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parameterd > 0). The shape of the Gumbel model does not

Abstract—This paper describes technique for using censored depend on the distribution parameters.
life data from extreme value distributions to construct Type 2, (Frechet distribution):
prediction limits or intervals for future outcomes. In particular,
new-sample prediction based on a previous sample (i.e., when
for predicting the future failure time of an unit in a new sample
there are available the failure data only from a previous
sample), within-sample prediction based on the early-failure \where §is the shape parameted ¥ 0), andg is the scale
data from a current experiment (i.e., when for predicting the parameterf > 0).
future failure time of an unit in a sample there are available T 3 (Weibull distribution):
the early-failure data only from that sample), and new-within- ype 3, (Weibull distribution):
sample prediction based on both the early-failure data from X o
that sample and the data from a previous sample (i.e., when for Pr{X > x}=ex —(—j , Xx=20, 3
predicting the future failure time of an unit in a new sample

there are available both the early-failure data from that sample .
and the data from a previous sample) are considered. In order Whgrg both distribution parametgkﬁ-(shap.eﬂ B scale) are

to construct prediction limits or intervals for future outcomes, POsitive. The two-parameter Weibull distribution (3) can be
the invariant embedding technique representing the exact generalized by adding the location (shift) paramgter
pivotal-based method is used. Numerical examples are given to

illustrate applications of the results obtained in this paper tck- Pr{X>x} :expl_— ([X -4 /,3)51, X= U (4)
out-of-n systems and planning in-service inspections of fatigued
structures.

-5
Pr{X>x}=1-ex —[%j , x=20, 2)

In this model, the location paramegercan take on any real
value, and the distribution is defined foex.
Index Terms— Extreme value distribution, type Il censored It will be noted that the logarithm of a Weibull variable
data, pivotal quantities, k-out-of-n system, predictive inferences from the distribution (3) follows the Gumbel distribution (1),
wherey=Ing ando= o7
. INTRODUCTION The above models are widely used in risk management,
HE problemof modeling extreme or rare events arise§nance, insurance, economics, hydrology, material sciences,
in many areas where such events can have very negat@€communications, and many other industries dealing with
consequences. Some examples of rare events incligidreme events.
extreme floods and snowfalls, high wind speeds, extremePractical problems often require the computation of pre-
temperatures, large fluctuations in exchange rates, afligtions and prediction limits for future values of random
market crashes. To develop appropriate probabilistic modé@lgantities. Consider the following examples: 1) A consumer
and assess the risks caused by these events, business an@ygtbasing a refrigerator would like to have a lower limit for
and engineers frequently use the extreme value distributiof¢ failure time of the unit to be purchased (with less interest

(EVD). in distribution of the population of units purchased by other
Extreme value distributions are usually considered tconsumers); 2) Financial managers in manufacturing
comprise the following three families: companies need upper prediction limits on future warranty
Type 1, (Gumbel distribution): costs; 3) When planning life tests, engineers may need to

X— i predict the number of failures that will occur by the end of
Pr{X>x}= ex{— ex;{ ﬂ , —0<X<o, (1) the test or to predict the amount of time that it will take for a

d specified number of units to fail.
where 1 is the location parameter, andl is the scale  gome applications require a two-sided prediction interval
that will, with a specified high degree of confidence, contain
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For new-sample prediction, data from a past sample aréen a lower one-sided conditional@) prediction limith
used to make predictions on a future unit or sample of unié& the smallest observatidf from a set om future ordered
from the same process or population. For example, basedaliservationsy; < ... < Y,, also from the distribution (1) is
previous (possibly censored) life test data, one could lgven by
interested in predicting the time to failure of a new item, h= ar@Pl{Yl >h |z}=1—a]
time untill failures in a future sample aof.. units, or number
of failures by time. in a future sample af units. w0 viz o -

For within-sample prediction, the problem is to predict I V2eR [me"(h_”)/”+z &% +(n- r)e"z'J dv
future events in a sample or process based on early data | o i=1
from that sample or process. For examplemiunits are =arg o V33
followed until t, and there ar& observed failures;, ..., t, _[ {2 e
one could be interested in predicting the time of the next 0
failure t.,q; time until | additional failurest.,; number of |=1-a
additional failures in a future interval.

