
 

 
Abstract—This paper presents experimental and analytical 

results of an investigation of the three major cutting 
parameters—cutting speed, feed rate, and depth of cut—that 
affect the surface finish of turned parts in dry turning. A two-
level, three-parameter experiment was planned using design-of-
experiment methodology. The selected work materials were 
aluminium (AISI 6061), mild steel (AISI 1030), and alloy steel 
(AISI 4340). The results were analysed applying three 
methods—traditional analysis, Pareto ANOVA, and the 
Taguchi method. Subsequently, predictive models were 
developed for each material applying regression analysis. The 
results indicate that, while the feed rate has a dominant effect 
on surface finish, the interaction between cutting speed and 
feed rate also plays a major role which is influenced by the 
properties of work material.  

 

 
 

Index Terms—Cutting parameters, dry turning, Pareto 
ANOVA analysis, regression analysis, Taguchi method  
 

I. INTRODUCTION 
URFACE finish of the machined parts is one of the 
important criteria by which the success of a machining 

operation is judged [1]. It is also an important quality 
characteristic that may dominate the functional requirements 
of many component parts. For example, good surface finish 
is necessary to prevent premature fatigue failure; to improve 
corrosion resistance; to reduce friction, wear, and noise; and 
finally to improve product life. Therefore, achieving the 
required surface finish is critical to the success of many 
machining operations. 

Over the years, cutting fluids have been applied extensively 
in machining operations for various reasons, such as to reduce 
friction and wear, hence improving tool life and surface finish; 
to reduce force and energy consumption; and to cool the 
cutting zone, thus reducing thermal distortion of the workpiece 
and improving tool life, and facilitating chip disposal. 
However, the application of cutting fluid poses serious health 
and environmental hazards. Operators exposed to cutting 
fluids may have various health problems. If not disposed of 
properly, cutting fluids may adversely affect the environment 
and carry economic consequences.  

To overcome these problems a number of techniques, such 
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as dry turning, turning with minimum quantity lubrication 
(MQL), and cryogenic turning have been proposed. Dry 
turning is characterised by the absence of any cutting fluid, 
and unlike MQL and cryogenic turning does not require any 
additional delivery system. Hence, from the environmental 
perspective, dry turning is ecologically desirable; and from an 
economic perspective, it decreases manufacturing costs by 16 
to 20% [2]. Nevertheless, in spite of all economic and 
environmental benefits, the quality of the component parts 
produced by dry turning should not be sacrificed. 

The two major functions of cutting fluids are (i) to 
increase tool life and (ii) to improve the surface finish of 
manufactured parts. However, with the advent of various 
new tool materials and their deposition techniques, the tool 
lives of modern tools have increased significantly. At 
present, dry machining is possible without considerable tool 
wear; as such, research work has been focused on the surface 
finish aspect of dry turning. 

Investigations of the surface finish of turned parts have 
received notable attention in the literature, but most of the 
reported studies concentrate on a single work material such 
as free machining steel [3], composite material [4], bearing 
steel [5], SCM 400 steel [6], tool steel [7], MDN250 steel 
[8], and alloy steel [9]. However, the work material has 
significant effects on the results of machining operations. 
Therefore, any study on machining operations would not be 
complete unless it covered a wide range of materials. 
Consequently, three work materials encompassing diverse 
machinability ratings were selected for this study.  

 

II. SCOPE 
Several factors directly or indirectly influence the surface 

finish of machined parts, such as cutting conditions, tool 
geometry, work material, machine accuracy, chatter or 
vibration of the machine tool, cutting fluid, and chip 
formation. The objective of this research was to investigate 
the effects of major input parameters on the surface finish of 
parts produced by dry turning, and to optimise the input 
parameters. From a user’s point of view, cutting 
parameters—cutting speed, feed rate, and depth of cut—are 
the three major controllable variables; as such they were 
selected as input parameters. 

