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Abstract—Constrained and unconstrained Nonlinear Opti-
mization Problems often appear in many engineering areas.
In some of these cases it is not possible to use derivative
based optimization methods because the objective function is
not known or it is too complex or the objective function is
non-smooth. In these cases derivative based methods cannot be
used and Direct Search Methods might be the most suitable
optimization methods. An Application Programming Interface
(API) including some of these methods was implemented
using Java Technology. This API can be accessed either by
applications running in the same computer where it is installed
or, it can be remotely accessed through a LAN or the Internet,
using webservices. From the engineering point of view, the
information needed from the API is the solution for the
provided problem. On the other hand, from the optimization
methods researchers’ point of view, not only the solution for
the problem is needed. Also additional information about the
iterative process is useful, such as: the number of iterations;
the value of the solution at each iteration; the stopping criteria,
etc. In this paper are presented the features added to the API
to allow users to access to the iterative process data.

Index Terms—Nonlinear Optimization, Direct Search Me-
thods, Java

I. INTRODUCTION

There are several areas of engineering where optimization
problems must be solved. In some of these problems it is
not possible to know which is its objective function, either
because it is too complex or due to the costs involved in
its determination (time, monetary, etc...). In other cases the
derivatives of the objective function might be too complex
to be determined or, the objective function might be non-
smooth. In these cases it is not possible to use derivative-
based optimization methods, as presented in [1]. In such
problems one possible solution to cope with this is to
use direct search methods that do not use derivatives or
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approximations to them. For further details see [2], [3] and
[4].

Optimization problems that may appear can be of two
natures: unconstrained optimization problems or constrained
optimization problems. Unconstrained optimization problems
have the form of (1):

min
x∈Rn

f(x) (1)

where:
• f : Rn → R is the objective function;
Constrained optimization problems have the form of (2):

min
x∈Rn

f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I

(2)

where:
• f : Rn → R is the objective function;
• ci(x) = 0, i ∈ E , with E = {1, 2, ..., t}, define the

problem equality constraints;
• ci(x) ≤ 0, i ∈ I, with I = {t + 1, t + 2, ...,m},

represent the inequality constraints;
• Ω = {x ∈ Rn : ci = 0, i ∈ E ∧ ci(x) ≤ 0, i ∈ I} is

the set of all feasible points, i.e., the feasible region.
To solve both unconstrained and constrained optimization

problems, an API (Application Programming Interface) was
developed by the authors. The structure and functionalities
of this API were presented in [5] and details on the methods
that it implements and their performance analysis have been
presented in [6], [7], [8], [9], [10] and [11].

It has been developed using Java Technology and sup-
ports local and remote access [12]. This means that the
methods implemented in the API can be accesses either by
applications running in the same computer where the API
is installed (local access), or it can be accessed remotely,
through the Local Area Network (LAN) or the Internet, by
applications running on remote computers (remote access).
This remote access is made using webservices, allowing
the API to be accessed by application developed in any
programming technology.

This API has two main target end-users: engineers who
may need to solve Nonlinear Optimization Problems; re-
searchers who want to develop new methods and/or study the
behaviours of the implemented methods. In the first case, the
end user only wants to know the final solution; in the second
case, the end users not only needs to know the solution for
the problem, but also to know how the method has reached
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the solution. So, some information about the iterative process
of the several methods must be made available to the end
user.

In this paper are presented the new features that were
added to the developed API, which allow end users to access
and visualise the iterative process data. Data is stored in
a database and accessed trough a web server using a web
browser. Both the database and the web server can be running
in the same computer where the API is installed, for example
when the API is installed in a server for remote access, or
these services can be running in a remote computer.

Since in this paper the word ’method’ might have two
different meanings, method to solve a problem or method in
the context of Object Oriented Programming, in the first case
the word will appear as ’method’ and in the second case as
’method’.

II. THE IMPLEMENTED API
A detail of the the internal structure of the developed

API is depicted in Fig. 1. When a problem is sent to
the API, it can either be a constrained problem or an
unconstrained problem. Depending on the type of problem
several methods and algorithms are available. The methods
currently implemented in the API do not use derivatives or
approximations to them.

Figure 1. API Block Diagram

A. Solving unconstrained problems
The following five algorithms are available to solve un-

constrained problems:
• A Coordinated Search algorithm, that can be analysed

in detail in [1];
• Hooke and Jeves algorithm[4];
• An implementation of the algorithm of Audet et. al. as

in [13], [14] and [15];
• The Nelder and Mead algorithm as in [16], or in [17]

and [18];

• A Convergent Simplex algorithm can be analised in
detail in analysed [1] and [19];

These algorithms are also used by the Internal Process of
the methods implemented to solve constrained problems.