For new-within-sample prediction, the problem is toW ere
predict future events in a sample or process based on earR/ _
data from that sample or process as well as on a past data z=(3,%,...2), Z =— H i =1...r, (6)
sample from the same process or population.

Various solutions have been proposed for the prediction and & are the maximum likelihood estimatorsoaind o

problem, that is, the problem of making inferences on fgased on the firat ordered past observations; & ... < X,)

[Zr: &4 +(n- r)é’zf] dv
i=1

(5)

random sample ¥; j = 1, ..., m} given independent fom a sample of size from the Gumbel distribution, which
observations X;; i=1, ..., n} drawn from the same distri- c5n pe found from solution of
bution. TheYj's and theX’s are commonly featured as
"future outcomes" and "past outcomes" respectively. . SEP % 16

=0ln e’ +(n-r)e™ r, 7
Inferences usually bear on some reductibof the Yj's - H IZ_;‘ ( ) @

possibly a minimal sufficient statisticand consist of either

prediction intervals or likelihood or predictive distribution

for Z, depending on different authors. 6= [Zr: X7 4 (n-1x exr/aJ
Methods presenting frequentist prediction intervals '

basically stem from the theory of similar tests. See for 1

instance Fisher [1], Faulkenberry [2], and Cox [3], who X(Zr:e’qmﬂn—r)exf’&J _lix_ ®)

gives an approximate and more general asymptotic solution. re a

Predictive distributions are found in the Bayesian framework

(see Aitchison and Sculthorpe [4]), and likelihood concep{®©bserve that an upper one-sided conditiamgrediction

have been considered by Fisher [1], in a somewhkmit h on the smallest observatiof from a set o future

ungrounded manner, and by Hinkley [5], who establishesdered observation¥, < ... < Y,, may be obtained from a

links with frequentist and Bayesian views. Lawless [6lower one-sided conditional k) prediction limit by

applied the conditional method, which was first suggested yplacing +a by a.)

Fisher [7] and promoted further by a number of others proof. The joint density ok; < ...< X is given by

(Nechval et al. [8]; Murthy et al. [9]), to different problems

i=1

i=1

relating to the Weibull and extreme value distributions. In e X |14,0)
practice the proposed methods have limited applications and r
it is the purpose of this paper to obtain predictive inferences —_n I‘llex;{ X~ H —ex;{ Xi _'UD
concerningZ via the simple invariant embedding technique (n-ntido g g
[10-14]. The obtained results are given below. _
x ex;E— (n—r)ex;{ L ,uj] (9)
Il.  STATISTICAL INFERENCES FOR THH HREE PREDICTION

SITUATIONS Let &, & be the maximum likelihood estimates af o,

Having defined the three prediction situations, Weespectively, based ofy < ... < X, from a complete sample
consider now the determination of prediction limits. They ¢i e n, and let
following results hold. ~ - -
A. New-Sample Prediction %:%' v =%. and Z; = X,& £ i =10y (10)
Theorem 1 (Lower (upper) one-sided conditional ] ]
prediction limit h on the smallest observationflém a new Parameterg/ andoin (9) are location and scale parameters,

(future) sample of m observations from the GumbégSPectively, and it is well known that iz and o are
distribution on the basis of the previous data sample). estimates of 4 and o, possessing certain invariance
X; € ... < X, be the firstr ordered past observations from aproperties, ther/; andV are the pivotal quantities whose
previous sample of size from the Gumbel distribution (1). distributions depend only on. Most, if not all, proposed
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estimates ofz and o possess the necessary properties; these
include the maximum likelihood estimates and various linear ®

estimates.z;, i=1(1)x, are ancillary statistics, ang2 of

which form a functionally independent set. For notational

convenience we include all &f, ..., z in (6); z.; andz can
be expressed as function®f ..., z., only.

Using the invariant embedding technique [9]-[14], we
then find in a straightforward manner, that the probability

element of the joint density &f;, V, conditional on fixed=
(z.%,...2,),is

v, Jz) dydv= 9 z)V 2 ex;{ vzr: z Jer"l

i=1

xexl{— "{Zr‘, exp(zV+ (n- nexp(z \bD dvdv,

i=1

V4[(=00, ), V(0, ), (11)
where
o -1
_[I' (V2 ex;{vi zi]
9(2)=|° = (12)

i=1

x| > exp(zv)+ (n- nexp(z V)} dv

is the normalizing constant.
Writing

m
Pr{, >h |u,0}= I_l PrY, >h luo)= ex;{— mex;{
J=1

)