Surface roughness represents the random and repetitive 
deviations of a surface profile from the nominal surface. It 
can be expressed by a number of parameters such as 
arithmetic average, peak-to-valley height, and ten-point 
height. Yet, no single parameter appears to be capable of 
describing the surface quality adequately. In this study, 
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arithmetic average has been adopted to represent surface 
roughness, as it is the most frequently used and 
internationally accepted parameter. The arithmetic average 
represents the average of the absolute deviations from the 
mean surface level which can be calculated using the 
following formula: 
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where Ra is the arithmetic average roughness, Y is the 
vertical deviation from the nominal surface, and L is the 
specified distanced over which the surface roughness is 
measured [10]. For this research, a surface finish analyser 
capable of measuring multiple surface finish parameters was 
employed. The results were then analysed by three 
techniques—traditional analysis, Pareto ANOVA analysis, 
and Taguchi’s signal-to-noise ratio (S/N) analysis.  

In the traditional analysis, the average values of the 
measured variables were used. This tool is particularly 
suitable for monitoring a trend of change in the relationship 
of variables. 

Pareto ANOVA analysis is an excellent tool for 
determining the contribution of each input parameter and 
their interactions with the output parameters (surface 
roughness). It is a simplified ANOVA analysis method that 
does not require an ANOVA table. Further details on Pareto 
ANOVA can be found in Park [11]. 

The Taguchi method applies the signal-to-noise ratio to 
optimise the outcome of a manufacturing process. The 
signal-to-noise ratio can be calculated using the following 
formula: 
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where S/N is the signal-to-noise ratio (in dB), n is the 
number of observations, and y is the observed data. 

The above formula is suitable for quality characteristics in 
which the adage ‘the smaller the better’ holds true, which is 
the case for surface roughness. The higher the value of the 
S/N ratio, the better the result is because it guarantees 
optimum quality with minimum variance. A thorough 
treatment of the Taguchi method can be found in Ross [12].  

Finally, regression analysis technique was applied to 
obtain prediction models for estimating the surface 
roughness of each selected material.  

 

III. EXPERIMENTAL WORK 
The experiments were planned using Taguchi’s 

orthogonal array methodology [12], and a two-level L8 
orthogonal array was selected for our experiments. Three 
parts were produced using three materials with varying 
machinability properties: aluminium (AISI 6061), mild steel 
(AISI 1030), and alloy steel (AISI 4340). Each part was 
divided into eight segments. Some important properties and 
chemical compositions of the work materials compiled from 
[13] are listed in Tables 1 and 2 respectively.  

The nominal size of each part was 160 mm length and 40 
mm diameter. The experiment was carried out on a Harrison 

conventional lathe with 330 mm swing. For holding the 
workpiece, a three-jaw chuck supported at dead centre was 
employed. Square-shaped inserts with enriched cobalt 
coating (CVD TiN–TiCN–Al2O3–TiN) manufactured by 
Stellram, USA, were used as the cutting tools. The inserts 
were mounted on a standard PSDNN M12 tool holder. A 
new cutting tip was used for machining each part to avoid 
any tool wear effect. Details of cutting conditions used—
cutting speed, feed rate, and depth of cut—are given in 
Table 3. The range of depth of cut was chosen taking into 
consideration the finishing operation for which surface finish 
is more relevant. 
 

IV. RESULTS AND ANALYSIS 

A. Pareto ANOVA Analysis 
The Pareto ANOVA analysis for aluminium (AISI 6061) 

is given in Table 4. It shows that feed rate (B) has the most  
 

Table 1. Properties of work materials [13] 

Properties Unit AISI 6061 AISI 1030 AISI 4340
Machinability % 1190 71 50
Hardness BH 95 149 217
Modulus of elasticity Gpa 68.9 205 205
Specific heat capacity J/goC 0.896 0.486 0.475

 
 

Table 2. Chemical composition of work materials [13] 