B. Solving constrained problems
Problems with constraints can be solved using one of the

following two methods: Penalty and Barrier Methods; Filters
Method.

1) Penalty and Barrier Methods: In Penalty and Barrier
Methods the problem, in the form (2), is transformed into
a sequence of problems in the form of (1), i.e., a sequence
of unconstrained problems, which are then solved using the
algorithms used to solve unconstrained problems. The new
sequence of unconstrained problems that replaces problem
P is defined by:

Φ(xk, rk) : min
xk∈Rn

f(xk) + rkp(x) (3)

where Φ is the new objective function, k is the iteration, p is
a function that penalises (penalty) or refuses (barrier) points
that violates the constraints and rk is a positive parameter.

The following five algorithms are available to solve un-
constrained problems:

• A Nonstationary Penalty that can be analysed in [20];
• Adaptative Barrier as in [14], [15];
• Extreme Barrier as in [21] and [22];
• Classical Penalty as in [23], or in [24];
• `1 Penalty which can be analysed in [25], [26] and [27];

2) Filters Method: The Filters Method, introduced by
Fletcher and Leyffer in [28], unlike Penalty and Barrier
Methods, consider optimality and feasibility separately. The
constrained problems are considered as bi-objective pro-
grams, and this method has as main goal the minimization
of both the objective function (optimality) and a continuous
function (h) that aggregates the constraint function values
(feasibility).

Since it is not reasonable to have as a solution an infeasible
point, priority must then be given to h. It must then be such
that:

h(x) ≥ 0 with h(x) = 0 if and only if x is feasible.

We can then define h as:

h(x) = ‖C+(x)‖ , (4)

where ‖.‖ is the norm of a vector and C+(x) is the vector
of the t + m values of the constraints in x, i.e, ci(x) for
i = 1, 2, ..., t + m:

C+ (x) =

{
ci (x) if ci (x) > 0

0 if ci (x) ≤ 0

C. Data to be stored
For the later analysis of the iterative process to be possible

and conclusions to be correctly drawn, all the data related
with the execution of the method must be stored. This
information includes the output data of the method, the
parameters needed by the methods to correctly work, which
are defined before the execution of the method, and the
intermediate values of the iterative process.
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1) Input Data: Common to all methods, both the problem
to be solved and the initial point at which the methods starts
looking for the minimum must be stored.

The parameters needed by the Penalty and Barrier Method,
and which are stored in the database are:
• The Penalty/Barrier function to be used;
• Initial parameters of the Penalty/Barrier function;
• Minimum step length;
• Maximum value of the constraints violation;
• Updating factor of the Penalty/Barrier function.
For both the Penalty and Barrier Method and for the Filters

Method, the parameters to be stored are:
• The maximum number of the external process iterations;
• Tolerance distance between iterations;
• Tolerance between two values of the objective function

(for two consecutive iterations);
• Method used in the internal process;
• Parameters of the internal process.
In the filters method also the maximum initial value of for

the constraints violations must be stored.
For the unconstrained methods, the data to be stored in

the database are:
• Maximum number of iterations;
• Initial step length;
• Tolerance for the distance between two iterations;
• Tolerance between two values of the objective function

(for two consecutive iterations);
• Minimum step length.
These data for unconstrained methods are stored both

when a unconstrained problem is solved, and when a con-
strained problem is solved (parameters of the internal pro-
cess).

2) Output Data: For all methods and algorithms, the
solution to the problem xk and the value of the objective
function f(xk) are stored in the database.

The output values for the Penalty and Barrier Method
stored in the database are:
• Number of external process iterations;
• Number of Penalty/Barrier function evaluations;
• Value of the Penalty/Barrier function at the last iteration;
• Penalty/Barrier function value at the best infeasible

solution;
• Iteration at which it was found the best infeasible

solution;
• Constraint violation value at the best infeasible solution.
The stored output parameters which are common to the

Penalty and Barrier Method and the Filters Method are:
• Last iteration;
• Value of the objective function at the last iteration;
• Best feasible solution if it exists;
• Value of the objective function at the best feasible

solution;
• Iteration at which the best feasible solution was found;
• Best infeasible solution if it exists;
• Value of the objective function at the best infeasible

solution;
• Value of the constraints violation at the best infeasible

solution.