=exp{- mexp(y v Y} =Pr{¥>h v},  (13)

where

U, :_h—,U’

(14)

q

we have that

Pr{%,>hl 2 =[ [P Y> iy ¥ f(y,M2)dydv. (15)

0 -

Now v; can be integrated out of (15) in a straightforward

way to give
Pr{Y, >h| z

0o 5 Viz| r =r
j Ve Ime™ +> &% +(n-ne* | dv
—_ 0

i=1

00 Vizi r -r
f 2ea | > &% +(n-ne% | dv
0 i=1
(16)
This completes the proof. [

m é(éln(h/ B

vﬁiln(x‘-/[?)
j\i‘ze =L roo o
° +Zevdln(>q/ﬁ) +(n_ I,)evdln(x,//)’)
=arg r = :

® WS 18 1. - _ _ N
J‘\;—Ze =1 zevb'ln(x,- 1B) +(n- r)evdln(xr 1B dv

0 i=1

|=1-a J

17)
where 8 and o are the maximum likelihood estimators/®f

and o based on the firstordered past observations; < ...
< X;) from a sample of sizen from the two-parameter
Weibull distribution (3), which can be found from solution

of
. " 116
B=[{Zm" +(n—r)xf’}/r} , (18)
i=1
and
r . i -1
[ ¥ In % +(n- r)>¢5lnxr}
5= . . (19)
X(Zf+(n—r)xf3) —%Zlnx,-
i=1 i=1
X = (0 e X ) (20)

Theorem 2 (Lower (upper) one-sided prediction limit h
on the Ith order statistic,¥Yrom a new (future) sample of m
observations from the two-parameter Weibull distribution,
where the parametad=1, on the basis of the previous data
sample).Let X; < ... < X, be the firstr ordered observations
from a previous sample of sizefrom the two-parameter
Weibull distribution (3), where the paramet&l. Thus, we
deal with the exponential distribution. Then a lower one-
sided conditional (2a) prediction limith on thelth order
statisticY, from a set oim future ordered observatiofng <
... £ Yy, also from the above distribution is given by

h= ar@P»{Y > h|s} :1—0']

1 e AN
. B(I,m—l+1)z( j j(_l)J

=0 ,(21)
X 1 =1-
(m-1+1+ YL+ (m-1+1+ Yh/ g
where
Szzr: X +(m-r)X,. (22)

i=1
Proof. For the proof we refer to Corollary 2.1 [15]/]
B. Within-Sample Prediction

Corollary 1.1.1t follows from (5) that a lower one-sided 1h€orem JLower (upper) one-sided prediction limit h on

conditional (ta) prediction limith on the minimun; of a
set ofm future ordered observationg < ... <Y,, from the
two-parameter Weibull distribution (3) is given by

h= aréPl{Yl >h|x} =1—a]

ISBN: 978-988-18210-6-5
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of sizem from the Gumbel distribution (1). Then a lower
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one-sided conditional (da) prediction limith on thelth Let &, & be the maximum likelihood estimates gf o,
order statisticy; (I > k) from the same sample is given by respectively, based of < ...< Y, from a complete sample

h= ar@Pl{ Y >h |u} =1—a'] of size m, and let
© —1-j | :u :g = Yl _Yk
J‘\}(zvqu—kl|_k 1(1)|—li Vl E y V 0" W o , (29)
o\ 1) mk-] and
5 Y-u .
] oV U =& =1k 30
=arg i=1 =1-al, Using the invariant embedding technique [9]-[14], we then
® 2 qu I—k 1] -k -1 find in a straightforward manner, that the probability
j\}( = ( . ] element of the joint density &f;, V, W, conditional on fixed
o\ | u= U ,....U), is
(_:D|—k—l—] -«
x>~ 7 [( m R &k +Zé’”J v, v Wu) dydvdw
i m-k — - | )
(23) = 9(u) V2 R DMy W) ex;{vz ui)
where =t
u= U U, (24) I-k-1/] _
— 0 i=0
U =S A o1k (25) :
g k
xexpg - éﬁ[(m— k= je'™id + jgx +3° é‘”‘j dydvdw
M and g are the maximum likelihood estimatorsgand o i=1

