
 

  
Abstract—This paper describes technique for using censored 

life data from extreme value distributions to construct 
prediction limits or intervals for future outcomes. In particular, 
new-sample prediction based on a previous sample (i.e., when 
for predicting the future failure time of an unit in a new sample 
there are available the failure data only from a previous 
sample), within-sample prediction based on the early-failure 
data from a current experiment (i.e., when for predicting the 
future failure time of an unit in a  sample there are available 
the early-failure data only from that sample), and new-within-
sample prediction based on both the early-failure data from 
that sample and the data from a previous sample (i.e., when for 
predicting the future failure time of an unit in a new sample 
there are available both the early-failure data from that sample 
and the data from a previous sample) are considered. In order 
to construct prediction limits or intervals for future outcomes, 
the invariant embedding technique representing the exact 
pivotal-based method is used. Numerical examples are given to 
illustrate applications of the results obtained in this paper to k-
out-of-n systems and planning in-service inspections of fatigued 
structures. 
 

Index Terms— Extreme value distribution, type II censored 
data, pivotal quantities, k-out-of-n system, predictive inferences 

I. INTRODUCTION 

HE problem of modeling extreme or rare events arises 
in many areas where such events can have very negative 

consequences. Some examples of rare events include 
extreme floods and snowfalls, high wind speeds, extreme 
temperatures, large fluctuations in exchange rates, and 
market crashes. To develop appropriate probabilistic models 
and assess the risks caused by these events, business analysts 
and engineers frequently use the extreme value distributions 
(EVD). 

Extreme value distributions are usually considered to 
comprise the following three families:  

Type 1, (Gumbel distribution): 
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xX expexp}Pr{ ,   −∞ < x < ∞,  (1) 

where µ is the location parameter, and σ is the scale 
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parameter (σ > 0). The shape of the Gumbel model does not 
depend on the distribution parameters. 

Type 2, (Frechet distribution): 
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where δ is the shape parameter (δ > 0), and β is the scale 
parameter (β > 0). 

Type 3, (Weibull distribution): 
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where both distribution parameters (δ - shape, β - scale) are 
positive. The two-parameter Weibull distribution (3) can be 
generalized by adding the location (shift) parameter µ: 

 

( )[ ]δβµ /][exp}Pr{ −−=> xxX ,   x ≥ µ.   (4) 
 

In this model, the location parameter µ can take on any real 
value, and the distribution is defined for x ≥µ. 

It will be noted that the logarithm of a Weibull variable 
from the distribution (3) follows the Gumbel distribution (1), 
where µ = lnβ  and σ = δ −1. 

The above models are widely used in risk management, 
finance, insurance, economics, hydrology, material sciences, 
telecommunications, and many other industries dealing with 
extreme events. 

Practical problems often require the computation of pre-
dictions and prediction limits for future values of random 
quantities. Consider the following examples: 1) A consumer 
purchasing a refrigerator would like to have a lower limit for 
the failure time of the unit to be purchased (with less interest 
in distribution of the population of units purchased by other 
consumers); 2) Financial managers in manufacturing 
companies need upper prediction limits on future warranty 
costs; 3) When planning life tests, engineers may need to 
predict the number of failures that will occur by the end of 
the test or to predict the amount of time that it will take for a 
specified number of units to fail. 

Some applications require a two-sided prediction interval 
that will, with a specified high degree of confidence, contain 
the future random variable of interest, say Z. In many 
applications, however, interest is focused on either an upper 
prediction limit or a lower prediction limit (e.g., the 
maximum warranty cost is more important than the 
minimum, and the time of the early failures in a product 
population is more important that the last ones). 

Conceptually, it is useful to distinguish between “new-
sample” prediction, “within-sample” prediction, and “new-
within-sample” prediction.  
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For new-sample prediction, data from a past sample are 
used to make predictions on a future unit or sample of units 
from the same process or population. For example, based on 
previous (possibly censored) life test data, one could be 
interested in predicting the time to failure of a new item, 
time until l failures in a future sample of m. units, or number 
of failures by time t• in a future sample of m units. 

