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Abstract— In previous work the authors developed

algorithms to navigate a robot based on sequences

of visual memories stored into a Sparse Distributed

Memory—a kind of associative memory suitable to

work with high-dimensional binary vectors. In that

system, the robot’s localisation is based on similarity

between the robot’s view and one previously stored

image. In that system, prediction errors occur from

time to time, when the robot’s captured image re-

trieves a wrong image from the memory. This paper

describes a method in which the number of prediction

errors is substantially reduced, through the use of a

search sliding window.
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1 Introduction

Many different approaches have been tried to localise and
navigate robots in a safe and robust way. Some of those
approaches work only in structured environments, since
they are based on the recognition of artificial landmarks,
beacons, indoor/outdoor GPS or similar strategies that
greatly improve the accuracy of the system [1]. More
generic strategies that work in unstructured environ-
ments include mapping and localisation using laser range
finders, sonars or cameras for vision-based approaches.

Vision-based approaches are biologically inspired, since
humans use mostly vision for localisation [2]. The sen-
sors required are inexpensive, but the processing power
needed is huge. Every single image is usually described
by several hundreds or thousands of pixels, and every
path that the robot learns is described by tens, hundreds
or even thousands of images. That makes the technique
less appealing, because real-time operation may be com-
promised for large databases, or requires massive parallel
processing.

There are two popular approaches for vision-based navi-
gation: one that uses plain images [3], the other that uses
omnidirectional images [4]. Omnidirectional images offer
a 360° view, which is richer than a plain front or rear view.

∗ISR - Institute of Systems and Robotics, Dept. of Electrical and
Computer Engineering, University of Coimbra, Portugal. E-mail:
acoimbra@deec.uc.pt, mcris@isr.uc.pt. †ESTGOH, Polytechnic In-
stitute of Coimbra, Portugal. E-mail: mmendes@estgoh.ipc.pt.

However, that richness comes at the cost of even addi-
tional processing power requirements. Some authors have
also proposed techniques to speed up processing and/or
reduce memory needs. Matsumoto [5] used images as
small as 32×32 pixels. Ishiguro replaced the images by
their Fourier transforms [6]. Winters compressed the im-
ages using Principal Component Analysis [7].

The images alone are a means for instantaneous locali-
sation. View-based navigation is almost always based on
the same idea: during a learning stage the robot learns a
sequence of views and motor commands that, if followed
with minimum drift, will lead it to a target location. By
following the sequence of commands, possibly correcting
the small drifts that may occur, the robot is later able to
follow the learnt path.

In previous work the authors presented a system to navi-
gate a robot using images stored into a Sparse Distributed
Memory (SDM) [8]. The SDM is a kind of associa-
tive memory based on the properties of high-dimensional
boolean spaces, and thus suitable to work with large bi-
nary vectors such as images [9]. The method was efficient
even under difficult conditions [10], but the processing re-
quirements were very demanding. The present paper de-
scribes an improvement to the system, in which a search
sliding window truncates the search space and thus con-
siderably reduces the time and processing requirements,
as well as the number of robot localisation errors.

Section 2 explains navigation based on view sequences in
more detail. Section 3 briefly describes how the SDM
works. In Section 4 the experimental platform used is
described. Section 5 explains the problems encountered
with the original navigation method, and how the appli-
cation of a sliding window contributes to solve many of
them. Section 6 shows and discusses the results obtained,
and Section 8 draws some conclusions.

2 Navigation using view sequences

The approach followed to navigate the robot is based on
using visual memories stored into a Sparse Distributed
Memory, as described in [8]. It requires a supervised
learning stage, in which the robot is manually guided.
While being guided, the robot memorises a sequence of
views automatically. It stores a sequence of views for
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each path. Images that are very similar to previously
stored images are discarded, because they would, with
high probability, not add any relevant information to the
known information.

While running autonomously, the robot performs auto-
matic image-based localisation and obstacle detection.
Localisation is estimated based on the similarity of two
views: one stored during the supervised learning stage
and another grabbed in real-time. To minimise possible
drifts to the left or to the right, the robot tries to find
matching areas between those two images and calculates
the horizontal distance between them in order to infer
how far it is from the correct path. The technique is
described in more detail in [8].

3 Sparse Distributed Memories

The Sparse Distributed Memory is an associative memory
model proposed by Kanerva in the 1980s [9]. It is suit-
able to work with high-dimensional binary vectors. In
the proposed approach, an image is regarded as a high-
dimensional vector, and the SDM is used simultaneously
as a sophisticated storage and retrieval mechanism and a
pattern recognition tool.