based on the firdt ordered early-failure observationy,; (< vi0(~00, 00), V(0, 20), WLI(0, o) 31)
. < YY) from a sample of sizen from the Gumbel C Y T
distribution, which can be found from solution of where
= 5 S v |G M ' -1
g=anl| > &'+ (m-Ke ki, (26) P v 1L | — =1 -1 i)
[aret 'y (e AN
0 i m-Kk —j
and I(2) = «
k
&:[Z yéi/ﬁ'_'_(rn_k)ykeyk/ﬁJ ((m_ Béuk +z VU|J
i=1 L i=1
) 1 (32)
% &0 L (m=Ke%/T | -2 . 27) Is the normalizing constant.
[2:1: (m=H) ] k Z_: d @) Using (31), we have that
(Observe that an upper one-sided conditiomgirediction ST
limit h on thelth order statisticY, based on the firsk Pr{X >h| u} _.[.[ .[ (¥, v wu) dydwdv
ordered early-failure observations < ... < Y, wherel>k, 0w =
from the same sample may be obtained from a lower one- ‘ ‘ 1
sided conditional (#a) prediction limit by replacing4a by Tvk_ze"gl“i l_zk:_l(l - k—1] (-D'
a) A m-k - |
Proof. The joint density ofr; < ...< Yk is given by ) "
f O 0y |11, 0) x[(m— k= et 4 jgtk +Ze“*J dv
i=1
m ho# ) ¥ k=1 Ilkl' (33)
Yi—H_ o T VRu A~k —1) (1)K
- @ e 24 i=
e e I TR
Yi—H Y] T d -
Ik # A~ Uy V4
x[exr{—e o J—exr{—e a ]] x[( m R € +iZ:1:e j dv
v - v - where
_ YN-H YNH -
xiexr{u—e g Jexr{—(m—l)e g J (28) wh:h—ﬂyk, (34)
o o g
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and the proof is complete. [

Corollary 3.1.LetY; < ... < Y be the firstk ordered past
observations from a sample of siza from the two-

parameter Weibull distribution (3). Then (by using (23)) a

lower one-sided conditional £) prediction limith on the
Ith order statistity; (I>k) from the same sample is found as

h= ar@Pl{Y, >h|y}:1—a]

]3 evcsgn( Jl—k 1(| k= 1]( gy
0 o\ 1) mk-]

Jemicpe oM, 20 50|

i=1

=arg ® ~ thlgj!n[ j|—kl| k-1 ( :D|—klj !
.([\}( e ,Zo:( j jm -
n
§ (m_k)evé'ln[%] +ievﬁln[y['gj v
i=1

(35)
where 8 and o are the maximum likelihood estimates ®f
and d based on the first ordered past observatioligs < ...

< Yy from a sample of sizen from the two-parameter
Weibull distribution (3), which can be found from solution

of
=({Z f+(m—k)y"/} (36)
and
K . -1
[Z yIn y+(m- k)y"lnykj
5= ':1k . @n
x[Z f+(m-k)ny ISy,
i=1 k i=1
Y= O Yio)- (38)

C. New-Within Sample Prediction

Theorem 4Lower (upper) one-sided prediction limit h on
the Ith order statistic Mn a sample of observations from the

e {.i”ﬁ?f]'f(l k- 1} (et
0 A m-k-]
Koy
(m_k_ ])e{,( -y /! o+l + ]eVLk +Zevq
x = dv
r
+ V; + - V%

_arg iZ:l:e (n-r)e |
o X457 |kt Ik~
el I
! <\ j ) mok-]

K ; —(k+r)
x(( m k8 +> &+ & +(n- r)e“J dv
i=L i=1
|=1-a
(39)
where
Y-
u= U,..,u), U ='T’u =100k,
2=(3.,%,..2), Z = Xi:’u Ji=1..r,  (40)
o

M and g are the maximum likelihood estimates ofind o
(based on both the firktordered early-failure observations
Y; £ ... < Y, from a sample of sizm and the first ordered
observations(; < ... < X, from the previous sample of sine
from the Gumbel distribution), which can be found from
solution of

k
> 7+ (m- ke 7

i=1

r ~ ~
+Zé(i/0'+(n_ r)eXk/O'

i=1

Z=6ln k+r)|, (41)

and

K

> T (m Ky &Y @ (- e
i=1 —l

z é/ﬁ_'_( m kék/&+2é(i/a+(n_ r)eXk/ﬁ

i=1 i=1

o=

(42)

(et

k+r =

Gumbel distribution on the basis of both the early-failure
data Y, <... <Y, from the same sample and the data<X..