For the Filters Method, also de following information is
stored:
• Number of internal process iterations;
• Number of objective function evaluations;
• Iteration where the best infeasible solution was found;
• Set of non dominated solutions.
For the unconstrained methods, the output values stored

in the database are:
• Number of objective function evaluations;
• Last values calculated at the Stop Criteria;
• The found solution;
• Value of the objective function at the found solution.
3) Iterative process Data: For each iteration (k) of the

optimization method, it is stored in the database:
• The value k of the iteration;
• The value of the approximation;
• The value of the objective function;

III. DATA STORING AND VISUALIZATION

To allow the storage of the data from the execution of the
methods, two new features must be added to the existing Java
API: a database for data storage and a method to allow users
to visualize and analyse the results. In the block diagram of
Fig. 2 are presented the different blocks that make part of
the proposed solution. It is composed by the existing API, a
database server to store the data and a web server to supply
the data to the user.

Figure 2. Block diagram of the proposed solution.

When an application invokes the run method of any
optimization method of the API, prior to its execution, it
sends to the database (1) the Input Data for that execution, as
described in section II-C. After sending it the method starts
its execution. While it is being executed, the API sends the
Iterative Process Data to the database and when the execution
finishes also all the Output Data are sent. The data from the
execution is now ready to be accessed by the user.

All data is stored with an unique identifier associated to a
particular execution. If a method is executed multiple times,
data from all these executions will be stored in the database,
each with an unique identifier. This identifier can be accessed
by the application invoking the getIdentifier() me-
thod.

The data of the execution, which is made available to
the end users by a web server that has direct access to the
database (2). To access the information, the user only needs
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to use a web browser that will contact the web server (3)
and present information to the user as an World Wide Web
page.

This architecture allows the different components to be
all installed and running in the same computer, or, since all
communications are made using TCP/IP (Transport Control
Protocol / Internet Protocol), these components can be ins-
talled in different computers. Two possible usage scenarios,
among many, are:

• Local Access – The API, the database and the web
server are all running in the same computer where the
optimization methods are executed by the user, and it
is the same computer where the user accesses to the
data of the method execution. In this case, since all
components are local, the user’s computer does not need
to be connected to the network, but the user needs to
install all components in his/her computer;

• Remote Access – The API is installed in the users’
computer and the database and the web server are
installed in a remote server. In this case the user does not
have to mind about the database server and web server
installation, since he/she makes a remote access to the
data. Data stored in the server can be shared with other
users. However, to access the data the used computer
must have a network access.

From the user’s point of view, this architectures allows the
access to the data without the need for any kind of software
installation. Independently of the location of the web server
(local or remote) the user only needs to use a web browser
and point it to the URL (Uniform Resource Locator) of the
web server.

For the implementation of the database MySQL was
chosen and the used web server is Apache Tomcat, which
are freely available for installation. Therefore the pages in
the server were developed using JSP (Java Server Pages).

A. Structure of the Database
Based on the above presented requirements for data

storage it was implemented the database presented in the
ER-Diagram of Fig. 3.

In table Problems are stored a unique identifier for the
problem (ProblemID), the name of the user (username)
that requested the execution of the method, the date and
the problem type (Unconstrained, Constrained or from the
database of problems [12]). If the problem is not chosen
from the database, it also stores the problem expression and
dimension, and the expression of its constrains are stored
in table ProblemConstrains. Also information about
which methods were used in the External Process and the
Internal Process are stored in this table (IPMethod and
EPMethod).

The parameters discussed in subsection II-C are
stored in tables InputData, OutputData and
IterativeProcessData. Since the dimension of
the problem can vary form 1 to n, in table Solutions are
stored the solutions to the problem. The number of entries
in this table for each problem depend on the number of
dimensions. The same is applicable to the tables that store
the Initial Point and the Approximations to the solution.

Figure 3. ER Diagram of the database.

These three tables have a filed that contains the ID of the
parent table, the solution (X1, X2, ...., Xn) in field X and
its index (1, 2, ...., n) in field Xindex.

B. Modifications to the API code
For each optimization method implemented in the API it

was needed to make some changes in their source code. The
changes are related with addition of the methods to store
the data, database configuration and enabling/disabling data
logging into the database.