                         AISI 6061
Aluminium, Al 95.8 - 98.6 %
Chromium, Cr 0.040 - 0.35 %
Copper, Cu 0.15 - 0.40 %
Iron, Fe ≤ 0.70 %
Magnesium, Mg 0.80 - 1.20 %
Manganese, Mn ≤ 0.15 %
Other, each ≤ 0.050 %
Other, total ≤ 0.15 %
Silicon, Si 0.40 - 0.80 %
Titanium, Ti ≤ 0.15 %
Zinc, Zn ≤ 0.25 %
                          AISI 1030
Carbon, C 0.270 - 0.340 %
Iron, Fe 98.67 - 99.13 %
Manganese, Mn 0.60 - 0.90 %
Phosphorous, P ≤ 0.040 %
Sulfur, S ≤ 0.050 %
                          AISI 4340
Carbon, C 0.370 - 0.430 %
Chromium, Cr 0.700 - 0.900 %
Iron, Fe 95.195 - 96.33 %
Manganese, Mn 0.600 - 0.800 %
Molybdenum, Mo 0.200 - 0.300 %
Nickel, Ni 1.65 - 2.00 %
Phosphorous, P ≤ 0.0350 %
Silicon, Si 0.150 - 0.300 %
Sulfur, S ≤ 0.0400 %  

 
Table 3. Input variables 

                 Levels
Control parameters Unit Symbol Level 0 Level 1
Cutting speed m/min A 54 212
Feed rate mm/rev B 0.11 0.22
Depth of cut mm C 0.5 1.5  
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significant effect on surface roughness with a contribution 
ratio (P ≅ 65%), followed by cutting speed (A) (P ≅ 9%), 
and depth of cut (C) (P ≅ 3%). The interactions between 
cutting speed and feed rate (A×B) and feed rate and depth of 
cut (B×C) also played roles with contributing ratios (P ≅ 
13%) and (P ≅ 9%) respectively. It is worth pointing out that 
the total contribution of the main effects is about 77% 
compared to the total contribution of the interaction effects 
of 23%. Therefore, it will be moderately difficult to optimise 
the diameter error by selection of input parameters. 

The Pareto ANOVA analysis for mild steel (AISI 1030) is 
given in Table 5. It illustrates that cutting speed (A) has the 
most significant effect on surface roughness with a 
contribution ratio (P ≅ 45%), followed by feed rate (B) (P ≅ 
31%), and depth of cut (C) (P ≅ 0.2%). The interactions 
between cutting speed and feed rate (A×B) and cutting and 
depth of cut (A×C) also played roles with contributing ratios 
(P ≅ 18%) and (P ≅ 3%) respectively. It is worth noting that 
the total contribution of the main effects remains roughly the 
same (about 78%), although in this case the contribution of 
cutting speed (A) is increased notably with expense of feed 
rate. As the total contribution of the interaction effects 
remains high (22%), it will be moderately difficult to 
optimise surface roughness by selection of input parameters.  

The Pareto ANOVA analysis for alloy steel (AISI 4340) 
is given in Table 6. It shows that feed rate (B) has the most 
significant effect on surface roughness with a contribution 
ratio (P ≅ 98%). All other effects, both main and interaction 
effects, were almost negligible. Therefore, it will be 
relatively easy to optimise the surface roughness by selection 
of proper feed rate.  

A comparison of Pareto diagrams for different materials is 
illustrated in Fig. 1, in which the dominant effect of feed rate 
on surface finish is evident. The effect of feed rate on surface 
roughness is well known, and most of the widely applied 
geometric models for surface roughness include feed rate and 
tool nose radius. However, results showed considerable 
interaction effects between cutting speed and feed rate, which 
influenced the surface finish. It appears that with the increase 
of material hardness the interaction effect diminishes. 