< X, from a previous sample et X; < ... < X, be the firstr
ordered observations from a previous sample ofrsizem observations from a previous sample of siZeom the two-

the Gumbel distribution (1) and; < ... < Y, be the firstk  parameter Weibull distribution (3) and < ... < Y, be the
ordered early-failure observations from a new sample of sifiest k ordered early-failure observations from a new sample
m also from the distribution (1). Then a lower one-sidedf sizem also from the distribution (3). Then a lower one-
conditional (+a) prediction limith on thelth order statistic sided conditional #a) prediction limith on thelth order

Y, (I>k) from the same new sample is given by statisticY, (I>k) from the same new sample is given by

Proof. For the proof we refer to Theorems 1 and 3!
Corollary 4.1.Let X; < ... £ X; be the firstr ordered

h= ar§P{ ¥ >h|u,z} =1-0a] h=ar§P{ ¥ >h|y,x}=1-a]
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J{Zln[ ]+z|n[i H' i e system. Ann component system. that faifsand only if at
J‘\/+k 20 B)ia\B z("k‘lj =)™ leastk of the n components fail |s_c_a_lled g-out-ofn:F
5 A m-K — j system. Based on these two definitions k-aut-ofn.G
Th ~(k+r) system is equivalent to gm - k + 1)-out-ofn:F system.
. "{'”[E]“”(%H V"'”(%j The termk-out-of-n system is often used to indicate either a
dv G system or an F system or both. Important particular cases
] ﬁm[ﬁj of k-out-ofn systems are parallel and series systems. A
- A series system is equivalent to a 1-outf-system and to an
i= i= n-out-ofn:G system while a parallel system is equivalent to
=arg ,, {zm( j+zln[ HI_H k1) () ann-out-ofn:F system and to a 1-out-ofG system.
I\/*k %e A=\ B Z( ) J The k-out-of-n system structure is a very popular type of
0 j=0 ] m-k -] redundancy in fault-tolerantsystems. It finds wide
v5|n[YK] vb'ln[ J r w_ﬂn[ ] —(k+r) applicat_ions in both industrial and military systems.
(m-Ke B +Ze +Ze airlzrr:f(it:;?tl:] :)xuarn;rr)]le-s ok-ou.t-of-n. systems are, e.g., an
9 “ dv \ gines wh|ch_ will not_crqsh if at least two
out of its four engines remain functioning (2-out-of-4:G
V5'“(i-] system), or a satellite which will have enough power to send
*(n-ne signals if not more than four out of its ten batteries are
|=1-a ] discharged (5-out-of-10:F system). In a communications
(43) system with three transmitters, the average message load
may be such that at least two transmitters must be
) ha ) operational at all times or critical messages may be lost.
maximum likelihood estimates ¢gf and & (based on both Th g the transmission subsystem functions as a 2-out-of-3:G
the first k ordered early-failure observationg < ... < Y system. Systems with spares may also be represented by the
from a sample of size and the first ordered observations y_qyt-of-n system model. In the case of an automobile with
Xy < ... X from the previous sample of sizefrom the four tires, for example, usually one additional spare tire is
two-parameter Weibull distribution), which can be foungquipped on the vehicle. Thus, the vehicle can be driven as
from solution of long as at least 4-out-of-5 tires are in good condition.
C o i 16 In reliability theory, the lifetime of &-out-ofn:G system
B = + + S 4 (n—r)xO + is usually described by the ¢ k + 1)th order statistity 1
o H,Z:;‘ f (m- R Mf ;’q (=1 J/(k r)} " from the samplery , . . ., Y, where the random variabl
represents the ordered lifetime or failure time of the
component of the system, 4i < n. In the conventional
modeling of these structures, the component lifetimes are
Mk R P . 71  supposed to be independent and identically distributed
Z iSy/ln M (m k)?ln y+2>flnx+(n— r)>{ylnxr random variables. Translating this approach back into the
i= - r— technical sphere, it reflects the assumpti_or_l that the failure of
z )§+( M- ®f+z>€5+(n_r))(r5 _ any component does not _affect the remaining qnes. .
— “ Let X; <...< X, be the first ordered observations of time