For within-sample prediction, the problem is to predict 
future events in a sample or process based on early data 
from that sample or process. For example, if m units are 
followed until tk and there are k observed failures, t1, …, tk, 
one could be interested in predicting the time of the next 
failure tk+1; time until l additional failures, tk+l; number of 
additional failures in a future interval. 

For new-within-sample prediction, the problem is to 
predict future events in a sample or process based on early 
data from that sample or process as well as on a past data 
sample from the same process or population. 

Various solutions have been proposed for the prediction 
problem, that is, the problem of making inferences on a 
random sample {Yj; j = 1, …, m} given independent 
observations {Xi; i=1, …, n}  drawn from the same distri-
bution. The Yj’s and the Xi’s are commonly featured as 
"future outcomes" and "past outcomes" respectively. 
Inferences usually bear on some reduction Z of the Yj’s − 
possibly a minimal sufficient statistic − and consist of either 
prediction intervals or likelihood or predictive distribution 
for Z, depending on different authors. 

Methods presenting frequentist prediction intervals 
basically stem from the theory of similar tests. See for 
instance Fisher [1], Faulkenberry [2], and Cox [3], who 
gives an approximate and more general asymptotic solution. 
Predictive distributions are found in the Bayesian framework 
(see Aitchison and Sculthorpe [4]), and likelihood concepts 
have been considered by Fisher [1], in a somewhat 
ungrounded manner, and by Hinkley [5], who establishes 
links with frequentist and Bayesian views. Lawless [6] 
applied the conditional method, which was first suggested by 
Fisher [7] and promoted further by a number of others 
(Nechval et al. [8]; Murthy et al. [9]), to different problems 
relating to the Weibull and extreme value distributions. In 
practice the proposed methods have limited applications and 
it is the purpose of this paper to obtain predictive inferences 
concerning Z via the simple invariant embedding technique 
[10-14]. The obtained results are given below. 

II.  STATISTICAL INFERENCES FOR THE THREE PREDICTION 

SITUATIONS 

Having defined the three prediction situations, we 
consider now the determination of prediction limits. The 
following results hold. 

A. New-Sample Prediction 

Theorem 1. (Lower (upper) one-sided conditional 
prediction limit h on the smallest observation Y1 from a new 
(future) sample of m observations from the Gumbel 
distribution on the basis of the previous data sample). Let 
X1 ≤ ... ≤ Xr be the first r ordered past observations from a 
previous sample of size n from the Gumbel distribution (1). 

Then a lower one-sided conditional (1−α) prediction limit h 
on the smallest observation Y1 from a set of m future ordered 
observations Y1 ≤ … ≤ Ym also from the distribution (1) is 
given by  

{ }[ ]α−=>= 1| Prarg 1 zhYh  
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(5) 
where 
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µ)  and σ) are the maximum likelihood estimators of µ and σ  

based on the first r ordered past observations (X1 ≤ ... ≤ Xr) 
from a sample of size n from the Gumbel distribution, which 
can be found from solution of  
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(Observe that an upper one-sided conditional α prediction 
limit h on the smallest observation Y1 from a set of m future 
ordered observations Y1 ≤ … ≤ Ym may be obtained from a 
lower one-sided conditional (1−α) prediction limit by 
replacing 1−α by α.) 

Proof. The joint density of X1 ≤ ... ≤ Xr is given by  
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Let µ) , σ)  be the maximum likelihood estimates of µ, σ, 

respectively,  based on X1 ≤ ... ≤ Xr from a complete sample 
of size  n, and let 
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Parameters µ and σ in (9) are location and scale parameters, 
respectively, and it is well known that if µ)  and σ)  are 

estimates of µ and σ, possessing certain invariance 
properties, then V1 and V are the pivotal quantities whose 
distributions depend only on n. Most, if not all, proposed 
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estimates of µ and σ possess the necessary properties; these 
include the maximum likelihood estimates and various linear 
estimates. Zi, i=1(1)r, are ancillary statistics, any r-2 of 
which form a functionally independent set. For notational 
convenience we include all of z1, …, zr in (6); zr-1 and zr can 
be expressed as function of z1, …, zr-2 only. 

