. Manber. Introduction to Algorithms: A Creative Approach.
Addison-Wesley, Reading, Mass., 1989.

[9] S. Roura. Improved master theorems for divide-and-conquer
recurrences. J. of the ACM, 48(1): 170–205,2001.

[10] R. M. Verma. A general method and a master theorem for
divide-and-conquer recurrences with applications. J. of Algorithms,
16(1): 67–79,1994.

[11] X. Wang and Q. Fu. A frame for general divide-and-conquer
recurrences. Infomation Processing Letters, 59(1): 45–51, 1996.

Proceedings of the World Congress on Engineering 2011 Vol I
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