3.1 The original model

The underlying idea behind the SDM is the mapping of
a huge binary memory onto a smaller set of physical lo-
cations, called hard locations. That way it is possible
to mimic the existence of a much larger space, taking ad-
vantage of its inherent properties. As a general guideline,
those hard locations should be uniformely distributed in
the virtual space, to mimic the existence of the larger
virtual space as accurately as possible. Every datum is
stored by distribution to a set of hard locations, within a
given radius, and retrieved by averaging those locations
and comparing the result to a given threshold. Figure
1 shows a model of a SDM. The main modules are an
array of addresses, an array of bit counters, a third mod-
ule that computes the average of the bits of the active
addresses, and a thresholder. “Address” is the reference
address where the datum is to be stored or read from. It
will activate all the hard locations within a given access
radius, which is predefined. Kanerva proposes that the
Hamming distance, that is the number of bits in which
two binary vectors are different, be used as the measure
of distance between the addresses. All the locations that
differ less than a predefined number of bits from the input
address are selected for the read or write operation.

Data are stored in arrays of counters, one counter for
every bit of every location. Writing is done by incre-
menting or decrementing the bit counters at the selected
addresses. To store 0 at a given position, the correspond-
ing counter is decremented. To store 1, it is incremented.
Reading is done by averaging the values of all the coun-

Figure 1: One model of a SDM, using bit counters.

ters columnwise and thresholding at a predefined value.
If the value of the sum is below the threshold, the bit
is zero, otherwise it is one. Initially, all the bit counters
must be set to zero, for the memory stores no data. The
bits of the address locations should be set randomly, so
that the addresses would be uniformely distributed in the
addressing space.

3.2 The models used

The original SDM model has been subject to various
improvements and alternative implementations. In the
present work, four variations have been studied: the
arithmetic mode, the bitwise mode using the natural bi-
nary code, the bitwise mode using an optimised code,
and the bitwise mode using a sum-code. Those models
are described in [10].

All the models use the Randomised Reallocation (RR)
algorithm [11]. Using the RR, the system starts with an
empty memory and allocates new hard locations when
there is a new datum which cannot be stored into enough
existing locations. The new locations are placed ran-
domly in the neighbourhood of the new datum address.

The bitwise implementation is very similar to the original
model. The difference is that it stores only one bit per
input vector bit, thus dropping the bit counters. Writting
in such a model consists in just replacing the old datum.
The advantages are that the capacity of storing data is
improved, and reading and writing is much faster. The
model was inspired by Furber et al.’s approach [12].

As described in [10], the Hamming distance between two
binary numbers is not proportional to the arithmetic dis-
tance. For example, the Hamming distances h1(01112,
11112) = h2(11102, 11112) = 1. That happens because
the Hamming distance does not take into account the po-
sitional values of the bits. However, the sensorial data is
encoded using the natural binary code, which takes into
account the positional values of the bits. Using arithmetic
distances, d1(01112, 11112) = 8 and d2(11102, 11112) =
1. Hence, different criteria are used to encode the input
information and to process it inside the SDM according
to Kanerva’s original model. That difference causes a loss
of performance of the system, and to overcome the prob-
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Figure 2: Architecture of the arithmetic SDM, using in-
tegers instead of bit counters.

Figure 3: Robot used.

lem other memory models were implemented. The first
alternative encodes the data using an optimised code. In
that optimised code some bytes are sorted, in order to
minimise the effect of using different criteria to encode
the input data and to process it inside the SDM.

In another model, the data is encoded using a sum-
code of 9 graylevels. In that code, each binary num-
ber is mapped into the range {00000000, 00000001,
00000011,..., 11111111}. That way the Hamming dis-
tance between any two binary numbers is proportional to
the arithmetic distance.

In the arithmetic implementation, the bits are grouped as
byte integers, as shown in Figure 2. Addressing is done
using an arithmetic distance, instead of the Hamming
distance. Learning is achieved updating each byte value
using the equation:

hk
t = hk

t−1 + α · (xk − hk
t−1), α ∈ R ∧ 0 ≤ α ≤ 1 (1)

In the equation, hk
t is the kth number of the hard location,

at time t, xk is the corresponding number in the input
vector x and α is the learning rate. In the present im-
plementation α was set to 1, enforcing one shot learning.

4 Experimental platform

The robot used was a Surveyor1 SRV-1, a small robot
with tank-style treads and differential drive via two pre-
cision DC gearmotors (Figure 3). Among other features,
it has a built in digital video camera and a 802.15.4 radio

1http://www.surveyor.com.