Using the invariant embedding technique [9]-[14], we 
then find in a straightforward manner, that the probability 
element of the joint density of V1, V, conditional on fixed z= 

) ..., , ,( 21 rzzz , is 
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is the normalizing constant.  
Writing 
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Now v1 can be integrated out of (15) in a straightforward 
way to give 
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This completes the proof.     �  

Corollary 1.1. It follows from (5) that a lower one-sided 
conditional (1−α) prediction limit h on the minimum Y1 of a 
set of m future ordered observations Y1 ≤ … ≤ Ym from the 
two-parameter Weibull distribution (3) is given by 
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where β
)

 and δ
)

are the maximum likelihood estimators of β 

and δ  based on the first r ordered past observations (X1 ≤ ... 
≤ Xr) from a sample of size n from the two-parameter 
Weibull distribution (3), which can be found from solution 
of 
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Theorem 2. (Lower (upper) one-sided prediction limit h 
on the lth order statistic Yl from a new (future) sample of m 
observations from the two-parameter Weibull distribution, 
where the parameter δ=1, on the basis of the previous data 
sample). Let X1 ≤ ... ≤ Xr be the first r ordered observations 
from a previous sample of size n from the two-parameter 
Weibull distribution (3), where the parameter δ=1. Thus, we 
deal with the exponential distribution. Then a lower one-
sided conditional (1−α) prediction limit h on the lth order 
statistic Yl from a set of m future ordered observations Y1 ≤ 
… ≤ Ym also from the above distribution is given by 
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Proof. For the proof we refer to Corollary 2.1 [15].     � 

B. Within-Sample Prediction 

Theorem 3 (Lower (upper) one-sided prediction limit h on 
the lth order statistic Yl in a sample of m observations from 
the Gumbel distribution on the basis of the early-failure 
data Y1 ≤ ... ≤ Yk from the same sample). Let Y1 ≤ ... ≤ Yk be 
the first k ordered early-failure observations from a sample 
of size m from the Gumbel distribution (1). Then a lower 
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one-sided conditional (1−α) prediction limit h on the lth 
order statistic Yl (l > k) from the same sample is given by 
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where 
      u = ) ..., ,( 1 kuu , (24) 
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µ)  and σ) are the maximum likelihood estimators of µ and σ  

based on the first k ordered early-failure observations (Y1 ≤ 
... ≤ Yk) from a sample of size m from the Gumbel 
distribution, which can be found from solution of 
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(Observe that an upper one-sided conditional α prediction 
limit h on the lth order statistic Yl based on the first k 
ordered early-failure observations Y1 ≤ ... ≤ Yk, where l>k, 
from the same sample may be obtained from a lower one-
sided conditional (1−α) prediction limit by replacing 1−α by 
α.) 

Proof. The joint density of Y1 ≤ ... ≤ Yk is given by  
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Let µ) , σ)  be the maximum likelihood estimates of µ, σ, 

respectively,  based on Y1 ≤ ... ≤ Yk  from a complete sample 
of size  m, and let  
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Using the invariant embedding technique [9]-[14], we then 
find in a straightforward manner, that the probability 
element of the joint density of V1, V, W, conditional on fixed 
u= ) ..., ,( 1 kuu , is  
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is the normalizing constant.  