Within the selected range of variation, depth of cut showed 
negligible effect on surface roughness (Fig. 1). Similar results 
have been reported by previous studies [9, 14-15]. The Pareto 
ANOVA analyses (Tables 4-6) showed that in all cases high 
cutting speed (A1) and low feed rate (B0) produced the best 
surface roughness, which is in line with conventional 
machining wisdom. The cutting speed must be selected high 
enough to avoid formation of a built up edge (BUE). 

B. Response Tables and Graphs 
The response table and response graph for aluminium are 

illustrated in Table 7 and Fig. 2 respectively. As the slopes 
of the response graphs represent the strength of contribution, 
the response graphs confirm the findings of the Pareto 
ANOVA analysis given in Table 4. Fig. 2 shows that high 
level of depth of (C1) was the best depth of cut. Because the 
interaction A×B was significant, an A×B two-way table was 
applied to select their levels. The two-way table is not 
included in this paper due to space constraints. From the 

A×B two-way table, the optimum combination of factors A 
and B in order to achieve a lowest surface finish was 
determined as A1B0. Therefore, the best combination of 
input variables for minimising surface roughness was 
A1B0C1; i.e., high level of cutting speed, low level of feed 
rate, and high level of depth of cut. 

The response table and response graph for mild steel are 
illustrated in Table 8 and Fig. 3 respectively. The response 
graph confirms the findings of the Pareto ANOVA analysis 
given in Table 5. Low level of depth of (C0) was the best 
depth of cut (Fig. 3). From the A×B two-way table, the 
optimum combination of factors A and B in order to achieve 
a lowest surface finish was determined as A1B0.Therefore, 
the best combination of input variables for minimising 
surface roughness was A1B0C0; i.e., high level of cutting 
speed, low level of feed rate, and low level of depth of cut. 

The response table and response graph for alloy steel are 
shown in Table 9 and Fig. 4 respectively. The response 
graph confirms the findings of the Pareto ANOVA analysis 
given in Table 6. Low level of depth of (C0) was the best 
depth of cut (Fig. 4). From the A×B two-way table the 
optimum combination of factors A and B was set to A1B0. 
Therefore, the best combination of input variables for 
minimising surface roughness was A1B0C0; high level of 
cutting speed, low level of feed rate, and low level of depth 
of cut. 

C. Traditional Analysis 
Variations in surface roughness for input parameters cutting 

speed and feed rate are illustrated in Fig. 5. Effect of depth of 
cut is omitted because it demonstrated negligible percent 
contribution in Pareto ANOVA analyses (Tables 4-6).  

The graph shows that for aluminium and mild steel, with 
the increase of cutting speed surface roughness more or less 
remained steady or even deteriorated, whereas for alloy steel 
it improved considerably (Fig. 5a). The graph also shows 
that with the increase of feed rate the surface roughness 
values also increase, although this increase is higher at low 
cutting speed (Fig. 5b).   

Fig. 5 demonstrates that, contrary to traditional machining 
wisdom, the material with the higher machinability rating did 
not always produce a better surface finish. Therefore, surface 
roughness by itself is not a reliable indicator of machinability. 
The reason behind this is that the optimum cutting conditions 
for different materials are different; whereas in our experiment 
we selected the same cutting parameters for all the materials 
selected, conservatively based on the optimum cutting 
condition suitable for the material most difficult to machine, 
alloy steel AISI 4340, primarily to protect the tool. 
Furthermore, due to the interaction effects between cutting 
speed and feed rate, surface roughness is not always related to 
machinability rating.  

D. Regression Analysis 
To establish the prediction model, the software package 

XLSTAT was applied to perform the regression analysis 
using the experimental data. The regression analysis results 
and prediction model for aluminium are given in Table 10. 
The coefficient of determination (R2) is 0.8415, which 
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indicates that the prediction model has a satisfactory 
‘goodness of fit’.  

The regression analysis results and prediction model for 
mild steel are given in Table 11. In this case, the coefficient 
of determination (R2) is 0.843, which is slightly better 
compared to aluminium. 