Figure 4: Architecture of the implemented software.

communication module. The robot was controlled in real
time from a laptop with a 1.8 GHz processor and 1 Gb
RAM. The overall software architecture is as shown in
Figure 4. It contains three basic modules:

1. The SDM, where the information is stored.

2. The Focus (following Kanerva’s terminology), where
the navigation algorithms are run.

3. An operational layer, responsible for interfacing the
hardware and some tasks such as motor control, col-
lision avoidance and image equalisation.

Navigation is based on vision, and has two modes: su-
pervised learning, in which the robot is manually guided
and captures images to store for future reference; and au-
tonomous running, in which it uses previous knowledge
to navigate autonomously, following any sequence previ-
ously learnt. The vectors stored in the SDM consist of
arrays of bytes, as summarised in Equation 2:

xi =< imi, seq id, i, timestamp, motion > (2)

In the vector xi, imi is the image i, in PGM (Portable
Gray Map) format and 80×64 resolution. In PGM im-
ages, every pixel is represented by an 8-bit integer. 0
is black, 255 is white. seq id is an auto-incremented,
4-byte integer, unique for each sequence. It is used to
identify which sequence the vector belongs to. i is an
auto-incremented, 4-byte integer, unique for every vector
in the sequence, used to quickly identify every image in
the sequence. timestamp is a 4-byte integer, storing Unix
timestamp. It is not being used so far for navigation pur-
poses. motion is a single character, identifying the type
of movement the robot performed after the image was
grabbed. The image alone uses 5120 bytes. The over-
head information comprises 13 additional bytes. Hence,
the input vector contains 5133 bytes.

5 Use of a search window

The use of a search window, which truncates the search
space, greatly improves the speed and performance of the
method.
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5.1 The problems

There are two weaknesses of the view-based navigation
approach described: i) processing time required to store
and retrieve one image and ii) prediction errors, when the
memory outputs a wrong image and motion command.

As for the processing time, it is proportional to the num-
ber of images stored in the memory. Each new image has
to be compared to all the hard locations that exist in the
memory. That may be a problem for real time operation,
specially if a single processor is used.

As for the second problem, it is due primarily to the exis-
tence of noise in the images, which is impossible to avoid.
When following a path, it is normal that the robot makes
some wrong predictions. It is difficult to count the exact
number of errors, but in this case we define the concept
of “Momentary Localisation Error” (MLE). A MLE oc-
curs when the system retrieves image imi−j after having
retrieved imi, for i, j > 0. That is a reasonable assump-
tion, since, under normal circumstances, the robot is not
expected to get back in the sequence. If at some point of
a path the prediction is imi, and after that it is imi−j ,
then it means that at least one of the predictions was
wrong. Those MLEs are not to worry when the robot
is performing the same movement in both the correct
and the wrongly retrieved image. That is often the case,
since there are only 4 possible motions (forward, back-
ward, turn left and turn right). But a prediction error
could compromise the robot’s ability to complete a path
if the correct motion and the motion associated with the
retrieved image are different.

5.2 Distribution of the Momentary Locali-
sation Errors

Table 1 shows the number of MLEs measured while fol-
lowing a typical path, described by a sequence of 130 im-
ages. The first row of the table indicates the distance of
the image predicted by the memory to the last predicted
image. The first column is the operation mode.

As the table shows, most of the MLEs occur with adjacent
images: the distance between the expected image and
the retrieved image is 1. More than 60% of the MLEs
are between adjacent images, regardless of the memory
operation mode. In the bitwise mode the MLEs are more
distributed in the range of distances [1–5] than in the
other modes. That makes sense, considering that the
bitwise mode is, in general, the weakest of all [10]. In the
example path no MLEs were detected at distances greater
than 5 images, and that is also a normal behaviour of the
system. Figure 5 shows an histogram of the distribution
of MLEs.

5.3 The use of a sliding window

The use of a sliding window helps improving both the
processing time and the number of MLEs. It works like
the use of a kind of context, in which the topic is nar-
rowed to a given subject. In the case of the SDM, that is
equivalent to segmenting the search space.

L. Jaeckel proposed a method of segmenting the space
by way of using only a limited set of coordinates, instead
of all the binary vector, to determine the set of active
locations [13]. The method implemented in the present
work has some similarities to Jaeckel’s approach. The
ideia is narrowing the search field to a number of images
before and after the last predicted image. For example, if
the robot is following path A and the last image retrieved
is image i, in the next prediction it is expected to be still
following path A and retrieve either image i or image
i+1. Since the length of the step used in the autonomous
run is 1/16th of that used during the learning stage, it
will see image i for some time and that is no prediction
error. The use of a sliding window consists in narrowing
the search field to sequence A and images in the interval
[imi−j , imi+j ], for i, j > 0. The search algorithm of the
SDM was updated, so that it skips images that: i) do
not belong to sequence A, and ii) belong to sequence A
but are not in the range [imi−j , imi+j ]. The images that
are within the sequence and the window are processed
normally.