Using (31), we have that 
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and the proof is complete.     �  
Corollary 3.1. Let Y1 ≤ ... ≤ Yk be the first k ordered past 

observations from a sample of size m from the two-
parameter Weibull distribution (3). Then (by using (23)) a 
lower one-sided conditional (1−α) prediction limit h on the 
lth order statistic Yl (l>k) from the same sample is found as 
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where β
)

 and δ
)

are the maximum likelihood estimates of β 

and δ  based on the first r ordered past observations Y1 ≤ ... 
≤ Yk from a sample of size m from the two-parameter 
Weibull distribution (3), which can be found from solution 
of  
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C. New-Within Sample Prediction 

Theorem 4 (Lower (upper) one-sided prediction limit h on 
the lth order statistic Yl in a sample of observations from the 
Gumbel distribution on the basis of both the early-failure 
data Y1 ≤ ... ≤ Yk from the same sample and the data X1 ≤ ... 
≤ Xr from a previous sample ). Let X1 ≤ ... ≤ Xr be the first r 
ordered observations from a previous sample of size n from 
the Gumbel distribution (1) and Y1 ≤ ... ≤ Yk be the first k 
ordered early-failure observations from a new sample of size 
m also from the distribution (1). Then a lower one-sided 
conditional (1−α) prediction limit h on the lth order statistic 
Yl (l>k) from the same new sample is given by 
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where   
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µ)  and σ) are the maximum likelihood estimates of µ and σ  

(based on both the first k ordered early-failure observations 
Y1 ≤ ... ≤ Yk from a sample of size m and the first r ordered 
observations X1 ≤ ... ≤ Xr from the previous sample of size n 
from the Gumbel distribution), which can be found from 
solution of 
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Proof. For the proof we refer to Theorems 1 and 3.     �  
Corollary 4.1. Let X1 ≤ ... ≤ Xr be the first r ordered 

observations from a previous sample of size n from the two-
parameter Weibull distribution (3) and Y1 ≤ ... ≤ Yk be the 
first k ordered early-failure observations from a new sample 
of size m also from the distribution (3). Then a lower one-
sided conditional (1−α) prediction limit h on the lth order 
statistic Yl (l>k) from the same new sample is given by 
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where ) ..., ,( 1 kyy=y , ) ..., ,( 1 rxx=x , β
)

 and δ
)

are the 

maximum likelihood estimates of β and δ  (based on both 
the first k ordered early-failure observations Y1 ≤ ... ≤ Yk 
from a sample of size m and the first r ordered observations 
X1 ≤ ... ≤ Xr from the previous sample of size n from the 
two-parameter Weibull distribution), which can be found 
from solution of 
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and 
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Proof. For the proof we refer to Corollaries 1.1, 3.1.     � 

III.  APPLICATION EXAMPLES 

A. Warranty Period Prediction for k-out-of-n System 

Many technical systems or subsystems have k-out-of-n 
structure. These so-called k-out-of-n systems consist of n 
components of the same kind. The entire system is working 
if at least k of its n components are operating. It fails if n − k 
+ 1 or more components fail. Hence, a k-out-of-n system 
breaks down at the time of the (n − k + 1)th component 
failure. Since all components start working at the same time, 
this approach leads to a kind of redundancy called active 
redundancy of n−k components. An n-component system 
that works (or is “good”) if and only if at least k of the n 
components work (or are good) is called a k-out-of-n:G 

system. An n component system that fails if and only if at 
least k of the n components fail is called a k-out-of-n:F 
system. Based on these two definitions, a k-out-of-n:G 

system is equivalent to an (n −  k + 1)-out-of-n:F system. 

The term k-out-of-n system is often used to indicate either a 
G system or an F system or both. Important particular cases 
of k-out-of-n systems are parallel and series systems. A 
series system is equivalent to a 1-out-of-n:F system and to an 
n-out-of-n:G system while a parallel system is equivalent to 
an n-out-of-n:F system and to a 1-out-of-n:G system.  

The k-out-of-n system structure is a very popular type of 
redundancy in fault-tolerant systems. It finds wide 
applications in both industrial and military systems.  