The list of new methods added to the implemented
optimization methods is:
• void storeInDB(boolean flag) – used to in-

dicate the method if the data of the next execution
is to be stored in the database or not. By default no
information will be stored in the database;

• long getIdentifier() – returns the unique iden-
tifier used in the database to store the data of the latest
execution. Each call to the run method will change this
value (is data logging is enabled);

• void setDBHost(String hostname) – allows
to change the server on which the data will be stored.
By default the API assumes that the MySQL server is
installed in the same computer (localhost);

• void setDBUser(String username,
String password) – allows to set de username
and the password for the database server, if the default
is not to be used;

• void setUsername(String username) – al-
lows to set the name of the user that is requesting the
execution of the optimization method. This parameter
allows to identify the user who executed the method,
when a list of available executions appears in the web
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page (see section III-C, Fig. 5). If no username is
supplied, by default ”unknown” will be used.

The above presented methods are the public methods,
added to the optimization methods, that make part of the
API available to the programmer. Internally, other methods
have been implemented to handle the establishment of the
connection with the database and to send the data of the
execution to it.

An example of code showing how to execute a method and
store the data of the execution in the database is presented in
Fig. 4. In the presented example the problem to be minimized
is (x0−5)2+(x1−6)2, using (10.0, 10.0) as the initial point
and using the Coordinated Search algorithm to solve it. Be-
cause the data of the execution is to be stored in the database,
the method storeInDB() is called before run(). After
the execution, the method getIdentifier() to get the
identifier for that execution and it is presented in the console.

String expr = ‘‘(x0-5)ˆ2 + (x1-6)ˆ2’’;
String initPoint = ‘‘x0=10.0 x1=10.0’’;
CoordinatedSearch coord =

new CoordinatedSearch(expr,initPoit);
coord.storeInDB(true);
coord.run();
long ID = coord.getIdentifier();
System.out.println("ID="+ID);

Figure 4. Java code to access the API, execute the Coordinated Search
method and store the data in the default database.

C. Data Visualization
When the user accesses to the web server, he/she can

choose from a list (Fig. 5) the problem to be visualized.
The data that appears in the list of available problems are:
the unique execution identifier, generated for each execution;
the problem that was sent to the method to be solved; the
user (if known) that requested the execution of the method;
the execution date. The username parameter is always known
if the user is using the remote access to the API feature (see
[12]). Otherwise the setUsername() method should be
used before executing the method.

The user only needs to click in the execution that wishes
to visualize, and then will be redirected to a web page
where the data corresponding to the selected execution is
presented. The user can then analyse the various iterations
of the optimization method.

Figure 5. A detail of the web page where the user selects the problem for
which wants to display the data.

In one of these pages, the user can visualize the various
values of the objective function as a function of the iteration
number (Fig. 6). To the user is presented a plot with all values
of the objective function, and the data for the highlighted
element. The user can do a step-by-step visualization of
data, changing the selected data element by clicking in the
button with the right arrow (next iteration) or the left arrows
(previous iteration).

Figure 6. Evolution of the objective function of the problem (x0 − 5)2 +
(x1 − 6)2, as a function of the iteration number, using the Coordinated
Search method.

For problems in R2 it is also possible to visualize all the
intermediate values for the solution (x0 and x1), found by
the method at each iteration (Fig. 7). Also in this case it is
presented to the user a plot with all values obtained in the
execution of the method, and for the highlighted element the
corresponding data is presented on the right of the web page.
Also a step-by-step analysis of the values is possible in the
page.

Figure 7. Some of the approximations to the solutions found by the the
Coordinated Search method for problem (x0 − 5)2 + (x1 − 6)2, starting
at the initial point (10.0, 10.0).

IV. CONCLUSION AND FUTURE WORK

In this paper a web-based tool to evaluate and inspect
the iterative process of Direct Search Optimization Methods
was presented. It allows the user/programmer to store in a
server all the data of the iterative process of the optimization
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methods for later analysis. Data can be stored either in the
local computer where the API is installed and running, or
in a remote server (e.g. using the Internet) as long as there
is a possible route between the hosts. Access to the data
is made using a standard web browser, allowing users to
access and visualization of data without the need to install
any application in their computer, independently of the user
location and the users’ computing platform.

Future works includes the enhancement and conclusion of
a Java-based API for graphical representation, that has also
started to be developed, to improve the visual quality of the
graphics presented by the developed application.

Also the possibility of generation of a local XML (eXtensi-
ble Markup Language), instead of sending data to a database,
is to be implemented. This will allow users to generate a local
log file, without the need to have access to a database server
where to store the data. This XML file can later be sent
to an application (which can be the web-based application
presented in this paper) for data visualization.
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