where y = (o0 Vi) X= (40X ), B and Jare the

(44)
and

Q)
11

K r to failure for identical structural components of aircraft from
L(Zmyl +Z|n>qJ a sample of sizen from the two-parameter Weibull
i i ] distribution (3) (as the results of fatigue tests conducted on
(45) the components), where the paramefeis unknown, the
Proof. For the proof we refer to Corollaries 1.1, 3.1 ~ parameterd=1. Let us assume thet2, n=5, ands = 16000
flight hours. There is &-out-of-m:G system of the same
1. APPLICATION EXAMPLES identical structure components of aircraft, operating
independently, wher&=2, m=4. Then it follows from (21)
A. Warranty Period Prediction for k-out-of-n System  that the upper one-sided conditional prediction limit
Many technical systems or subsystems hks@it-ofn  LUPPe" gn the lifetime of this system can be calculated as
structure. These so-callddout-ofn systems consist of
components of the same kind. The entire system is working hvPPe’ = ardP{ Y > h| s} = a]
if at leastk of its n components are operating. It failsif- k
+ 1 or more components fail. Hencek®ut-ofn system 1 =2 -1 i
breaks down at the time of the £ k + 1)th component mz( ]( )
failure. Since all components start working at the same time, =ar
this approach leads to a kind of redundancy called active x
redundancy ofn—k components. Am-component system (m=1+1+ jL+(m-1+1+ DH/ s
that works(or is “good”) if and only if at leask of then
components work (or are good) is calledk-aut-ofn:G = 53750 flight hours, (46)

1
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wherel=mk+1=3, a=0.05. previously complete or type Il censored data sample and/or
The warranty period for the lifetime of this system (i.e.early-failure data of a new sample from the same
the lower one-sided conditional{&) prediction limit h,,., ~ distribution.
on the lifetime of this system) is given by Thg method_ology described here can be extended in sev-
eral different directions to handle various problems that arise
Piower = arépb{Y > h|S} :1—0’]

1

in practice. We have illustrated the prediction methods for
-1 -
——> |D’
Bl,m-1+1)

log-location-scale distributions (such as the Gumbel or
ji=o\ J

1 -1
(m=1+1+ L+ (m-1+1+ W9

X

Weibull distribution). Application to other distributions
could follow directly.
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= 1860 flight hours. (47)

B. Inspection Policy for Fatigued Structures No.

As fatigued (say, aircraft) structures begin to age (that is,
as flight hours accumulate), existing subcritical cracks or
new cracks can grow in some high-stress points of tT
structural components. The usual approach is to inspect fﬁe

structures periodically at certain intervals. Thus, g]
catastrophic accident during flight can be avoided.

Let us assume that in a fleetofaircraft there aren of 3]
the same individual structure components, operating

independently. LetY; be the minimum time to crack
initiation in the above components. In other wordsy]dbe

the smallest observation from an independent second samgje
of m observations from the Weibull distribution (3). Suppose
an inspection is carried out at timeand this shows that (6]
initial crack (which may be detected) has not yet occurregy
We now have to schedule the next inspection.X bk the
random time to crack initiation. Then we schedule the nel
inspection at time > t, wherer satisfies

P{X>7|X>t}=1-a. (48)

Equation (48) says that the next inspection is scheduled [8]0
that, with probability 1a, the aircraft structure component is[10]
still working and free of initial crack prior to inspection.

It follows (48) and (17) that (withry =0) 7, j=1, 2, ...
can be calculated as

T, =arg[Pr{Y12rl- |x}=(1—a)j] (11]

voin@r; 1 )
m\} 5 vﬁiln(x‘-/,[?) e
x e i=1 r ~ ~ _ _
.([ +zev5ln(>q/ﬁ) +(n_ r)evdln(xf/ﬁ) [12]

i=l

-r
ro _ - _
Zevé'ln(x/ﬁ) +(n_ r)evdln(xf/,E)J dv
i=1

=arg -
o VaYIn( / B
j\}_ze a2 B)(
0

[13]

=0-a)’ 1
(49)

IV. CONCLUSIONS ANDDIRECTIONS FORFUTURE RESEARCH  [14]

Prepare Prediction of an unobserved random variable is a
fundamental problem in statistics. The aim of this paper is to
construct lower (upper) prediction limits that are exceed
with probability +a (a) by future observations or functions
of observations. The prediction limits depend upon a
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