The regression analysis results and prediction model for 
alloy steel are given in Table 12. In this case, the coefficient 
of determination (R2) is 0.993, which shows the best 
‘goodness of fit’ for the three materials selected. It is worth 
noting that ‘goodness of fit’ improved with material 
hardness (see hardness data given in Table 2) due to 
reduction of interaction effects. 

Tables 10-12 show that the model equation for each 
material is different. It is worth pointing out that currently 
available geometric models do not work in practice because 
they do not consider the formation of BUE and change of 
tool profile caused by tool wear. Therefore, any future 
analytical model should include material characteristics to 
make it meaningful. 

V. CONCLUDING REMARKS 
From the experimental work conducted and the subsequent 

analysis, the following conclusions can be drawn: 
Feed rate has a dominant effect on surface finish; the 

interaction between cutting speed and feed rate also plays a 
major role which is influenced by the properties of work 
material. With the increase of material hardness the 
interaction effect diminishes. 

Within the selected range, depth of cut showed negligible 
effect on surface roughness. 

Surface roughness by itself is not a reliable indicator of 
machinability, due to non-optimal cutting conditions and 
interaction effects of additional factors. 

The model equations resulting from regression analysis 
for different materials show significant differences. 
Therefore, any future analytical model should include 
material aspect to make it meaningful.  
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Fig. 1. Comparison of Pareto diagrams for different materials 
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Fig. 2. Response graphs of S/N ratio for aluminium (AISI 6061) 
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Fig. 3. Response graphs of S/N ratio for mild steel (AISI 1030) 
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Fig. 4. Response graphs of S/N ratio for alloy steel (AISI 4340) 
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(a) Cutting speed 
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(b) Feed rate 

Fig. 5. Variation of surface roughness for input patameters  

Table 7. Respoonse table for mean S/N ratio for alumimium (AISI 6061) 

 Mean S/N  ratio
Cutting parametrs Symbol Level 0 Level 1 Max -Min
Cutting speed A -7.895 -6.764 1.131
Feed rate B -0.128 -14.530 14.402
Deapth of cut C -6.934 -7.724 0.790
Interaction AXB AXB -8.037 -6.622 1.416

 
 

Table 8. Respoonse table for mean S/N ratio for mild steel (AISI 1030) 

 Mean S/N  ratio
Cutting parametrs Symbol Level 0 Level 1 Max -Min
Cutting speed A -7.515 -4.304 3.211
Feed rate B -1.617 -10.201 8.584
Deapth of cut C -6.878 -4.940 1.937
Interaction AXB AXB -7.838 -3.981 3.857

 
 

Table 9. Respoonse table for mean S/N ratio for alloy steel (AISI 4340) 

 Mean S/N  ratio
Cutting parametrs Symbol Level 0 Level 1 Max -Min
Cutting speed A -14.460 -7.243 7.217
Feed rate B -7.823 -13.881 6.058
Deapth of cut C -10.605 -11.099 0.494
Interaction AXB AXB -13.169 -8.534 4.635

 
Table 4. Pareto ANOVA analysis for aluminium (AISI 6061) 

                          Factor and interaction
A B AxB C AxC BxC

0 -7.51 -1.62 -7.84 -6.88 -5.76 -7.52
1 -4.30 -10.20 -3.98 -4.94 -6.05 -4.29
Sum of squares of difference (S) 10.31 73.69 14.88 3.75 0.08 10.43
Contribution ratio (%) 9.11 65.13 13.15 3.32 0.07 9.22
Pareto diagram

Cumulative contribution 65.13 78.28 87.50 96.61 99.93 100.00
Check on significant interaction     
Optimum combination of significant factor level A1B0C1

Sum at factor level 

AxB two-way table

AxC

 
 

 

Table 5. Pareto ANOVA analysis for mild steel (AISI 1030) 
                          Factor and interaction