Practical examples of k-out-of-n systems are, e.g., an 
aircraft with four engines which will not crash if at least two 
out of its four engines remain functioning (2-out-of-4:G 
system), or a satellite which will have enough power to send 
signals if not more than four out of its ten batteries are 
discharged (5-out-of-10:F system). In a communications 
system with three transmitters, the average message load 
may be such that at least two transmitters must be 
operational at all times or critical messages may be lost. 
Thus, the transmission subsystem functions as a 2-out-of-3:G 
system. Systems with spares may also be represented by the 
k-out-of-n system model. In the case of an automobile with 
four tires, for example, usually one additional spare tire is 
equipped on the vehicle. Thus, the vehicle can be driven as 
long as at least 4-out-of-5 tires are in good condition. 

In reliability theory, the lifetime of a k-out-of-n:G system 
is usually described by the (n − k + 1)th order statistic Yn-k+1 
from the sample Y1 , . . . , Yn, where the random variable Yi 
represents the ordered lifetime or failure time of the 
component of the system, 1 ≤ i ≤ n. In the conventional 
modeling of these structures, the component lifetimes are 
supposed to be independent and identically distributed 
random variables. Translating this approach back into the 
technical sphere, it reflects the assumption that the failure of 
any component does not affect the remaining ones. 

 Let X1 ≤ ... ≤ Xr be the first r ordered observations of time 
to failure for identical structural components of aircraft from 
a sample of size n from the two-parameter Weibull 
distribution (3) (as the results of fatigue tests conducted on 
the components), where the parameter β is unknown, the 
parameter δ=1. Let us assume that r=2, n=5, and s = 16000 
flight hours. There is a k-out-of-m:G system of the same 
identical structure components of aircraft, operating 
independently, where k=2, m=4. Then it follows from (21) 
that the upper one-sided conditional α prediction limit 

upperh  on the lifetime of this system can be calculated as 
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= 53750 flight hours, (46) 
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where l=m-k+1=3, α=0.05. 
The warranty period for the lifetime of this system (i.e., 

the lower one-sided conditional (1−α) prediction limit lowerh  

on the lifetime of this system) is given by 
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  = 1860 flight hours. (47) 

B. Inspection Policy for Fatigued Structures 

As fatigued (say, aircraft) structures begin to age (that is, 
as flight hours accumulate), existing subcritical cracks or 
new cracks can grow in some high-stress points of the 
structural components. The usual approach is to inspect the 
structures periodically at certain intervals. Thus, a 
catastrophic accident during flight can be avoided.  

Let us assume that in a fleet of m aircraft there are m of 
the same individual structure components, operating 
independently. Let Y1 be the minimum time to crack 
initiation in the above components. In other words, let Y1 be 
the smallest observation from an independent second sample 
of m observations from the Weibull distribution (3). Suppose 
an inspection is carried out at time t, and this shows that 
initial crack (which may be detected) has not yet occurred. 
We now have to schedule the next inspection. Let X be the 
random time to crack initiation. Then we schedule the next 
inspection at time τ  > t, where τ  satisfies 

 

   { } .1|Pr ατ −=>> tXX   (48) 
 

Equation (48) says that the next inspection is scheduled so 
that, with probability 1-α, the aircraft structure component is 
still working and free of initial crack prior to inspection. 

It follows (48) and (17) that (with 00 =τ ) τj, j=1, 2, … 

can be calculated as  
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IV.  CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

Prepare Prediction of an unobserved random variable is a 
fundamental problem in statistics. The aim of this paper is to 
construct lower (upper) prediction limits that are exceeded 
with probability 1−α (α) by future observations or functions 
of observations. The prediction limits depend upon a 

previously complete or type II censored data sample and/or 
early-failure data of a new sample from the same 
distribution.  

The methodology described here can be extended in sev-
eral different directions to handle various problems that arise 
in practice. We have illustrated the prediction methods for 
log-location-scale distributions (such as the Gumbel or 
Weibull distribution). Application to other distributions 
could follow directly. 
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