6 Experiments and results

As Table 1 shows, more than 60% of the MLEs occur
between adjacent images (distance -1). The other MLEs
appear at absolute distances of 2, 3, 4 or 5 images. Al-
though those errors account for less than 40% of the total,
they are still undesirable.

In order to assess the performance of the system using a
sliding window, the navigation algorithm was updated to
narrow the search to the same sequence and a window of
three images, in the interval [imi−1, imi+1].

Table 2 shows the results obtained when following the
same example path, using the search window of width 3.
One interesting conclusion is that the search window cut
more MLEs than those counted out of its range, except
for the arithmetic mode. That is explained by the fact
that some MLEs may actually be the reason of other
MLEs. For example, a MLE that causes a wrong motion
of the robot may cause drifts and additional MLEs in the
future. The improvements are of 50% or more, except for
the arithmetic mode.

Figure 6 illustrates the data shown in Table 2, related to
the number of MLEs counted with and without using the
search window. The histogram clearly shows the impact
of the method, specially in the bitwise modes.
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Table 1: Distribution of the MLEs according to the operation mode, without search window.
-5 -4 -3 -2 -1

Arithmetic 0 0 4 (36.4%) 0 7 (63.6%)
Bitwise 2 (3.8%) 3 (5.7%) 2 (3.8%) 9 (17.0%) 37 (69.8%)

Optimised code 0 4 (7.3%) 3 (5.5%) 6 (10.9%) 42 (76.4%)
Sum-code 0 0 1 (7.1%) 3 (21.4%) 10 (71.4%)

Figure 5: Distribution of the MLEs, in the four operation modes, without search window.

Figure 6: Comparison of the number of MLEs with and
without search window.

Figure 7 illustrates the differences in processing time, as
shown in Table 2. It is clear that there is an improvement
of about 93% in the processing time. That makes sense,
considering that the memory is loaded with a sequence
of 130 images. The use of the search window makes the
algorithm skip all but three images, and those three im-
ages represent only 2.31% of the whole sequence. Since
most of the time necessary to make a prediction is actu-
ally wasted comparing images, an improvement of 93% is
coherent with the theory.

7 Discussion

As shown in Section 6, the use of a search window greatly
improves the performance of the system. In the example
path it reduced the number of momentary localisation er-

Figure 7: Comparison of the processing time with and
without search window.

rors up to 67%, and the processing time up to 95%. That
improvements are possible at the cost of truncating the
search space. Under normal circumstances, truncating
the search space should pose no problem to the robot.
However, the solution of looses generality, because it is
strongly based on the robot’s short memory: the robot
always assumes it is close to its last position. However,
it may happen that it slips while moving, it is manually
moved by a human to another location, etc. That is com-
monly known as the as the “kidnapped robot” problem.

To achieve robust navigation, a robot must not rely
strictly on a search window, otherwise it will not solve
the kidnapped robot problem. Using a SDM that prob-
lem may be easily overcome. A general solution to the
problem is to use an algorithm that, for each new image:
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Table 2: MLEs and processing time without using search window and with search window of size 3.
Arithmetic mode Bitwise mode Optimised code Sum-code

MLE
Without window 11 53 55 14

With window 7 19 18 7
Improvement 36% 64% 67% 50%

Time (μs)
Without window 15 511.38 14 567.16 16 269.21 116 846.54

With window 1 011.14 988.44 1 000.95 5 539.48
Improvement 93% 93% 94% 95%

1. Search within the sliding window. If the search re-
trieves one or more images within the SDM access ra-
dius (as explained in Section 3.1), then assume that
the prediction is correct.

2. If the search within the sliding window does not re-
trieve at least one image within the SDM access ra-
dius, then perform a global search in the SDM and
use the best prediction.

The algorithm as described still takes advantage of the
sliding window under normal circumstances, and is able
to solve the kidnapped robot problem.

8 Conclusions

Robot navigation based on visual memories is a long
sought goal. However, it requires heavy processing due
to the amount of information that has to be processed
in real time. The approach followed in the present work
is vision-based robot navigation using images stored into
a Sparse Distributed Memory. The speed of the process
can be largely improved with the use of a search window.
The search window truncates the search space, and thus
reduces the number of prediction errors as well as the
processing time.
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[7] Niall Winters and José Santos-Victor. Mobile robot
navigation using omni-directional vision. In In
Proc. 3rd Irish Machine Vision and Image Process-
ing Conference (IMVIP’99), pages 151–166, 1999.

[8] Mateus Mendes, Manuel M. Crisóstomo, and
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