A B AxB C AxC BxC
0 -57.84 -31.29 -52.68 -42.42 -47.39 -42.21
1 -28.97 -55.52 -34.14 -44.39 -39.43 -44.60
Sum of squares of difference (S) 833.31 587.22 343.75 3.90 63.40 5.71
Contribution ratio (%) 45.36 31.96 18.71 0.21 3.45 0.31
Pareto diagram

Cumulative contribution 45.36 77.32 96.03 99.48 99.79 100.00
Check on significant interaction     
Optimum combination of significant factor level A1B0C0

Sum at factor level 

AxB two-way table

C

 
 

 
Table 6. Pareto ANOVA analysis for alloy steel (AISI 4340) 

                          Factor and interaction
A B AxB C AxC BxC

0 -7.89 -0.13 -8.04 -6.93 -6.94 -6.94
1 -6.76 -14.53 -6.62 -7.72 -7.72 -7.71
Sum of squares of difference (S) 1.28 207.42 2.00 0.62 0.61 0.59
Contribution ratio (%) 0.60 97.60 0.94 0.29 0.29 0.28
Pareto diagram

Cumulative contribution 97.60 98.54 99.14 99.44 99.72 100.00
Check on significant interaction     
Optimum combination of significant factor level A1B0C0

AxB two-way table

Sum at factor level 

BxC
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Table 10. Results of regression analysis for aluminium (AISI 6061) 

Summary statistics:
Variable Observations Minimum Maximum Mean Std. deviation

Ra 8 0.590 3.533 2.305 1.146
A 8 54.000 212.000 133.000 84.455
B 8 0.110 0.330 0.220 0.118
C 8 0.500 1.500 1.000 0.535
Goodness of fit statistics:
Observations 8.000
Sum of weights 8.000
DF 4.000
R² 0.815
Adjusted R² 0.677
MSE 0.424
RMSE 0.651
MAPE 22.951
Analysis of variance:

Source DF Sum of squares Mean squares F Pr > F
Model 3 7.490 2.497 5.887 0.060
Error 4 1.696 0.424
Corrected Total 7 9.187
Equation of the model:

Ra = 0.913 - 2.579*10-3*A + 8.572*B - 0.151*C
 

 
Table 11. Results of regression analysis for mild steel (AISI 1030) 

Summary statistics:
Variable Observations Minimum Maximum Mean Std. deviation

Ra 8 1.043 6.480 4.051 1.875
A 8 54.000 212.000 133.000 84.455
B 8 0.110 0.330 0.220 0.118
C 8 0.500 1.500 1.000 0.535
Goodness of fit statistics:
Observations 8.000
Sum of weights 8.000
DF 4.000
R² 0.843
Adjusted R² 0.726
MSE 0.964
RMSE 0.982
MAPE 20.396
Analysis of variance:

Source DF Sum of squares Mean squares F Pr > F
Model 3 20.764 6.921 7.177 0.044
Error 4 3.858 0.964
Corrected Total 7 24.622
Equation of the model:

Ra = 4.363 - 1.615*10-2*A + 8.924*B - 0.128*C
 

 
Table 12. Results of regression analysis for alloy steel (AISI 4340) 

Summary statistics:
Variable Observations Minimum Maximum Mean Std. deviation

Ra 8 0.860 5.527 3.183 2.303
A 8 54.000 212.000 133.000 84.455
B 8 0.110 0.330 0.220 0.118
C 8 0.500 1.500 1.000 0.535
Goodness of fit statistics:
Observations 8.000
Sum of weights 8.000
DF 4.000
R² 0.993
Adjusted R² 0.988
MSE 0.062
RMSE 0.250
MAPE 8.198
Analysis of variance:

Source DF Sum of squares Mean squares F Pr > F
Model 3 36.875 12.292 197.161 < 0.0001
Error 4 0.249 0.062
Corrected Total 7 37.124
Equation of the model:

Ra = -1.163 - 4.641*10-4*A + 19.508*B + 0.117*C
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